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Abstract: The mode bias is present and time-dependent due to imperfect configurations. Data
assimilation is the process by which observations are used to correct the model forecast, and is
affected by the bias. How to reduce the bias is an important issue. This paper investigates the roles
of a simple bias correction scheme in ocean data assimilation. In this scheme, the misfits between
modeled and monthly temperature and salinity with interannual variability from the Met Office
Hadley Centre subsurface temperature and salinity data set (EN4.2.2) are used for the innovations
in assimilation via the Ensemble Optimal Interpolation method. Two assimilation experiments are
implemented to evaluate the impacts of bias correction. The first experiment is a data assimilation
system without bias correction. In the second experiment, the bias correction is applied in assimilation.
For comparison, the nature run with no assimilation and no bias correction is also conducted. When
the bias correction is not applied, the assimilation alone leads to a rising trend in the heat and salt
content that is not found in the observations. It is a spurious temporal variability due to the effect of
the bias on the data assimilation. Meanwhile, the assimilation experiment without bias correction also
produces significant negative impacts on the subsurface salinity. The experiment with bias correction
performs best with notable improvements over the results of the other two experiments.

Keywords: bias correction; ensemble optimal interpolation; ocean heat and salt content; data assimilation

1. Introduction

Ocean data assimilation combines observations with information from the numerical
model to generate the accurate and comprehensive reanalyses of ocean states [1,2]. It is
also used for the initialization of ocean forecasts [3,4]. The advantage of data assimilation
in reducing the uncertainty and in improving forecasts has been presented [5–9]. However,
state-of-the-art ocean general circulation models still suffer from model biases due to incor-
rect physical parameterizations and surface forcing, poor resolution, numerical dispersion,
faulty boundary and initial conditions, as well as various other imperfections. Moreover, it
is very difficult to determine the mechanisms underlying bias generation. All ocean data
assimilation systems are affected by the bias. The problem of bias is an important issue in
the reanalysis [10–14].

Considerable efforts have been made to remove model biases, and data assimilation
is a common practice to reduce biases [13–16]. Dee and Da Silva [15] presented a bias
estimation and correction algorithm in sequential data assimilation. It was successfully
applied to the assimilation of humidity observations in the Goddard Earth Observing
System [17]. Most studies augmented a model state vector by a bias vector to estimate
and correct biases using data assimilation methods [16–20]. In some algorithms [18,19], the
bias correction is not applied directly to the observed variable, but applied as a correction
to the non-observed variable. The direct bias correction to the observed variable induced
a spurious adjustment to other variables [19]. Additionally, the bias correction may be
achieved by applying the cost function to fluctuations [21]. Moreover, the bias and the
state vector may use different control variables [14,18,19]. In ocean data assimilation,
temperature, salinity, current, and sea surface height are called control variables of the
state vector. The variables which are bias corrected are called control variables of the
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bias. The control variables of the bias may be same as those of the state vector, and also
consist of salinity alone, or temperature alone, or different combinations among variables.
Additionally, the control variables of the bias may also be other different variables such as
pressure. Balmaseda et al. [19] proposed a multi-scale bias correction scheme, and it was
successfully used for the ECMWF operational ensemble reanalysis–analysis system [14].
The above bias correction algorithms include a model depicting the time evolution of the
bias. The bias model consisting of some bias parameters serves to predict the bias for time
tk based on a previous bias estimate valid a for time tk−1. Then, the predicted bias is used
to update bias estimate for time tk using the observations via the method analogous to data
assimilation. Its implementation requires specification of the error covariances of the bias
estimate, background and observations, and an a priori bias estimation for time t0. Finally,
the bias update is corrected to the analysis field. However, there exists some uncertainty
about an a priori bias estimation in the bias model. Meanwhile, the correct choice of the
bias variables is important to the assimilation performance. Since the control variables
of the bias may be different from those of the state vector, more choices of bias variables
are available for a multivariate bias correction, and different choices may lead to totally
different results. For example, the bias correction in temperature increased the velocity
bias, while the bias correction in pressure reduced the bias in the velocity field [19]. It also
implies that a bias needs to be attributed to a particular source. The wrong attribution
will still force the assimilation to be consistent with a bias source, and lead to a wrong
adjustment [19]. Additionally, the relationship among bias variables remains unclear. The
resultant error covariance matrix for the bias vector is also uncertain. Moreover, in areas
where few observations exist, it is also difficult for the above bias correction methods
to work well. In this paper, we propose a simple bias correction scheme in ocean data
assimilation using the Ensemble Optimal Interpolation (EnOI) method, and examine its
impacts on the temperature and salinity. This paper is organized as follows: The model,
bias, data and bias correction scheme are described in Section 2. The design and evaluation
of the experiments are presented in Section 3. The discussion and conclusions are given in
Section 4.

2. Model, Bias, Data and Bias Correction Scheme
2.1. Ocean Model

The model configuration used here is the hybrid coordinate ocean model (HYCOM)
upgraded by the Nansen Environmental and Remote Sensing Center in Norway [22–24].
It uses three kinds of vertical coordinates according to the depth. The isopycnic vertical
coordinates are adopted in the open, stratified ocean, and smoothly transit to z coordinates
in the weakly stratified upper-ocean mixed layer, to terrain-following sigma coordinates in
shallow water regions, and back to level coordinates in very shallow water. The hybrid
coordinates are helpful to represent ocean thermodynamic processes and ocean flow better.

The model domain ranges from 30◦ E to 70◦ W, and from 51◦ S–61◦ N. The model
horizontal resolution is approximately 3/4◦ × 3/4◦. There are 28 hybrid layers, and the
top five layers remain at the z-level coordinate with the minimum thickness of 2 m. The
vertical mixing scheme is the K-profile parameterization [25]. The model temperature and
salinity fields are relaxed toward the version 3.0 of the Polar Science Center Hydrographic
Climatology (PHC) [26] with an e-folding time of 30 days at the lateral boundary. The
surface forcing fields include the 6 h air temperature, dew temperature, winds, mean
sea level pressure, total cloud cover, and precipitation from the atmospheric reanalysis
ERA-interim [27].

2.2. Model Bias

The nature run without assimilation and bias correction is carried out for the period of
1993–2005. The monthly temperature and salinity objective analyses from the Met Office
Hadley Centre subsurface observations dataset EN4.2.2 using bias corrections of c14 [28–30]
are used as independent observations to validate the experiment results. Figure 1 shows
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vertical profiles of the 1993–2005 mean temperature and salinity difference between the
simulations from the nature run and the observations, averaged over the model domain.
The errors in the mean state provide evidence for the presence of bias. It is noticeable that
the simulated temperature and salinity are biased with respect to the observations due to
imperfect model configurations such as parameterization schemes, boundary conditions,
forcing fields and coarse resolutions. The temperature is too warm with respect to the ob-
servations, while the salinity is too fresh. The warm bias reaches a maximum of 0.4 degrees
in the thermocline. The salinity is fresher than the observations with a minimum bias of
−0.14 psu at about 120 m depth.
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be associated with the surface heat and fresh water fluxes [31,32]. A better understand-
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Figure 1. Vertical profiles of the 1993–2005 mean differences between the simulations and the
observations, averaged over the model domain for (a) temperature, (b) salinity.

Figure 2 shows the time evolution of the errors of domain averaged temperature
and salinity in the upper 300 m with respect to the observations. The 24-month running
mean of the error, representative of the low frequency component, is shown in red. This
component of the error is equivalent to the bias, and represents the part of the error that is
correlated in time. The high frequency part is shown in black. Note that the magnitude
of the low frequency part of the error is not small compared with the high frequency part.
Furthermore, the low frequency component presents interannual variations. This result
indicates that the bias is not constant in time. Particularly noticeable is the decreased trend
after 1998 in the salinity bias. Meanwhile, the temperature bias also demonstrates a slight
decreased trend in 1993–2005. The changes in the bias could be due to the errors in the
thermocline. The large temperature gradient in the thermocline is difficult to simulate
with a model that usually produces a flatter thermocline, especially during the cold phase
of ENSO (El Niño-Southern Oscillation). Additionally, these may be associated with the
surface heat and fresh water fluxes [31,32]. A better understanding of the changes needs
more work, which is beyond the scope of this paper. It is notable that Figure 2 highlights
the time-dependence of the bias, and it also suggests that data assimilation taking into
account a bias correction is necessary.
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Figure 2. Time series of the low and high frequency components of the errors for (a) temperature,
and (b) salinity, averaged over the upper 300 m in the model domain. The 24-month running mean is
shown in red and the high-frequency error is shown in black.

2.3. Data

The Sea Level Anomaly (SLA) data that are assimilated come from the global grid-
ded product with a horizontal resolution of 1/4◦ × 1/4◦ and a temporal resolution of
1 day delivered by the Sea Level TAC (Thematic Assembly Centre) of the Copernicus
Marine Environment Monitoring Service (CMEMS) project. It is generated by the Data
Unification and Altimeter Combination System (DUACS) merging data from all altimeter
missions (e.g., Sentinel-3A, Jason-3, HY-2A, Saral/AltiKa, Cryosat-2, OSTM/Jason-2, Jason-
1, Topex/Poseidon, Envisat, GFO, ERS-1/2) [33]. The remotely sensed satellite sea surface
temperature (SST) data that are assimilated come from the product of Reynolds et al. [34,35].
It was produced by combining the SST data from the Advanced Very High Resolution Ra-
diometer (AVHRR) and Advanced Microwave Scanning Radiometer (AMSR) satellites with
in situ data from ships and buoys using the optimum interpolation (OI) method at a spatial
resolution of 1/4◦ × 1/4◦ and a temporal resolution of 1 day with global coverage [34].

The in situ temperature (T) and salinity (S) profiles assimilated come from the dataset
EN4.2.2 [28]. The EN.4.2.2 data are obtained from https://www.metoffice.gov.uk/hadobs/
en4/ URL (accessed on 6 July 2022), and are © British Crown Copyright, Met Office,
provided under a Non-Commercial Government Licence http://www.nationalarchives.gov.
uk/doc/non-commercial-government-licence/version/2/ URL (accessed on 6 July 2022).
It includes four sources: Argo [36], the Arctic Synoptic Basin-wide Oceanography (ASBO)
project [37,38], the Global Temperature and Salinity Profile Programme (GTSPP) [39], and
the World Ocean Database 2018 (WOD18) [40]. A new time-, temperature-, and probe-
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type-dependent correction scheme, in which the pure thermal bias was assumed to be
determined by both time and water temperature and the depth error was affected by
calendar year and 0–100-m-averaged water temperature, was proposed to correct the
historical eXpendable BathyThermograph (XBT) data [29]. A country-, depth-, and time-
dependent correction scheme, in which the depth-dependent depth bias and the depth-
independent pure thermal bias were considered, was implemented to correct Mechanical
BathyThermograph (MBT) data [30]. This dataset made use of the results of quality control
procedures that used altimeter data developed by Guinehut et al. [41].

The spatial and temporal distribution of in situ observations shows that the temperature
and salinity profiles are sparse (Figure 3), confined to the observation means and observation cost.
Moreover, they are very irregular. Before the Argo era, the spatial distribution of the observations
was extremely inhomogeneous (Figure 3a,b). The observations are concentrated in the Northern
Indian Ocean and the Northwestern Pacific Ocean, while there are few observations in the
southern oceans (Figure 3a,b). The implementation of the Argo plan extends greatly the coverage
of the observations except for the coastal seas (Figure 3c,d). Compared with the temperature
observations, the salinity observations are scarcer, especially before the Argo project. The
distribution highlights the changes in the observing system.
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2.4. The Bias Correction Scheme

The satellite data provide nearly global coverage, while in situ temperature and
salinity observations appear irregular and inhomogeneous in time and space. The ocean
data assimilation without bias correction is not capable of working well due to the presence
of the bias, particularly in regions where few observations exist. In this paper, a simple
bias correction scheme is designed primarily for temperature and salinity by means of
data assimilation.

The ocean data assimilation scheme used in this paper is an ensemble optimal interpo-
lation (EnOI) method [42]. The analysis fields are given by solving the following equations:

ψa = ψb + W
(

y − Hψb
)

(1)

W =
α(C ◦ P)HT

(αH(C ◦ P)HT + R)
(2)

where ψ = [t, s, d, u, v, ub, vb, pb]T represents the model state vector including temperature,
salinity, layer thickness, baroclinic and barotropic current fields, and barotropic pressure.
The superscipts a, b and T denote analysis, background, and matrix transpose, respectively.
H is the linear observation operator that interpolatesfrom the model space to the observation
space. P is the background error covariance matrix. C is a correlation function used to
localize the background error covariance. Each element of C is computed by a 5th-order
piecewise rational function [43] where the length scale is taken as 400 km. The circle
between C and P denotes a Schur product. R is the observation error covariance matrix.
Since the observation errors are usually assumed to be uncorrelated, R is a diagonal matrix.
α is a scalar that decides the weights on the ensemble versus observations. Here it is taken
as 0.4 [44].

The background error covariance matrix P is estimated by

P =

(
1

n − 1

)
AAT (3)

where A = (ψ1, ψ2, · · · , ψn) is an ensemble consisting of model states from the long-time
model integration and n is the ensemble size (n = 120 [45] here). To reflect the structure
of the background error covariances well, different ensembles are employed for different
seasons. In each season, the ensemble with the size of 120 is randomly sampled every 9
days over the 16-year model nature run in this season.

The EnOI may be used to assimilate SLA, SST and in situ T/S profiles. A different tech-
nique based on the EnOI is used to assimilate T/S profiles due to the isopycnic coordinate
in HYCOM [46]. The layer thickness calculated from temperature and salinity observations
is assimilated to adjust the model layer thickness and current fields. Then, the temperature
or salinity observations are used to adjust the model temperature or salinity followed by
diagnosing the salinity or temperature from the equation of the seawater state.

As shown in Figures 1 and 2, the model bias is present and time-dependent. The
designed bias correction scheme takes this into account, and is performed during the
above data assimilation. The temperature and salinity misfits (analysis-minus-simulation)
between the simulations and the same monthly analysis with interannual variations from
EN4.2.2 are regarded as the innovations. Only a fraction of temperature and salinity profiles
sampled at regular intervals of 4 gridpoints from the analysis are used to calculate the
misfits, since excessive analysis data may filter some high-frequency information from
the observations and also increase computational resources. The remaining profiles are
regarded as independent observations. At each assimilation step, the EN4.2.2 analysis-
minus-background residuals are calculated. And then, the residuals are regarded as the
innovations to join in the assimilation.



J. Mar. Sci. Eng. 2023, 11, 205 7 of 17

3. Results
3.1. Experiment Setup

To examine the impacts of the bias correction scheme on the temperature and salinity,
we carried out two assimilation experiments, in which all observations including SST, SLA
and T/S profiles were assimilated into HYCOM, for the period 1993–2005.

In the first experiment, all observations are assimilated, but the bias correction is not
applied (hereafter called Without_Correct). In the second experiment, the bias correction
is applied in the assimilation with all observations (hereafter called With_Correct). The
nature run (hereafter called CNTL) without any assimilation is carried out to examine if
the bias correction scheme is capable of reducing the bias. Table 1 details the design of
the experiments.

Table 1. Experiment setup.

Experiment
Name Scheme Assimilated

Data
Assimilation

Frequency Period

Without_Correct No bias correction SST, SLA, T/S 7 days 1993–2005
With_Correct Bias correction SST, SLA, T/S 7 days 1993–2005

CNTL No assimilation and
no bias correction None N/A 1993–2005

3.2. Impacts on Subsurface Temperature and Salinity

It is natural that the assimilation may improve the modeled sea surface state due
to the assimilation of satellite data with global coverage. Whether or not the subsurface
temperature and salinity is improved is investigated in this section. The independent tem-
perature and salinity objective analysis data from EN4.2.2 are used to validate the impacts
of the bias correction in assimilation on the subsurface temperature and salinity. EN4.2.2
ingested data from all types of ocean profiling instruments that provide temperature and
salinity information, and covered the period 1900 to present. Moreover, EN4.2.2 data were
subjected to a series of quality control checks and bias adjustments. The objective analysis
was calculated from the quality-controlled data using the Analysis Correction scheme [47].
Therefore, EN4.2.2 is very suitable for validation of temperature and salinity in this paper.

According to the spatial contribution of the temperature and salinity observations, the
Southern Ocean with scarce data coverage shown in Figure 3 is used to examine the role of
the bias correction. To further assess the performance of the bias correction, the Root Mean
Square Error (RMSE) is used as an evaluation metric. The RMSE is defined as

RMSE( f , o) =
1
n

√
∑ n

i ( f − o)2 (4)

where f denotes the simulated results from different experiments, o denotes the observa-
tions, and n is the number of values in the data.

Figure 4 shows the vertical distribution of the RMSEs of temperature and salinity in
the Southern Ocean over the period 1993–2005. For temperature, the experiment With-
out_Correct, in which no bias correction is applied, produces an improvement over the
nature run in the upper 50 m and below 200 m, and a slight decline in the thermocline.
The SST assimilation contributes much to the sea surface improvement, while the T/S
assimilation does much to the subsurface. The decline is likely associated with the limited
temperature observations. The experiment With_correct, in which bias correction is ap-
plied, exhibits a great improvement over the nature run in the entire water column. For
salinity, Without_Correct presents the worst performance with the largest RMSE among
experiments. This result is related to sparse salinity data coverage. Most of observations
are for temperature in the Southern Ocean before 2000, since more salinity observations
were added to the Argo project. The long-term lack of salinity observations will induce a
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deviation. The experiment With_correct observably demonstrates the best performance, as
it indicates that the bias correction plays an important role for the ocean data assimilation.
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The vertical distribution of the RMSEs of temperature and salinity is different in differ-
ent ocean basins (Figure 5). The experiment With_Correct exhibits the best performance for
temperature and salinity in the two ocean basins. For salinity, Without_Correct performs
worst in the two ocean basins with a salinity deterioration. Notably, Without_Correct
yields the largest RMSEs in the Southern Indian Ocean, especially in the upper 400 m,
which contributes considerably to the total RMSEs in the Southern Ocean. For temperature,
Without_Correct produces an improvement in the sea surface, and a slight decline in the
thermocline in the two ocean basins. Additionally, it presents a great improvement below
the thermocline in the Southern Indian Ocean. This result is likely associated with the large
modeled RMSEs. It is clear that the modeled RMSEs in the Southern Indian Ocean are
larger than those in the Southern Pacific Ocean. The greater the model error is, the greater
the adjustment induced by the assimilation is. In the southern Pacific Ocean, the salinity
for both Without_Correct and With_Correct is degraded between 550 and 700 m, compared
with CTNL. It is possibly associated with eddies. Abundant eddies are present (Figure 6a)
in the southern Pacific Ocean. Most eddies are concentrated in the southern Pacific west of
150◦ W. Therefore, we divide the Southern Pacific Ocean into east and west parts by the
150◦ W line. The RMSEs of salinity from Without_Correct and With_Correct are larger than
those of CNTL between 550 and 700 m in the two parts (Figure 6b,c). However, they are
more remarkable to the west of 150◦ W, and contribute greatly to the total RMSEs in the
Southern Pacific Ocean between 550 and 700 m. As shown by Figure 6a, plentiful eddies
are also observed in the Southern Indian Ocean. We also validate the negative impact of the
two assimilation experiments on the salinity in the subsurface (Figure 6d). However, the
salinity between 550 and 700 m in the Southern Indian Ocean appears different from that in
the Southern Pacific Ocean (Figure 5). It is possibly associated with larger adjustment to the
background in the Indian Ocean (Figure 5). Those large correct adjustments compensate for
the negative effects by eddies in the Southern Indian Ocean, while the small adjustments in
the Southern Pacific Ocean do not offset the bad effects. The model has a coarse resolution
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that is not capable of resolving meso-scale eddies, while the observations include eddies.
The resultant ensemble used to estimate the background error covariance does not represent
the correlation well in the regions with eddies. And thus, the assimilation leads to the slight
decline of salinity in the 550 and 700 m.
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Figure 6. Observed SLA in Jan 1999 (a) and vertical distribution of the RMSEs of salinity (b–d) for
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40◦ S–35◦ S).

3.3. Impacts on the Heat and Salt Content

The heat content represents the heat stored in the ocean, while the salt content repre-
sents the salt stored. They are important factors determining the subsurface temperature
and salinity changes. The impacts of the bias correction on the heat content and salt content
are investigated in this section.

Generally, the ocean heat content in the upper 300 m (HC300 hereafter) is defined as
the temperature averaged over 0–300 m. Similarly, the ocean salt content in the upper 300 m
(SC300 hereafter) is defined as the average salinity. HC300–700 represents the average
temperature over 300–700 m, while SC300–700 represents the average salinity.

The HC300s averaged over the Southern Ocean (Figure 7) for each experiment demon-
strate an annual cycle with the maximum in winter and the minimum in summer. It is
associated with the solar radiation that is stronger in winter than in summer in the Southern
Hemisphere. The HC300 from With_Correct is relatively closer to the observation than that
of CNTL. However, Without_Correct shows the lowest HC300 among experiments, espe-
cially in the maximum value, which results in the largest difference from the observations.
The SC300s averaged over the Southern Ocean from the three experiments are smaller than
the observations. Overall, With_Correct presents the closest SC300s to the observations
among experiments, while Without_Correct presents the farthest, particularly before 2002.
Moreover, for SC300, both With_Correct and CNTL exhibit flat trends consistent with those
of the observations during the period 1993–2005, while Without_Correct demonstrates a
notably upward trend. This result implies that the lack of the long-time observations and
the changes in the observing system may induce spurious time variability in the analysis
when the bias correction is not applied.
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experiments and observations. (a,d) Southern Indian and Southern Pacific oceans, (b,e) Southern
Indian Ocean, (c,f) Southern Pacific Ocean.

The HC300s and SC300s averaged in different ocean basins are different. In general,
With_Correct exhibits the best results among experiments for both temperature and salinity
in the two ocean basins, while Without_Correct presents the worst. The HC300 and SC300
differences between the experiment Without_Correct and the observations are larger in
the southern Indian Ocean than those in the southern Pacific Ocean. It may be associated
with the scarcer observations in the southern Indian Ocean. For Without_Correct, the
SC300 differences from the observation are the largest among experiments in the 1990s in
the southern Indian Ocean. It indicates that CNTL outperforms Without_Correct. Note
these differences drop so fast after the late 1990s that they are almost the same as those
between the With_Correct and the observation in 2005. This result contributes considerably
to the total SC300 in the Southern Ocean. The observed SC300 is higher than that of the
three experiments. Although the SC300 from Without_Correct gradually increases and
approaches the observations during 1993–2005, it is still smaller than that of CNTL in the
southern Pacific Ocean, and it implies that the changes in the observing system have a great
contribution to the results.

The HC300–700 (Figure 8a) from CNTL shows that the average temperature over
300–700 m is too high compared with the observation in the Southern Ocean, while the
HC300–700 from Without_Correct is too low. The data assimilation appears to overcorrect
the model errors. The SC300–700 from CNTL is smaller than the observation (Figure 8d).
The SC300–700 from Without_Correct is smaller than that of CNTL in the 1990s. It indicates
that the data assimilation makes negative contribution when the bias correction is switched
off. Similar to SC300, the SC300–700 gradually approaches the observation with more
available observations. With_Correct shows the best performance for both HC300–700 and
SC300–700. The results in different ocean basins are same as those in the Southern Ocean.
For Without_Correct, the offsets of HC300–700 and SC300–700 from the observation are
larger in the Southern Indian Ocean than those in the Southern Pacific Ocean.
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Figure 9 shows the time evolution of the RMSEs of HC300 and SC300 relative to the
independent analysis from EN4.2.2 over different ocean basins. For Southern Ocean, on
average, the RMSE of HC300 from CNTL is basically 1 ◦C, while it is about 0.18 psu for
SC300. It is clear that the bias correction has a prominent positive effect on both HC300 and
SC300 (approximately reduction 30% in RMSE). The experiment without bias correction
exhibits a slightly smaller RMSE of HC300 and a larger RMSE of SC300 compared with
CNTL before 2004. When more Argo data are available, the RMSEs from Without_Correct
are reduced greatly. For different ocean basins, the time evolution of the RMSEs are similar
to that in the Southern Ocean. As indicated by Figure 6, the three experiments exhibit the
larger RMSEs in the Southern Indian Ocean than those in the Southern Pacific Ocean for
HC300 and SC300. Meanwhile, compared with CNTL, the amplitude of the reduction or
increasement in RMSEs from the two assimilation experiments is the largest in the Southern
Indian Ocean, which makes great contribution to the total RMSEs in the Southern Ocean.

The RMSEs of both HC300–700 and SC300–700 from different experiments in different
ocean basins (Figure 10) are smaller compared with those in the upper 300 m due to small
changes in the subsurface. The larger RMSEs in the upper 300 m are induced primarily
by the thermocline. For HC300–700 and SC300–700, With_Correct produces the smallest
RMSEs and performs best. It is noticeable that Without_Correct produces a reduced RMSE
of HC300–700, and a slightly increased RMSE of SC300–700 before 2003 compared with
CNTL. After that, the RMSEs are reduced. Similar results are presented in different ocean
basins. The RMSEs in 300–700 m are still larger in the Southern Indian Ocean than those
in the Southern Pacific Ocean. Moreover, the magnitude of the reduction in RMSE is also
larger compared with that in the Southern Pacific Ocean. As a result, the RMSEs in the
Southern Indian Ocean contribute greatly to those in the Southern Ocean.
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4. Discussion and Conclusions

This study addresses the impact of a simple bias correction scheme in ocean data assim-
ilation on the temperature and salinity simulations based on the EnOI assimilation method.
Three different experiments are carried out for the period 1993–2005, of which two are
assimilation experiments (Without_Correct, With_Correct). Experiment Without_Correct is
a standard data assimilation analysis without bias correction. In With_Correct, there is bias
correction. A nature run is also used for comparison.

To better understand the roles of bias correction in assimilation, we choose the southern
Indian and southern Pacific oceans with sparse observation coverage as the target regions.
The bias correction in data assimilation results in a distinct improvement in temperature
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and salinity. However, there is a negative impact on the temperature in the thermocline
and on the salinity in the upper 400 m when the bias correction is not applied in data
assimilation. The ocean heat and salt content in the upper 300 m is improved significantly
by the bias correction in assimilation. A rising trend in the average SC300 and a much
larger RMSE than that of CNTL are observed over time when bias correction is switched off
in assimilation, particularly in the Southern Indian Ocean. It is a side effect of the standard
data assimilation affected by model bias. Data assimilation systems influenced by bias
are vulnerable to changes in the observing system. The ocean heat and salt content from
300 to 700 m reveals the changes in the subsurface temperature and salinity induced by
the bias correction. The smallest RMSEs are observed when the bias correction is used in
assimilation. For the heat content from 300 to 700 m, smaller RMSEs than those of the nature
run without assimilation are found when no bias correction is applied in assimilation. The
salt content from 300 to 700 m appears slightly worse in comparison with that of CNTL
before more Argo data are available, and then has a sudden reduction in RMSE after that.
This case is also illustrated by the RMSEs in the upper 300 m. The deterioration and sudden
jump in RMSE of the salt content is a negative impact of the standard data assimilation
without bias correction. The modeled thermocline is usually very diffuse, which implies
the presence of large errors. The data assimilation tends to correct the temperature field by
adding a negative increment. The vertical stability of the water column is disrupted due
to no corresponding balance correction to the salinity field. As a result, the assimilation
may lead to spurious adjustment to salinity. Figure 11 shows the biases of temperature
and salinity over the period 1993–1999 in the Southern Ocean. For temperature, the nature
run CNTL has a cold bias in the upper 150 m, and a warm bias below. After the bias
correction is applied, both cold and warm biases are greatly reduced. When no bias
correction is employed, the warm bias below 150 m is over-reduced so that it becomes a
cold bias. For salinity, CNTL has a negative bias. Compared with CTNL, the bias correction
still reduces the bias, while the bias of Without_Correct is increased, and it indicates an
incorrect adjustment. The results of this study suggest that the bias correction in ocean
data assimilation is important, especially in regions with sparse observation coverage. The
bias correction scheme used in this study is capable of treating time-dependent bias, and is
relatively simple with no need to run the bias model. Moreover, it shows to be effective
in improving the accuracy of the temperature and salinity simulations. Note this bias
correction may reduce the bias, but not remove it all. Further work is needed to develop
a satisfactory bias correction scheme for treatment of biases that are spatially variable,
seasonal, diurnal and situation-dependent.
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