Development and Validation of Heat Release Characteristics Identification Method of Diesel Engine under Operating Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Research
2.2. Experimental Research Setup
2.3. Fuel Specifications
2.4. Numerical Study of Engine Performance Using MM
2.5. Methodology Base for Determining Heat Release Characteristic Parameters
2.6. Research Plan
3. Results
3.1. Validation of Heat Release Characteristic Parameters of Engine Running on Biofuel under Oprational Conditions
3.2. Variational Numerical Studies Using m and φz Determination Methods
3.3. Method Applicability to Modelling under Engine Operating Conditions (Change in Parameters Pmax and Pmi)
3.4. Justification of Exhaust Gas Temperature Selection
3.5. Determination of Exhaust Gas Temperature by Indirect Methods
3.6. Determination of Heat Release Parameters by Iteration Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbols
φ | heat release duration (°CAD); |
ratio of energy activation and gas molar constant (-); | |
a1, a2, a3, a4 | constant coefficients (-); |
Bd | hourly fuel consumption (kg/h); |
be | specific fuel consumption (g/kWh); |
C | function parameter (-); |
dX/dφ | normalized heat release characteristic differential (-); |
hex | exhaust working body enthalpy (J/kg); |
hs | supply working body enthalpy (J/kg); |
Kmi | coefficient, relative expression of mi/m0 (-); |
KT | coefficient, relative expression of TTM/Tdet (-); |
Kφi | coefficient, relative expression of φzi/φz0 (-); |
m | heat release shape factor (-); |
Mt | torque (Nm); |
n | engine speed (RPM); |
P | pressure (Pa); |
Pc | pressure at the end of compression stroke (Pa); |
Pe | effective power (kW); |
Pk | intake air pressure (Pa); |
Pmax | maximum cycle pressure (Pa); |
Pme | average effective pressure (Pa); |
Pmi | average indicative pressure (Pa); |
Q | total heat release when burned in the cylinder (J); |
R | gas constant (J/kgK); |
T | temperature (°K); |
Tdet | exhaust manifold surface temperature (°K); |
Tk | intake air temperature (°K); |
TTM | exhaust gas temperature (°K); |
U | internal energy (J); |
V | volume (m3); |
X | heat release characteristic (-); |
δ | error (%); |
ηe | efficiency (-); |
τ | time (s); |
φ1 | heat release starting angle (°CAD); |
φz | conditional heat release duration (°CAD); |
φτ | induction period (°CAD); |
Qex | heat exchange energy (J); |
Qre | heat release energy (J); |
mex | mass of exhaust gas (kg); |
minj | mass of injected fuel (kg); |
ms | supply air mass (kg); |
index ‘i’ | correspond to engine part load mode; |
index ‘0’ | correspond to engine rated power mode; |
Abbreviations
B/S | cylinder bore, stroke; |
B30 | mixture of 30% rapeseed methyl ester and 70% diesel fuel; |
CO2 | carbon dioxide; |
D | diesel fuel; |
EGR | exhaust gas recirculation; |
EU | European Union; |
FAME | fatty acid methyl ester; |
GHG | greenhouse gases; |
GT | gross tonnage; |
H2 | hydrogen; |
IMO | International Maritime Organization; |
ICE | internal combustion engine; |
LNG | liquified natural gas; |
MM | mathematical model; |
NG | natural gas; |
NH3 | ammonia; |
RME | rapeseed methyl ester; |
TDI | turbocharged with direct fuel injection; |
References
- European Parliament. Initial Appraisal of a European Commision Impact Assessment. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/699482/EPRS_BRI(2022)699482_EN.pdf (accessed on 6 November 2022).
- European Commission. Transport and Mobility. Available online: https://ec.europa.eu/transport/media/media-corner/publications_en (accessed on 10 November 2022).
- Sequino, L.; Belgiorno, G.; Di Blasio, G.; Mancaruso, E.; Beatrice, C.; Vaglieco, B.M. Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization. SAE Tech. Paper 2018, 1, 1697. [Google Scholar] [CrossRef]
- Sahu, T.K.; Shukla, P.C.; Belgiorno, G.; Maurya, R.K. Alcohols as alternative fuels in compression ignition engines for sustainable transportation: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 8736–8759. [Google Scholar] [CrossRef]
- European Commission. Impact Assessment, SWD(2020) 176 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020SC0176&rid=9 (accessed on 10 November 2022).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on the Use of Renewable and Low-Carbon Fuels in Maritime Transport and Amending Directive 2009/16/EC, COM(2021) 562 final 2021/0210 (COD). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0562 (accessed on 12 November 2022).
- IMO. Fourth Greenhouse Gas Study. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx (accessed on 7 November 2022).
- DNV Group. Maritime Forecast to 2050. Available online: https://www.dnv.com/maritime/publications/maritime-forecast-2022/download-the-report.html (accessed on 5 November 2022).
- UNCTAD. Review of Maritime Transport. Available online: https://unctad.org/system/files/official-document/rmt2021_en_0.pdf (accessed on 7 November 2022).
- Krasovskij, O.; Bergman, A.; Matvejev, V. Preminenje programi chislenovo modelirovonie rabochevo procesa dyzelei, Trud CNIDI, ZVM v isledovinije I projektirovinii dvigatelei vnutrenevo sgoranie, L. CNIDI 1986, 71, 100–111. [Google Scholar]
- AVL-BOOST. Combustion Models. Available online: https://forum.cxem.net/applications/core/interface/file/attachment.php?id=257920 (accessed on 25 November 2022).
- AVL-FIRE. Computational Fluid Dynamics Simulation Package. Available online: https://www.avl.com/-/avl-fire- (accessed on 27 November 2022).
- KIVA. Computational Fluid Dynamics Software. Available online: https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva/index.php (accessed on 28 November 2022).
- VECTIS. Computational Fluid Dynamics Software. Available online: https://www.realis-simulation.com/products/vectis/ (accessed on 27 November 2022).
- Merker, G.P.; Schwarz, C.; Stiesch, G.; Otto, F. Engine combustion. In Simulating Combustion; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Vasudev, A.; Mikulski, M.; Balakrishnan, P.R.; Storm, X.; Hunicz, J. Thermo-kinetic multi-zone modelling of low temperature combustion engines. Prog. Energy Combust. Sci. 2022, 91, 100998. [Google Scholar] [CrossRef]
- Vibe, I.I. Combustion Process and Cycle of Internal Combustion Engines; VEB Verlag Technik: Berlin, Germany, 1970. [Google Scholar]
- Grasreiner, S. Combustion Modeling for virtual SI Engine Calibration with the Help of 0D/3D Methods. Ph.D. Thesis, Freiberg University of Mining and Technology (Technische Universität Bergakademie Freiberg), Freiberg, Germany, 2012. [Google Scholar]
- Pešic, R.B.; Davinic, A.L.; Taranovic, D.S.; Miloradovic, D.M.; Petkovic, S.D. Experimental determination of double Vibe function parameters in diesel engines with biodiesel. Therm. Sci. 2010, 14, S197–S208. [Google Scholar] [CrossRef]
- Bekdemir, C. Tabulated Chemical Kinetics for Efficient and Detailed Simulations of Diesel Engine Combustion Proefschrift. Techn. Univ. Eindh. 2012, 113, 24. [Google Scholar]
- Лaзapeв, E.A. Φизичecкиe кoнцeпции и мaтeмaтичecкиe мoдeли пpoцecca cгopaния тoпливa в дизeлe. Becтник ЮypГУ 2010, 10, 32–39. [Google Scholar]
- Sun, Y.; Wang, H.; Yang, C.; Wang, Y. Development and validation of a marine sequential turbocharging diesel engine combustion model based on double Wiebe function and partial least squares method. Energy Convers. Manag. 2017, 151, 481–495. [Google Scholar] [CrossRef]
- Zhu, J.; Du, P.; Zhang, G.; Song, H.; Li, B.; Long, W.; Dong, D. Development and Validation of a Modeling and Calibration Method for Diesel-Like Multistage Combustion Based On a Modified MultiWiebe Function. ACS Omega 2022, 7, 11756–11769. [Google Scholar] [CrossRef] [PubMed]
- Woschni, G. A Universally Applicable Equation for The Instantaneous Heat Transfer Coefficient in The Internal Combustion Engine; SAE Paper; SAE: Warrendale, PA, USA, 1967; p. 670931. [Google Scholar] [CrossRef]
- Woschni, G. Eine Methode Zur Vorausberechnung Der Änderung Des: Brenverlaufs Mittelschnellaufender Dieselmotoren Bei Geanderten Betriebsbedigungen; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 1973; pp. 106–110. [Google Scholar]
- Woschni, G. Verbrennungsmotoren; TU Munchen: Munchen, Germany, 1988; p. 303. [Google Scholar]
- Ayad, S.M.M.E.; Vago, C.L.; Belchior, C.R.P.; Sodré, J.R. Cylinder pressure based calibration model for engines using ethanol, hydrogen and natural gas as alternative fuels. Energy Rep. 2021, 7, 7940–7954. [Google Scholar] [CrossRef]
- Hu, S.; Wang, H.; Yang, C.; Wang, Y. Burnt fraction sensitivity analysis and 0-D modelling of common rail diesel engine using Wiebe function. Appl. Therm. Eng. 2017, 115, 170–177. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.; Wang, B.; Shi, M.; Duan, B.; Wang, Y.; Yang, C. Calibration of 0-D combustion model applied to dual-fuel engine. Energy 2022, 261 Pt B, 125251. [Google Scholar] [CrossRef]
- Guan, C.; Theotokatos, G.; Chen, H. Analysis of Two Stroke Marine Diesel Engine Operation Including Turbocharger Cut-Out by Using a Zero-Dimensional Model. Energies 2015, 8, 5738–5764. [Google Scholar] [CrossRef] [Green Version]
- Godiño, J.A.V.; García, M.T.; Aguilar, F.J.J.-E. Experimental investigation and modelling of biodiesel combustion in engines with late direct injection strategy. Energy Rep. 2022, 8, 7476–7487. [Google Scholar] [CrossRef]
- Aklouche, F.; Loubar, K.; Bentebbiche, A.; Awad, S.; Tazerout, M. Predictive model of the diesel engine operating in dual-fuel mode fuelled with different gaseous fuels. Fuel 2018, 220, 599–606. [Google Scholar] [CrossRef]
- Loganathan, S.; Martin, M.L.J.; Nagalingam, B.; Prabhu, L. Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function. Energy 2018, 150, 77–91. [Google Scholar] [CrossRef]
- Kruggel, O. Progress in the combustion technology of high performance diesel engines toward reduction of exhaust emissions without reduction of operation economy. In Proceedings of the Baden-Württemberg Technology Conference, Oslo, Norway, 8 February 1989; Volume 14. [Google Scholar]
- Dinger, H.; Deutschmann, H.L.; Rudert, W. Forschungsarbeiten auf dem Gebiet hoher Mitteldrucke und hoher Drehzahlen auf des Basis der MTU-Motorenbaureihe 396 Teil. MTZ 1984, 11, 462463. [Google Scholar]
- Bilousov, I.; Bulgakov, M.; Savchuk, V. Modern Marine Internal Combustion Engines, a Technical and Historical Overview; Springer: Berlin/Heidelberg, Germany, 2020; Volume 8, ISBN 978-3-030-49748-4. [Google Scholar]
- Bulaty, T.; Glanzman, W. Opredelenija parametrov teplovidelenija na osnove zakona sgoranija Vibe, Ekspress-informacija. Porshnevije i Gazoturbinnije Dvigateli 1985, 11, 14–24. [Google Scholar]
- Lebedevas, S.; Raslavičius, L. Prognostic Assessment of the Performance Parameters for the Industrial Diesel Engines Operated with Microalgae Oil. Sustainability 2021, 13, 6482. [Google Scholar] [CrossRef]
- Lebedevas, S.; Pukalskas, S.; Daukšys, V. Mathematical modelling of indicative process parameters of dual-fuel engines with conventional fuel injection system. Transport 2020, 35, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Lebedevas, S.; Dailydka, S.; Jastremskas, V.; Rapalis, P. Research of energy efficiency and reduction of environmental pollution in frecight rail transportation. Transport 2016, 32, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Lebedevas, S.; Lebedeva, G.; Žaglinskis, J.; Rapalis, P.; Gudaitytė, I. Research of characteristics of working cycle of high-speed diesel engine operating on biofuels RME-E and D-RME-E. Part 2. Indicators and characteristics of heat release in diesel cylinder. Transport 2013, 28, 217–223. [Google Scholar] [CrossRef]
- Lebedevas, S.; Pukalskas, S.; Žaglinskis, J.; Matijošius, J. Comparative investigations into energetic and ecological parameters of camelina-based biofuel used in the diesel engine. Transport 2012, 27, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Lebedevas, S.; Lebedeva, G.; Sendžikienė, E.; Makarevičienė, V. Investigation of the characteristics of multicomponent biodiesel fuel (D-FAME-E) for practical use in Lithuania. Energy Fuels 2010, 24, 1365–1373. [Google Scholar] [CrossRef]
- Lebedevas, S.; Lebedeva, G.; Sendžikienė, E.; Makarevičienė, V. Investigation of the performance and emission characteristics of biodiesel fuel containing butanol under the conditions of diesel engine operation. Energy Fuels 2010, 24, 4503–4509. [Google Scholar] [CrossRef]
- Lebedevas, S.; Norkevičius, L.; Zhou, P. Investigation of Effect on Environmental Performance of Using LNG as Fuel for Engines in Seaport Tugboats. J. Mar. Sci. Eng. 2021, 9, 123. [Google Scholar] [CrossRef]
- Lebedevas, S.; Pukalskas, S.; Daukšys, V.; Rimkus, A.; Melaika, M.; Jonika, L. Research on fuel efficiency and emissions of converted diesel engine with conventional fuel injection system for operation on natural gas. Energies 2019, 12, 2413. [Google Scholar] [CrossRef] [Green Version]
- Lebedevas, S.; Čepaitis, T. Parametric analysis of the combustion cycle of a diesel engine for operation on natural gas. Sustainability 2021, 13, 2773. [Google Scholar] [CrossRef]
- Chuepeng, S.; Theinnoi, K.; Tsolakis, A.; Xu, H.M.; Wyszynski, M.L. Investigation into particulate size distributions in the exhaust gas of diesel engines fueled with biodiesel blends. J. KONES Powertrain Transp. 2008, 16, 75–82. [Google Scholar]
- Lebedev, S.; VNechayev, L.V. Sovershenstvovaniye Pokazateley Vysokooborotnykh Dizeley Unifitsirovannogo Tiporazmera; Akademiya transporta RF, AltGTU Im. I.I. Polzunova: Barnaul, Russia, 1999; p. 112. [Google Scholar]
- Lebedev, S.; Lebedeva, G.; Matievskij, D.; Reshetov, V. Formirovanie Konstruktivnogo Rjada Porshnej Dlja Tipaža Vysokooborotnyh Forsirovannyh Dizelej; Akademija Transporta RF: Barnaul, Russia, 2003; p. 89. [Google Scholar]
- Lebedev, S.V. Inzhenernaya metodika kompleksnoy raschetnoy optimizatsii parametrov forsirovannykh vysokooborotnykh dizeley. Dvigatelestroyeniye 1998, 3, 5–12. [Google Scholar]
- Grabowski, L.; Wendeker, M.; Pietrykowski, K. AVL Simulation Tools Practical Applications; Lublin University of Technology: Lublin, Poland, 2012. [Google Scholar]
- AVL. Gas Exchange and Combustion Analysis Software. Available online: https://www.avl.com/-/gca-gas-exchange-and-combustion-analysis-software (accessed on 28 November 2022).
Parameter | VW-Audi 1Z 1.9 TDI | MTU 8V396TC4 |
---|---|---|
Displacement (cm3) | 1896 | 31800 |
Bore × stroke (mm) | 79.5 × 95.5 | 165 × 185 |
Maximum power (kW/rpm) | 66/4000 | 380–600/1850 |
Maximum torque (Nm/rpm) | 180/2000–2500 | - |
Cooling type | Water cooling | Water cooling |
Fuel supply system | Direct injection | Direct injection |
Engine type | 4 cylinders; 4 stroke | 8 cylinders; 4 stroke |
Compression ratio | 19.5:1 | - |
Aspiration | Turbocharge | Turbocharge |
Fuel Property | B30 | Diesel |
---|---|---|
Density (kg/m3) | 883.70 | 829.0 |
Cetane number | 54.7 | 49 |
Lower heating value (MJ/kg) | 39.0 | 42.8 |
Viscosity (cSt 40 °C) | 4.478 | 2.28 |
H/C ratio | 1.85 | 1.907 |
Component (% vol.) | Carbon: 77.2 | Carbon: 86.0 |
Hydrogen: 12.0 | Hydrogen: 13.6 | |
Oxygen: 10.8 | Oxygen: 0.4 |
Parameter | Engine Operating Conditions | ||
---|---|---|---|
n = 2000 RPM Pme = 1.143 MPa | n = 2500 RPM Pme = 1.199 MPa | n = 3000 RPM Pme = 1.017 MPa | |
φ1, °CAD | −5.92 | −7.53 | −7.85 |
φz, °CAD | 49.8 | 56.4 | 59.7 |
m | 1.4 | 1.33 | 1.28 |
Data | Pmax, MPa | Pme, MPa | Pe, kW | be, g/kWh | ηe |
---|---|---|---|---|---|
m = 1.335 and φz = 46.2° (n = 2000 RPM Pme = 1.143 MPa) | |||||
MM | 10.722 | 1.1427 | 36.09 | 218.91 | 0.3845 |
Experiment | 10.726 | 1.1426 | 36.10 | 218.80 | 0.3844 |
Error, % | −0.037 | 0.009 | −0.028 | 0.050 | 0.026 |
m = 1.240 and φz = 55.85° (n = 2500 RPM1 Pme = 1.199 MPa) | |||||
MM | 11.571 | 1.1995 | 47.36 | 220.60 | 0.38155 |
Experiment | 11.560 | 1.1996 | 47.50 | 219.99 | 0.38230 |
Error, % | 0.095 | −0.008 | −0.296 | 0.277 | −0.197 |
m = 1.23 and φz = 56.45° (n = 3000 RPM1 Pme = 1.017 MPa) | |||||
MM | 11.1876 | 1.0713 | 50.75 | 221.4 | 0.381 |
Experiment | 11.192 | 1.0712 | 50.755 | 221.46 | 0.3798 |
Error, % | 0.039 | −0.009 | 0.010 | 0.027 | −0.316 |
δ (1.9 TDI) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pmax, % | Pme, % | ηe, % | be, % | PK, % | Pe, % | |||||||
“0” | “i” | “0” | “i” | “0” | “i” | “0” | “i” | “0” | “i” | “0” | “i” | |
Pme/TTM with TTM/Pme | 0.07 | 0.27 | 0.04 | −0.02 | 0.04 | −0.02 | −0.04 | 0.02 | 0.04 | −0.02 | −0.07 | 0.00 |
Pme/TTM with experiment | −0.65 | −1.58 | 0.02 | 0.04 | −0.01 | −0.02 | −0.07 | −0.07 | 0.06 | 0.05 | −0.07 | 0.34 |
Iteration with TTM/Pme | 0.32 | 0.03 | −0.01 | −0.02 | −0.01 | −0.02 | 0.01 | 0.02 | −0.01 | −0.02 | −0.06 | 0.03 |
Iteration with experiment | −0.39 | −1.82 | −0.03 | 0.04 | −0.06 | −0.02 | −0.02 | −0.06 | 0.01 | 0.05 | −0.06 | 0.37 |
δ (8V396TC4) | ||||||||||||
Pme/TTM with TTM/Pme | 0.06 | 0.16 | 0.06 | −0.03 | 0.06 | −0.03 | −0.06 | 0.03 | 0.06 | −0.03 | −0.04 | 0.00 |
Pme/TTM with experiment | −0.22 | 1.51 | −0.09 | −0.02 | 0.01 | 0.02 | 0.06 | −0.04 | 0.09 | 0.50 | −0.05 | 0.03 |
Iteration with TTM/Pme | 1.20 | −0.52 | 0.12 | −0.01 | 0.12 | −0.01 | −0.12 | 0.01 | 0.12 | −0.01 | −0.19 | 0.06 |
Iteration with experiment | 0.93 | 0.83 | −0.03 | 0.00 | 0.07 | 0.04 | 0.001 | −0.06 | 0.15 | 0.52 | −0.21 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedevas, S.; Žaglinskis, J.; Drazdauskas, M. Development and Validation of Heat Release Characteristics Identification Method of Diesel Engine under Operating Conditions. J. Mar. Sci. Eng. 2023, 11, 182. https://doi.org/10.3390/jmse11010182
Lebedevas S, Žaglinskis J, Drazdauskas M. Development and Validation of Heat Release Characteristics Identification Method of Diesel Engine under Operating Conditions. Journal of Marine Science and Engineering. 2023; 11(1):182. https://doi.org/10.3390/jmse11010182
Chicago/Turabian StyleLebedevas, Sergejus, Justas Žaglinskis, and Martynas Drazdauskas. 2023. "Development and Validation of Heat Release Characteristics Identification Method of Diesel Engine under Operating Conditions" Journal of Marine Science and Engineering 11, no. 1: 182. https://doi.org/10.3390/jmse11010182
APA StyleLebedevas, S., Žaglinskis, J., & Drazdauskas, M. (2023). Development and Validation of Heat Release Characteristics Identification Method of Diesel Engine under Operating Conditions. Journal of Marine Science and Engineering, 11(1), 182. https://doi.org/10.3390/jmse11010182