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Abstract: In a changing climate, ship speed optimization plays an important role in energy conserva-
tion and emission reduction. In order to establish a dual-objective optimization model of minimizing
ship operating costs and reducing carbon emissions, fuel costs, berthing costs, emission costs and
fixed cost during sailing cycles, the emission reduction strategies of ships using MGO in emission
control areas and the AMP in ports are taken into account. The PSO algorithm is adopted to find the
Pareto solution set, and the TOPSIS algorithm is used to screen the optimal compromise solution,
while Yang Ming, a trans-Pacific route, is selected to verify the applicability of the model. The result
shows that the optimization model can effectively reduce the operating cost during sailing cycles
and control carbon emissions, which can provide references for ship operation decision-making to
achieve carbon peaking and carbon neutrality.

Keywords: dual-objective optimal speed; carbon peaking and carbon neutrality; emission control
area; PSO algorithm; TOPSIS algorithm; Yang Ming route

1. Introduction

Carbon emissions are the main cause of global warming. The transportation industry
is one of the major sources of carbon emissions. The data from the International Energy
Agency showed that the carbon dioxide emitted by the transportation industry accounted
for 24% in 2019 (Figure 1). According to the report from Simpson Spence & Young (SSY),
a shipping consulting firm, the carbon dioxide emissions of the global shipping industry
were 794 million tons in 2020, accounting for 2.4% of the global total carbon emissions, and
the carbon dioxide emissions of the global shipping industry were of 833 million tons in
2021, accounting for 3% of the global total carbon emissions, with a yearly increase 4.9%.
Shi et al. (2020) thought that the pollution caused by fuel consumption during the voyage
could not be ignored, and those pollutants may also have negative impacts on public health
and global climate change [1]. Wu et al. (2022) pointed out the significant negative impact
of air pollution on residents’ living welfare [2,3]. Therefore, it is urgent to reduce carbon
emissions in the transportation industry.

In addition, the international community is also paying attention to green shipping. In
order to control the air pollution caused by ships, the International Maritime Organization
issued the MARPOL Convention, Annex VI in 2008, establishing SOx Emission Control
Areas (hereinafter referred to as SECAs). There is a strict requirement on the sulfur content
of fuel in the ECA, e.g., after 1 July 2010, the sulfur content of the SECAs was less than
1%m/m. After 1 January 2015, the sulfur content was less than 0.1%m/m. In addition, IMO
also proposed some non-mandatory emission reduction measures, such as using alternative
marine power (hereinafter referred to as AMP), optimizing shipping routes, improving

J. Mar. Sci. Eng. 2023, 11, 157. https://doi.org/10.3390/jmse11010157 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11010157
https://doi.org/10.3390/jmse11010157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-6659-2262
https://orcid.org/0000-0002-8837-0713
https://doi.org/10.3390/jmse11010157
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11010157?type=check_update&version=2


J. Mar. Sci. Eng. 2023, 11, 157 2 of 16

shipping efficiency, strengthening ship equipment management, etc. The use of energy on
the ship’s main engine will simultaneously emit polluting gases such as SO2 and CO2, as a
high correlation exists between SO2 and CO2 emissions.
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Figure 1. Proportions of global carbon emissions by sector in 2019.

At the same time, in order to improve the energy efficiency of existing ships and
achieve the preliminary strategic goal of greenhouse gas emission reduction set by IMO,
mandatory requirements for the existing Ship Energy Efficiency Index (EEXI), carbon
intensity Index (CII) and Ship Energy Efficiency Management Program (SEEMP) were put
forward at the 76th session of the Commission for Marine Environmental Protection. For
the moment, there are a few studies on the optimization of CO2 emissions in the SECAs.
For example, Jing et al. (2021) used the system dynamics model and set 12 scenarios with
different fuel use conditions and ship speeds to investigate the trend of carbon dioxide
emissions in the Northern Sea Route [4]. Xu and Yang (2020) showed that the use of
LNG-fueled container ships through the Northern Passage saves costs and reduces CO2
emissions [5]. However, these studies are different from this paper. First of all, in terms of
research content, this paper takes the route of Yang Ming as an example to optimize the
ship speed with the dual objectives of minimizing the total operating cost and minimizing
the CO2 emissions of the ship. Secondly, in terms of research methods, this paper uses the
multi-objective particle swarm optimization (hereinafter referred to as MOPSO) algorithm
to obtain the Pareto front, and the TOPSIS algorithm to obtain the best compromise solution.
Therefore, this study has its particularity and will enrich the research on carbon dioxide
emissions in SECAs.

At present, under the background of depressed freight rates in the shipping market,
cost control will be one of the important goals of shipping companies. Nevertheless, in
order to reach the emission standards in the routes passing through the SECAs, the common
methods are to use the standard fuel oil or install desulfurization devices on the ships
already in operation, but these two methods will increase the operating costs of the ships. A
desulfurized device costs millions of USD, which is a large expense for a shipping company.
Therefore, in the context of low carbon, how to control the cost has become the focus of
shipping companies. According to the China Maritime Service Network (www.cnss.com
accessed on 25 June 2022.) which shows the prices of marine fuel oil (hereinafter referred to
as MFO) and marine gas oil (hereinafter referred to as MGO), in the Singapore Port from
April 2022 to September 2022 (Figure 2), the average price of MFO was USD 597.1 per ton,
while the average price of MGO was as high as USD 1153.7 per ton, which was about
twice the MFO’s price. Using MGO would significantly increase the operating cost of
ships while meeting the emission standard. Meanwhile, reducing the speed and using new
ships that meet the standards are the main ways to achieve the greenhouse gas emission
reduction target and meet the relevant indicators of EEXI, CII and SEEMP. Reducing speed

www.cnss.com
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can not only effectively reduce fuel consumption and lower fuel cost, but also reduce
carbon emissions. However, reducing speed will extend the sailing cycle and increase the
operating cost. If a ship accelerates to shorten the sailing cycle, it will increase carbon
emissions. In addition, the direct use of new ships that meet the standards will reduce
carbon emissions, but the cost will be greatly increased. Therefore, the purpose of this
paper is to identify how to determine the speed in/out of ECA for ships to reach a balance
between reducing both costs and CO2 emissions to achieve the dual objectives of protecting
the environment and saving costs.
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2. Literature Review

Currently, the objectives of most speed optimization models are to either minimize
sailing costs or maximize profits. For example, Lin Guihua et al. (2022) established an
optimization model to maximize profits by considering some comprehensive emission
reduction strategies in control areas and simultaneously taking into account the revenue of
carriers and various costs during the voyage [6]. Given the optimization of ship deployment,
route, speed and fueling, Lashgari et al. (2021) developed a stochastic linear integer
programming model based on scenarios to effectively reduce total costs [7]. With the total
fuel consumption as the objective function and the main engine speed as the decision
variable, Fan et al. (2021) established a multiple-stage speed optimization model of ships
based on a dynamic programming algorithm [8]. Li et al. (2020) comprehensively took
into account the impact of sea state and voluntary speed loss on sailing and established a
single-voyage optimization model to minimize the main engine fuel consumption and ship
operating cost [9]. In order to optimize the allocation of multi-route and multi-type liner
routes and take into account sailing speed and ship payload, Gao and Hu (2021) established
a multi-objective mixed integer nonlinear optimization model [10]. With the objective of
minimizing the total costs of the fleet including operating cost, capital cost and sailing cost,
Wang and Zhao (2021) solved the model by applying an algorithm based on probabilistic
taboo search [11]. Yu et al. (2019) established a dual-objective optimization model with
the objectives of optimizing sailing cost and shipper satisfaction and adopted a fuzzy
membership function in the model to represent the satisfaction of shippers [12]. Doudnikoff
and Lacoste (2014) established an optimization model to minimize the cost without adding
new ships, and they concluded that the increase in speed outside the emission control zone
would slightly reduce the total cost, but increase CO2 emissions [13]. Ng (2019) considered
the relationship between sailing speed and the number of ships required to maintain a
given service frequency and established a new sailing speed optimization model, which
can greatly shorten the calculation time and improve the calculation efficiency [14]. De et al.
(2021) studied the optimal management strategy under different fuel pricing modes with
the goal of minimizing the total cost [15]. De et al. (2017) considered the concept of time
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window constraints and proposed a model for solving shipping inventory paths, which is
helpful for shipping companies to reduce the total cost [16].

Carbon reduction strategy is one of the main marine topics of the last decade. Dulebenets
(2018) introduced the carbon tax cost, considered the CO2 emissions of ships in the states of
sailing and berthing, respectively, and studied route ship allocation and speed optimization
in ECA [17]. Thalis (2014) indicated that the use of AMP could reduce CO2 emissions by
48–70% when docked [18]. Meanwhile, Tang et al. (2018) indicated that minimal emissions
were produced in ports with power supplied from clean energy [19]. Lan et al. (2020)
considered the impact of carbon emissions trading policies on ship operation, established
speed optimization models under four different forms of carbon emission policies and
compared the impacts of carbon emission trading policies and carbon emission tax on ship
carbon emissions and ship operating cost. Their results showed that the carbon emission
tax had a better emission reduction effect than that of carbon emissions trading policies,
while carbon emission trading policies had a smaller impact on the profits of shipping
companies [20]. De et al. (2016) proposed an optimization model that included multiple
time windows, carbon emissions and the needs of different ports [21]. Ding et al. (2020)
investigated the economic impact of fixed carbon emission tax rate and progressive carbon
emission tax rate on the Arctic Route. The results showed that both solutions would increase
sailing costs and reduce ship profits. However, progressive carbon emission tax produced
a smaller cost, which was easy to be adopted by shipping companies [22]. De et al. (2020)
took carbon emission reduction as the main goal and studied the sustainable ship route
optimization of ship fuel management [23]. On the basis of considering the upper limit of
carbon emissions and carbon emission tax, Xing et al. (2019) established a mixed integer
nonlinear programming model of ship speed and fleet allocation and analyzed the impacts
of various carbon tax and carbon emission upper limits on ship speed and route ship
allocation [24]. De et al. (2021) discussed a model that maximizes shipping companies’
profits by combining fuel consumption and carbon emissions [25].

There are also many studies on the impact of non-mandatory carbon emission reduc-
tion policies on ship carbon emissions and ship operating costs. Aiming at the scheduling
problem of tramp ships including speed optimization, Fan et al. (2019) established a multi-
type tramp ship scheduling and speed optimization model considering carbon emissions
with the goal of minimizing the total cost of shipping companies [26] without establishing
a double-objective optimization model. Zhen et al. (2020) established a dual-objective opti-
mization model to minimize fuel costs and SO2 emissions and verified that ECA rules could
effectively reduce SO2 emissions from ships [27] without consideration of non-mandatory
emission reduction policies. Christodoulou et al. (2019) collected the various initiatives
developed and implemented to reduce maritime air emissions that are fully implemented
globally [28]. Liu et al. (2016) studied CO2 emissions from shipping in East Asia based on
detailed ship dynamic activity data, showing that emissions from shipping in East Asia
accounted for 16% of global CO2 emissions in 2013 [29]. Burel et al. (2013) proposed the
economic upturn that could be achieved by using LNG as a fuel for merchant ships. A case
study shows that LNG reduces operating costs by 35% and CO2 emissions by 25% [30].
Ju and Hargreaves (2021) conducted a comprehensive analysis of CO2 emissions in the
western Singapore Strait based on voyage data from the Automatic Identification System
and static information from the Singapore Maritime Data Centre [31].

Undoubtedly, a number of studies are relevant to ship carbon emissions and ship
operating costs. Few papers discussed the optimization model of ship speed based on
the comprehensive consideration of the ECA, the use of AMP and the proposal of carbon
emission trading price to meet the relevant indicators such as CII, as well as the estab-
lishment of the ship speed optimization with the minimum carbon emissions and the
minimum operating costs. Therefore, this paper has carried on the research work in the
navigation speed optimization, slow sailing and other aspects. This paper takes Yang Ming,
a trans-Pacific shipping route, as an example, considering ECA, AMP, carbon trading price
and other factors. Simultaneously, fuel cost, berthing cost, emission cost and fixed cost
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during sailing cycles are taken into account. We establish a dual-objective optimization
model of minimizing operating cost and minimizing carbon emissions during sailing cycles,
adopt the MOPSO method to solve the Pareto solution set and use TOPSIS to screen the
optimal compromise solution and offer the optimal solution. This paper provides a better
path for a speed optimization model for the route involving emission control areas and
aiming at minimizing carbon emission and ship operating cost. These are the focus of this
paper, and also the differences between this paper and current studies.

3. Problem Description and Model Establishment
3.1. Problem Description and Hypothesis

Liner carriers transport cargoes for customers at the ports along the routes on a regular
basis each week. In order to reduce operating cost during the cycles as much as possible and
reduce ship pollutant emissions as far as possible, liner carriers should use MGO in SECAs;
in addition, when docked in ports, AMP must be used. Ship operating cost mainly consists
of fuel cost, emission cost, berthing cost and fixed cost. Ship speed reduction will reduce fuel
consumption, ship emissions, fuel cost and emissions cost. However, it will simultaneously
increase sailing time and operating cost. Therefore, reducing ship emissions and reducing
operating costs are in conflict. vi is the decision variable. QAMP, BAMP

j , PAMP
j , PCO2 , n and

Cg are parameters. The variables and parameters are shown in Table 1.

Table 1. Variables and parameters.

Variable and Parameter Meaning

I = {i|i ∈ Z∗} Set of legs, that is to say, the path between two neighboring ports
J = {j|j ∈ Z∗} Set of ports

tE
i , tN

i Time of leg i in/outside SECAs (h)
PE, PN Fuel prices in/outside SECAs (USD/t)

FZ , FF , FFS
Daily fuel consumption of the main engine during the voyage, auxiliary engines

during the voyage and auxiliary engines when docked (t/d)
QAMP Daily average demand volume of AMP by each ship when docked
PAMP

j Price of AMP used in port j (USD/kWh)
BAMP

j Subsidy for the use of AMP in port j (USD/cycle)
tj Time of berthing in port j (h)

PCO2 Carbon emissions trading price (USD/t)
n Number of ships within a cycle

f E
co2

, f N
CO2

Emission factors of carbon dioxide in/outside SECAs
Cg Daily fixed cost of ships, excluding berthing cost (USD/d)

vi vi =
{

vE
i , vN

i
}

, ship speed for leg i in/outside SECAs

Hypotheses in this paper:

(1) MGO is used by the main engine in the SECAs and MFO is used outside the SECAs,
and MGO is always used by the auxiliary engines;

(2) The ship speed is constant in different areas for leg i;
(3) The service frequency of ships is once a week;
(4) The type of ships for the route is the same, with the same capacity and cost structure;
(5) The ships sail at constant speed in SECAs. The ships sail at constant speed outside SECAs;
(6) In ports equipped with AMP, all ships use AMP when docked.

3.2. Objective Function
3.2.1. Fuel Cost

Each leg is divided into in/outside SECAs and the total fuel costs of all main engine
and auxiliary engines of the ship during one cycle are:

CR = CZR + CFR (1)
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The study of Hughes (1996) indicated that the fuel consumption of the ship was
proportional to the cube of speed [32]. Therefore, the daily fuel consumption FZ of the main
engine during the voyage of the ship is:

FZ(vi) = qZ × ELZ × PZ ×
24
106 = qZ × ELZ × P0 × (

vi
v0

)
3
× 24

106 (2)

Among them, the fixed value of the main engine load value ELZ is 0.8, qz refers to the
fuel consumption rate (g/kWh), P0 refers to the rated main engine power, V0 refers to the
ship’s design speed and Pz refers to the actual main engine power. f Z

0 , the fuel consumption
coefficient, will be introduced by calculating fuel consumption. When calculated based on
the standard ship with a capacity of 5000 TEU, fz = 0.0108, the fuel formula of the main
engine is:

fz = qZ × ELZ × P0 ×
24

(v0)
3 × 106

(3)

Then, FZ(vi) = f z
0 ×

(
vE

i
)3

+ f z
0 ×

(
vN

i
)3. Therefore, the total fuel costs of the main

engine of the ship during one cycle are:

CZR(vr) = n×∑I
i=1

{
tE
i

24
× PE × fz ×

(
vE

i

)3
+

tN
i

24
× PN × fz ×

(
vN

i

)3
}

(4)

The daily fuel consumption by auxiliary engines when ships sail in/outside SECAs is:

FF = qF × ELF × P0 ×
24
106 (5)

Among them, the fixed value of the auxiliary engine load value ELF is 0.5. qF refers
to the fuel consumption rate (g/kWh), P0 refers to the rated auxiliary engine power. The
fuel consumption of auxiliary engines is correlated to the ship and the performance of its
engines, and it is not influenced by speed. Therefore, the total fuel costs of all auxiliary
engines of the ship during one cycle are:

CFR = n×∑I
i=1 PE ×

ti
24
× FF (6)

Then, the total fuel costs of all main engine and auxiliary engines of the ship during
one cycle are:

CR = CZR + CFR

= n×∑I
i=1

{
tE
i

24 × PE × f z
0 ×

(
vE

i
)3

+
tN
i

24 × PN × f z
0 ×

(
vN

i
)3

+ PN × ti
24 × FF

} (7)

3.2.2. Berthing Cost

The berthing cost is divided into two types by using AMP or not. If AMP is used
when the ship is docked, it mainly consumes power. Additionally, currently the country
is actively promoting the use of AMP, offering corresponding subsidies to line carriers.
Therefore, the berthing cost when using AMP is:

CS = ∑J
j=1 n×

( tj

24
PAMP

j QAMP − BAMP
j

)
(8)

If AMP is not used, then the fuel when docked is consumed by auxiliary engines, and
in this case the berthing cost is:

CS = ∑J
j=1 n×

tj

24
× FFS × PE (9)
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3.2.3. Emission Costs

The emission costs consist of those produced during the voyage and when docked.
Xue (2014) suggested that, during the voyage, the fuel consumed by the main engine of a
container ship accounted for 87%, the auxiliary engines 11% and the boilers in operation
approximately 2%; thus, we did not consider the emissions produced by boilers [33]. The
emission cost during the voyage is generated from fuel consumption. When docked, it only
needs to consider fuel consumption by auxiliary engines, without considering the power
consumption caused by the use of AMP. Then, when AMP is used, the carbon dioxide
emissions are:

FCO2 = n×∑I
i=1

{
tE
i

24
f E
co2

f z
0

(
vE

i

)3
+

tN
i

24
f N
co2

f z
0

(
vN

i

)3
+ f N

co2

ti
24

FF

}
(10)

If AMP is not used, the carbon dioxide emissions are:

FCO2 = n ∑I
i=1

{
tE
i

24
f E
co2

f z
0

(
vE

i

)3
+

tN
i

24
f N
co2

f z
0

(
vN

i

)3
+ f N

co2

ti
24

FF

}
+ n

J

∑
j=1

{ tj

24
FFS f E

CO2

}
(11)

The emission cost is equal to the product of emission FCO2 and the carbon dioxide
emissions trading price PCO2 . The carbon dioxide emissions trading price is based on the
international trading price of USD 47/ton. Therefore, all emission costs during the entire
cycle are:

CCO2

(
vE

i , vN
i

)
= PCO2 × FCO2 (12)

3.2.4. Fixed Cost

In liner shipping, besides cost, emission cost, berthing cost and other variable costs,
some fixed costs are also included, which are mainly insurance cost, repair cost, manage-
ment cost, etc. There are also some variable costs including port charges and handling
charges which are not related to speed and pollutant emissions. In order to simplify the
study, the costs are uniformly referred to as fixed costs here.

CG = n× 1
24
× Cg ×

(
∑I

i=1 ti + ∑J
j=1 tj

)
(13)

3.3. Construction of Dual-objective Optimization Model

With the dual objectives of minimizing the costs and carbon emissions of liner carriers, the
following model can be established, which mainly includes the objective function and constraints.

minTC
(

vE
i , vN

i

)
= CR

(
vE

i , vN
i
)
+ CS + CCO2

(
vE

i , vN
i
)
+ CG

(
vE

i , vN
i
)

(14)

minFCO2

(
vE

i , vN
i
)
= FCO2

(
vE

i , vN
i
)

(15)

s.t. Vm < vE
i , vN

i < VM, ∀i ∈ I (16)

tN
i =

LN
i

vN
i

, tE
i =

LE
i

vE
i

, ti = tN
i + tE

i (17)

∑I
i=1 ti + ∑J

j=1 tj ≤ 168× n (18)

i = 1, 2, . . . , i; j = 1, 2, . . . , j; n = 1, 2, . . . , n (19)

The objective function (14) refers to the minimum transport cost of the liner com-
pany. CR

(
vE

i , vN
i
)

refers to the fuel cost during the voyage; CS refers to the berthing cost;
Cco2

(
vE

i , vN
i
)

refers to the carbon dioxide emission cost; CG
(
vE

i , vN
i
)

refers to the fixed cost
of one voyage of the ship; objective function (15) refers to the total carbon dioxide emissions
during one voyage of the ship.
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Constraint (16) refers to the speed limit of the ship, specifying a speed between the
minimum speed and the design speed; constraint (17) means that time is equal to the
identical equation for the distance divided by the speed; constraint (18) refers to the service
frequency of the ship visiting the port at least once a week; constraint (19) refers to the
non-negative and integer constraints on the number of legs, ports and ships. To solve
the above-mentioned optimization model, the dual-objective optimization algorithms and
solution ideas are introduced below.

4. Dual-Objective Optimization Algorithms and Solutions
4.1. Particle Swarm Optimization
4.1.1. Basic Principle of the Algorithm

De et al. (2019) proposed a multi-objective mathematical model integrating different
shipping services and used multi-objective particle swarm optimization algorithm and
non-dominated sorting genetic algorithm to solve the model [34]. Peng et al. (2021) adopted
the MOPSO algorithm to solve the multi-objective model of berth allocation for arriving
ships [35].Mandal and Mondal (2021) applied the MOPSO–TOPSIS algorithm to solve the
multi-objective model and obtained the optimal solution [36]. Therefore, the multi-objective
particle swarm optimization algorithm is used in this paper. Based on the idea of Birds’
foraging behavior, Kennedy and Eberhart (2002) proposed the PSO Algorithm [37]. The
development of the MOPSO algorithm was relatively late [38]. Through Pareto ranking
approaches, MOPSO uses the dominant relationship of fitness among particles to find the
individual optimal solution set and swarm optimal solution set and update the non-inferior
solution set to solve the multi-objective problem.

For a particle swarm the size of N, the position vector xi and velocity vector vi of any
particle i are, respectively, expressed as:

xi = (xi1, xi2, . . . , xiD)
T ∈ RD (20)

vi = (vi1, vi2, . . . , viD)
T ∈ RD, i = 1, 2, . . . , N (21)

D refers to the number of decision variables, and the particle positions and velocities
are updated as follows:

Vt+1
id = ωVt

id + c1r1
(

Pt
id − Xt

id
)
+ c2r2

(
Pt

gd − Xt
id
)

(22)

Xt+1
id = Xt

id + Vt+1
id (23)

ω refers to the inertia weight; t refers to the iteration; c1, c2 ≥ 0 refers to the acceleration
coefficient, which is also known as the learning factor; r1, r2 refers to the random number
between (0,1); Pt

id refers to the tth individual extreme value, which is called P-best; Xt
id

refers to the tth self-position; Pt
gd refers to the tth swarm extreme value, which is called

G-best. To balance the global search capability and local search capability of the particle
swarm and improve search and solution speed, currently the most adopted is the dynamic,
linear and changing inertia weight proposed by Shi (1988) [39], and the updated formula of
inertia weight w is:

w = wmax − t× wmax − wmin
tmax

(24)

In the formula: t refers to the current iteration; tmax refers to the maximum iteration.
At the beginning of the iteration, setting a larger inertia weight is conducive to improving
the global search capability; as the iteration increases, the inertia weight decreases, which is
conducive to improving the local search capability for later iterations. In most applications,
wmax = 0.9, wmin = 0.4.
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4.1.2. Determine Individual Optimal Position and Global Optimal Position

Particles i and i + 1 are the two appropriate solutions to the multi-objective optimiza-
tion problem. If and only if Equation (25) is valid, we say that Particle i dominates Particle
i + 1.

∀j = 1, 2, . . . , f j(i) ≤ f j(i + 1) ∧ ∃j∗ = 1, 2, . . . , f j∗(i) < f j∗(i + 1) (25)

The Pareto dominant relationship is used to determine the optimal position of the
particle. If the fitness value of the current particle is superior to P-best, the position of the
current particle will be used to update P-best; otherwise, P-best will remain unchanged.

For the multi-objective optimization problem, the results of each iteration in the PSO
algorithm will exclude the dominated particles, and use dominating particles and the
particles that do not dominate each other to form a non-inferior solution set. Coello et al.
(2004) defined the fitness value for the meshes divided in each swarm (containing at least
one external particle), selected a mesh according to the roulette method and randomly
screened an external particle swarm from the non-inferior solution set as the global extreme
value [38].

4.2. TOPSIS Algorithm

According to the multi-objective PSO algorithm, the eventual result of the multi-
objective optimization problem is a group of Pareto solution sets. Decision-makers need to
screen the optimal compromise solution from the Pareto solution set, which in essence is a
multi-property decision-making issue. The TOPSIS algorithm, also known as “Approximate
Ideal Solution Ranking”, is a decision-making method featuring multi-property decision-
making analysis [40]. The relative nearness degree is obtained through calculating the
distances from each solution to the optimal solution and the worst solution and used as the
basis of evaluation.

Alternative solutions with the number of m are composed of elements in the Pareto
solution set, which have corresponding function values under their own objectives for a
multi-objective optimization problem with n objectives. The specific steps are as follows:

(1) Since the dimension and variation range of each objective are different, in order to
reflect the actual situation that the objective changes with the decision variables, the z-score
normalization method is adopted to perform de-dimension processing on objective functions;

(2) The entropy weight method is used to determine the weight λn of each objective;
(3) The optimal solution S+ and the worst solution S− are determined, that is to say,

each objective has achieved the optimal and the worst solutions:

S+ = min
(

f1
′
(x1), f2

′
(x2), . . . , fn

′
(xn)

)
(26)

S− = max
(

f1
′
(x1), f2

′
(x2), . . . , fn

′
(xn)

)
(27)

(4) The distances from the solution xi to the optimal solution and the worst solution
are calculated, and thus the relative nearness degree d is calculated.

d+(xi) = λn

√
∑m

n=1

[
f ′n(xi)− f ′n+

]2
(28)

d+(xi) = λn

√
∑m

n=1

[
f ′n(xi)− f ′n+

]2
(29)

d(xi) =
d+(xi)

d+(xi) + d−(xi)
(30)

In the formula, the smaller the value of d, the closer the solution xi is to the optimal
solution; the minimum corresponding solution of d is the optimal compromise solution.
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4.3. Solving Process

(1) The particle swarm is initialized to give each particle an initial speed and position.
The learning factors c1, c2, the upper and lower limits of inertia weights wmax , wmin, the
maximum iteration tmax as well as the particle swarm size N and other parameters are
simultaneously initialized;

(2) The fitness value of the particle is calculated, which is determined by the function
values of ship cost and carbon emissions, that is to say{

TC
(
vE

i , vN
i
)
= CR + CS + Cco2 + CG

Fco2

(
vE

i , vN
i
)
= Fco2

(31)

After the algorithm is initialized and updated, the constraints specified by the two
objective functions are satisfied by limiting the range of values of decision variables;

(3) The fitness of particles is compared, and the individual optimal position (P-best)
and non-inferior solution set are updated according to the dominant relationship, and the
global optimal position (G-best) of the particle is randomly selected from the non-inferior
solution set;

(4) According to the particle update formula, the speed and position of the particles
are updated to judge whether the particle is trapped in a local optimal solution. If so, it is
necessary to mutate;

(5) It needs to judge whether the pre-set maximum iteration has been achieved, and
output the Pareto solution set; otherwise, return to step (2) to continue the iteration;

(6) According to the obtained Pareto solution set, the corresponding minimum and
maximum values of ship cost and emissions are found, which are the positive and negative
ideal points;

(7) The solution with the minimum relative distance d from the positive and negative
ideal points is screened from the solution set, which is the optimal compromise solution,
and the corresponding speed is the optimal speed.

The specific flow chart of the solution is shown in Figure 3.
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5. Case Study
5.1. Route Profile

Based on the above-mentioned algorithms, this paper takes the regular weekly service
of the trans-Pacific route provided by the liner carrier Yang Ming (the specific route is
PACIFIC SOUTH WEST COAST LOOP4) as an example. The ports involved along this
route are successively Hong Kong, Yantian, Kaohsiung, Keelung, Los Angeles, Oakland,
Keelung, Kaohsiung and Hong Kong, with the ports of Los Angeles and Oakland providing
AMP services. The specific distances between ports and the berthing time are shown
in Table 2, among which the source of the total distance Di between ports is SeaRates
(www.searates.com accessed on 25 June 2022.). DE

i is the distance for leg i in SECAs. DN
i is

the distance for leg i outside SECAs. Parameters related to ships are provided in Table 3
based on the relevant literature.

Table 2. Leg summary and AMP subsidy policies.

Legi Area
Total

Distance
Di(n mile)

DE
i (n mile) DN

i (n mile) tj (h)
PAMP

j
(USD/kWh)

BAMP
j

(USD/Cycle)

1 Hong Kong–Yantian 40.59 0 40.59 24
2 Yantian–Kaohsiung 339.4 58.45 280.95 28.8
3 Kaohsiung–Keelung 234.21 38 196.21 24
4 Keelung–Los Angeles 5896.38 87 5809.38 24
5 Los Angeles–Oakland 407.55 407.55 0 38.4 0.2 550
6 Oakland–Keelung 5633.21 69 5567.21 48 0.15 152
7 Keelung–Kaohsiung 234.21 38 196.21 24
8 Kaohsiung–Hong Kong 345.22 71 274.22 24

Table 3. Model parameters.

Sign Value Sign Value

I 8 f E
co2

3.082
J 9 f N

co2
3.012

VM (n mile) 25 FF (t/d) 7.14
Vm (n mile) 10 Cg (USD/d) 22,000

PCO2 (USD/t) 47 FFS (t/d) 7.14
PE (USD/t) 558 QAMP (kWh/t) 25,200
PN (USD/t) 323 n 8

5.2. Result Analysis

In this paper, the specific relationships among speed, ship operating cost and carbon
emissions are obtained. As shown in Figure 4, the blue line represents the relationship
between ship operating cost and speed, and the red line shows the relationship between
carbon emissions and speed. At a speed between 10 and 13.63, the ship speed is negatively
correlated with operating cost while positively correlated with carbon emissions, that is to
say, the two objectives are in conflict.
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In order to obtain the approximate optimal solution of the example, the parameters
of MOPSO were adjusted appropriately. The parameter values of MOPSO are the particle
swarm size N = 50, the acceleration coefficient c1 = 1.5 , c2 = 0.5, the maximum inertia
weight ωmax = 1.2, the minimum inertia weight ωmin = 0.2, the maximum iteration
tmax = 100 and the updating method of inertia weight which is as follows:

w = wmax − t× wmax − wmin
tmax

According to the established multi-objective optimization algorithm of the ship, the
simulation calculation is performed on the actual case, and the result is shown in Figure 5.
The red asterisks represent the positions of 50 swarm-optimal particles after the 100th
iteration, which have formed the Pareto solution set, while the white circles represent the
positions of 50 particles in the 100th iteration. Table 4 shows the values of the dual objective
function corresponding to 50 particles.
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Table 4. 50 objective function values corresponding to Pareto solution.

No. Cost
(USD)

Carbon
Emission (t) No. Cost

(USD)
Carbon

Emission (t) No. Cost
(USD)

Carbon
Emission (t)

1 14,694,000 26,943 18 14,744,000 24,846 35 14,739,000 25,024
2 14,712,000 25,940 19 14,721,000 25,588 36 14,812,000 23,512
3 14,699,000 26,532 20 14,707,000 25,988 37 14,775,000 24,188
4 14,743,000 24,907 21 14,692,000 27,094 38 14,838,000 23,112
5 14,891,000 22,421 22 14,745,000 24,829 39 14,765,000 24,411
6 14,696,000 26,544 23 14,757,000 24,586 40 14,879,000 22,547
7 14,896,000 22,335 24 14,737,000 25,100 41 14,775,000 24,203
8 14,876,000 22,589 25 14,765,000 24,411 42 14,794,000 23,876
9 14,909,000 22,183 26 14,887,000 22,455 43 14,787,000 23,976

10 14,711,000 25,987 27 14,695,000 26,810 44 14,873,000 22,617
11 14,905,000 22,229 28 14,914,000 22,159 45 14,835,000 23,145
12 14,861,000 22,771 29 14,713,000 25,931 46 14,854,000 22,911
13 14,822,000 23,346 30 14,762,000 24,486 47 14,845,000 22,999
14 14,780,000 24,148 31 14,777,000 24,161 48 14,804,000 23,665
15 14,781,000 24,057 32 14,900,000 22,303 49 14,807,000 23,592
16 14,706,000 26,108 33 14,727,000 25,377 50 14,829,000 23,251
17 14,759,000 24,504 34 14,863,000 22,750 — — —

The 50 particles obtained are used to form the Pareto solution set. The respective
weights of the dual objectives are first determined through the entropy weight method.
The formula of calculating information entropy is as follows:

Ei = −
1

ln n ∑n
j=1 pij ln pij (32)
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where pij refers to the proportion of each item in the total, with i as the index, j as the
number of records and Ei between 0 and 1.

The formula of calculating the weight of each index λi through information entropy is
as follows:

λi =
1− Ei

∑(1− Ei)
(33)

The results of the respective weights of the dual objectives are shown in Table 5.

Table 5. Results of weights determined by entropy weight method.

Item Information Entropy
Value e

Information Utility
Value d Weight

Objective 1 (Cost) 0.951 0.049 0.563
Objective 2 (Carbon Emissions) 0.962 0.038 0.437

The TOPSIS algorithm is adopted and the weights of each objective obtained through
the entropy weight method are combined to rank the Pareto solution set. The number of
the selected optimal compromise solution (the optimal speed) is 18. The results of ranking
are shown in Table 6.

Table 6. Results of TOPSIS method ranking.

No. Positive
Distance

Negative
Distance

Comprehensive
Score Rank No. Positive

Distance
Negative
Distance

Comprehensive
Score Rank

18 0.0869 0.1437 0.6231 1 49 0.0961 0.1294 0.5737 25
22 0.0868 0.1433 0.6227 2 36 0.0986 0.1289 0.5666 26
17 0.0845 0.1388 0.6216 3 6 0.1266 0.1652 0.5661 27
4 0.0882 0.1436 0.6196 4 3 0.1263 0.1630 0.5633 28
23 0.0855 0.1388 0.6188 5 13 0.1039 0.1285 0.5530 29
35 0.0900 0.1449 0.6169 6 27 0.1343 0.1654 0.5519 30
30 0.0854 0.1372 0.6162 7 1 0.1381 0.1660 0.5459 31
25 0.0852 0.1365 0.6157 8 50 0.1080 0.1281 0.5425 32
39 0.0852 0.1365 0.6157 8 21 0.1425 0.1675 0.5404 33
24 0.0914 0.1454 0.6139 9 45 0.1116 0.1286 0.5355 34
37 0.0857 0.1343 0.6103 10 38 0.1135 0.1284 0.5308 35
41 0.0860 0.1340 0.6090 11 47 0.1179 0.1292 0.5227 36
33 0.0966 0.1495 0.6076 12 46 0.1241 0.1289 0.5095 37
31 0.0863 0.1336 0.6075 13 12 0.1287 0.1310 0.5045 38
15 0.0867 0.1332 0.6059 14 34 0.1301 0.1312 0.5020 39
14 0.0878 0.1321 0.6008 15 44 0.1372 0.1329 0.4920 40
19 0.1014 0.1519 0.5998 16 8 0.1394 0.1332 0.4886 41
43 0.0888 0.1314 0.5968 17 40 0.1415 0.1339 0.4862 42
20 0.1111 0.1594 0.5892 18 26 0.1473 0.1354 0.4790 43
42 0.0915 0.1297 0.5863 19 5 0.1503 0.1360 0.4750 44
2 0.1102 0.1560 0.5860 20 7 0.1540 0.1380 0.4727 45
29 0.1100 0.1553 0.5853 21 32 0.1570 0.1387 0.4691 46
10 0.1114 0.1564 0.5840 22 11 0.1607 0.1406 0.4667 47
16 0.1145 0.1595 0.5821 23 9 0.1637 0.1418 0.4642 48
48 0.0950 0.1292 0.5762 24 28 0.1675 0.1425 0.4596 49

Table 7 shows that, except for the Yantian–Kaohsiung section, the sailing speed in
ECA is less than that outside ECA. The results show that the establishment of ECA can
effectively reduce ship speed and carbon emission. At the same time, the longer the
navigation distance of the segment, the faster the speed outside the control area, which
compensates for the time loss caused by the active speed reduction in the ECA area and
satisfies the service frequency. Finally, with fixed fuel prices, the faster speed outside the
ECA will increase fuel costs, but also substantially reduce fixed daily costs. Tables 8 and 9
show the single-objective optimization results with minimum sailing cost and minimum
CO2 emission. By comparing the optimization results in Tables 7 and 8, the sailing speed of
the double-objective optimization is significantly lower than that of the single-objective
optimization with the minimum sailing cost, so the CO2 emission decreases but the cost
increases. By comparing the optimization results in Tables 7 and 9, the sailing speed of the
double-objective optimization is higher than that of the single-objective optimization with
the minimum CO2 emission, so the sailing cost decreases but the carbon emission increases.
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Table 7. Results of multi-objective optimization of speed.

Legi Area
Total

Distance Di
(n mile)

DE
i (n mile) vE

i (n mile/h) DN
i (n mile) vN

i (n mile/h)

1 Hong Kong–Yantian 40.59 0 — 40.59 12.07
2 Yantian–Kaohsiung 339.4 58.45 12.16 280.95 11.79
3 Kaohsiung–Keelung 234.21 38 11.71 196.21 12.60
4 Keelung–Los Angeles 5896.38 87 11.61 5809.38 12.81
5 Los Angeles–Oakland 407.55 407.55 11.73 0 —
6 Oakland–Keelung 5633.21 69 11.66 5567.21 12.68
7 Keelung–Kaohsiung 234.21 38 11.49 196.21 12.38
8 Kaohsiung–Hong Kong 345.22 71 11.45 274.22 12.09

Table 8. Results of minimum sailing cost of speed.

Legi Area
Total

Distance Di
(n mile)

DE
i (n mile) vE

i (n mile/h) DN
i (n mile) vN

i (n mile/h)

1 Hong Kong–Yantian 40.59 0 — 40.59 12.79
2 Yantian–Kaohsiung 339.4 58.45 10.93 280.95 11.47
3 Kaohsiung–Keelung 234.21 38 11.78 196.21 12.41
4 Keelung–Los Angeles 5896.38 87 11.30 5809.38 13.25
5 Los Angeles–Oakland 407.55 407.55 11.79 0 —
6 Oakland–Keelung 5633.21 69 12.59 5567.21 13.19
7 Keelung–Kaohsiung 234.21 38 11.95 196.21 11.43
8 Kaohsiung–Hong Kong 345.22 71 12.18 274.22 13.53

Table 9. Results of minimum CO2 emissions of speed.

Legi Area
Total

Distance Di
(n mile)

DE
i (n mile) vE

i (n mile/h) DN
i (n mile) vN

i (n mile/h)

1 Hong Kong–Yantian 40.59 0 — 40.59 12.45
2 Yantian–Kaohsiung 339.4 58.45 11.41 280.95 11.52
3 Kaohsiung–Keelung 234.21 38 11.57 196.21 12.67
4 Keelung–Los Angeles 5896.38 87 11.35 5809.38 11.71
5 Los Angeles–Oakland 407.55 407.55 11.82 0 —
6 Oakland–Keelung 5633.21 69 11.40 5567.21 12.08
7 Keelung–Kaohsiung 234.21 38 12.01 196.21 11.13
8 Kaohsiung–Hong Kong 345.22 71 11.89 274.22 11.53

The results in Table 10 show that, with speed optimization, the ship’s carbon emissions
correspond to 24,846 tons. Compared to the objective of minimizing carbon emissions,
carbon emissions are increased by 2200 tons; however, the total ship costs are reduced by
USD 170,000, showing a significant effect. The main reason is that the optimized speed is
relatively faster which increases carbon emissions but significantly reduces sailing time,
thus reducing the fixed cost and the total costs. Meanwhile, compared to the objective of
minimizing total costs, carbon emissions were reduced by 2200 tons; however, the total
ship costs only increased by USD 50,000. The above-mentioned results show that this speed
optimization algorithm has a certain advantage. This algorithm can provide references for
ships to determine the speed and reduce costs in optimizing speed, taking into account
economic and environmental benefits in the process of ship operation.

Table 10. A comparison of various emission control policies.

Strategy Considered Minimum TC Minimum FCO2 Optimal TC and FCO2

Total Cost TC (USD 10,000) 1469.2 1491.4 1474.4
Fuel Cost CR (USD 10,000) 409.6 370.53 393.31

Emission Cost CCO2 (USD 10,000) 127.4 104.14 117.9
Sailing Time T (h) 992.9 1108.1 1039.5

Carbon Emission FCO2 (t) 27094 22,159 24,846

6. Conclusions

In a sustainable developing society, ship operating cost optimization and carbon
emission reduction are key goals of the transportation industry. There is a dilemma
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between ship operating cost and carbon emission reduction. A major part of the solution is
to take advantage of the growing technologies and operational strategies to increase ship
efficiency. This paper establishes a ship speed dual-objective optimization model taking
into consideration the impacts of the ECA control area, berthing cost and AMP, adopting
the multi-objective PSO algorithm to find the Pareto solution set with the dual objectives of
minimizing ship operating cost and carbon emission, using the TOPSIS algorithm to screen
the optimal compromise solution from the Pareto solution set and finding the optimal
speeds for various legs. Taking the Yang Ming route as an example, we perform simulation
calculations with the established model. The results show that our model can effectively
find the optimal compromise speed. By increasing speed, the dual objectives of total ship
costs and ship carbon emissions can be effectively balanced. This can achieve the balance
objective of sustaining economic development and protecting the environment.

In this paper, the minimization of shipping cost is regarded as one of the optimization
objectives. For future work, considering the maximization of shipping profit as an opti-
mization object, the multi-objective optimization model including carbon emission, profit
maximization and other factors can be constructed to fit the actual operation of shipping
companies.
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