Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization
Abstract
:1. Introduction
2. Literature Review and Discussion
3. Problem Description and Model Formulation
3.1. Use Case Background
3.2. Model Formulation
4. Model Linearization
5. Computational Experiments
5.1. Experimental Setting
5.2. Basic Analysis
5.3. Sensitivity Analyses
5.3.1. Impact of the Investment Cost and Fuel Consumption Saving Rate
5.3.2. Impact of the Fuel Price
5.3.3. Impact of the Weekly Fixed Operating Cost
6. Conclusions
Limitations and Prospects for Further Green Technology Adoption and Maritime Decarbonization
Author Contributions
Funding
Conflicts of Interest
References
- Zhen, L.; Wu, Y.; Wang, S.; Laporte, G. Green technology adoption for fleet deployment in a shipping network. Transp. Res. Part B Methodol. 2020, 139, 388–410. [Google Scholar] [CrossRef]
- Qi, J.; Wang, S.; Psaraftis, H. Bi-level optimization model applications in managing air emissions from ships: A review. Commun. Transp. Res. 2021, 1, 100020. [Google Scholar] [CrossRef]
- Wang, S.; Qi, J.; Laporte, G. Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation. Transp. Res. Part B Methodol. 2021, 155, 304–321. [Google Scholar] [CrossRef]
- Wang, S.; Psaraftis, H.N.; Qi, J. Paradox of international maritime organization’s carbon intensity indicator. Commun. Transp. Res. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Yi, W.; Zhen, L.; Jin, Y. Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics. Clean. Logist. Supply Chain. 2021, 2021, 100013. [Google Scholar] [CrossRef]
- Brown, J.; Englert, D.; Lee, Y.; Salgmann, R. Carbon Revenues from Shipping: A game Changer for the Energy Transition. 2022. Available online: https://blogs.worldbank.org/transport/carbon-revenues-shipping-game-changer-energy-transition (accessed on 9 November 2022).
- Safety4sea. Shipping Emissions Increase almost 5% in 2021. 2022. Available online: https://safety4sea.com/shipping-emissions-increase-almost-5-in-2021/ (accessed on 9 November 2022).
- Wu, Y.; Huang, Y.; Wang, H.; Zhen, L. Joint Planning of Fleet Deployment, Ship Refueling, and Speed Optimization for Dual-Fuel Ships Considering Methane Slip. J. Mar. Sci. Eng. 2022, 10, 1690. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers of IPCC Special Report on Global Warming of 1.5 °C Approved by Governments. 2018. Available online: https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/ (accessed on 10 November 2022).
- International Maritime Organization (IMO). Initial IMO GHG Strategy. 2019. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx (accessed on 10 November 2022).
- Chambers, S. $3.4trn: Stopford Puts a Price Tag on the Global Fleet Upgrade Needed through to IMO 2050. 2021. Available online: https://splash247.com/3-4trn-stopford-puts-a-price-tag-on-the-global-fleet-upgrade-needed-through-to-imo-2050/ (accessed on 10 November 2022).
- Lee, D. Shipping Market Outlook—Container vs. Dry Bulk: Q2 2022 Update. 2022. Available online: https://ihsmarkit.com/research-analysis/shipping-market-outlook-container-vs-dry-bulk-q2-2022-update.html (accessed on 9 November 2022).
- Xchange. How Slow Steaming Impacts Shippers and Carriers. 2019. Available online: https://www.container-xchange.com/blog/slow-steaming/ (accessed on 10 November 2022).
- Srivastava, R.K.; Jozewicz, W.; Singer, C. SO2 scrrubbing technologies: A review. Environ. Prog. Sustain. Energy 2001, 20, 219–227. [Google Scholar]
- MSC. MSC Invests in New Efficiency Solution to Reduce Emissions from Fleet. 2021. Available online: https://www.msc.com/ja/newsroom/news/2021/september/msc-invests-in-new-efficiency-solution-to-reduce-emissions-from-fleet (accessed on 10 November 2022).
- Kinch, D. Scrubber Installation Waiting List ‘Very Long’ as IMO 2020 Kicks in: Wartsila. 2020. Available online: https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/shipping/010320-scrubber-installation-waiting-list-very-long-as-imo-2020-kicks-in-wartsila (accessed on 10 November 2022).
- Andersen, P.; Borrod, A.-S.; Blanchot, H. Evaluation of the Service Performance of Ships. Mar. Technol. SNAME News 2005, 42, 177–183. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, S.; Andersson, H.; Thun, K. Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions. Transp. Sci. 2014, 48, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Meng, Q. Container liner fleet deployment: A systematic overview. Transp. Res. Part C Emerg. Technol. 2017, 77, 389–404. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Subulan, K.; Taşan, A.S.; Dudaklı, N. A review of fleet planning problems in single and multimodal transportation systems. Transp. A Transp. Sci. 2019, 15, 631–697. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E.A. Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Gilbert, P.; Walsh, C.; Traut, M.; Kesieme, U.; Pazouki, K.; Murphy, A. Assessment of full life-cycle air emissions of alternative shipping fuels. J. Clean. Prod. 2018, 172, 855–866. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, S. Optimal operating strategy for a long-haul liner service route. Eur. J. Oper. Res. 2011, 215, 105–114. [Google Scholar] [CrossRef]
- Xia, J.; Li, K.X.; Ma, H.; Xu, Z. Joint planning of fleet deployment, speed optimization, and cargo allocation for liner shipping. Transp. Sci. 2015, 49, 922–938. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, H.; Ma, X.; Zhang, Y. Optimization of ship speed and fleet deployment under carbon emissions policies for container shipping. Transport 2019, 34, 260–274. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.-F.; Hu, Z.-H. Speed Optimization for Container Ship Fleet Deployment Considering Fuel Consumption. Sustainability 2021, 13, 5242. [Google Scholar] [CrossRef]
- Zhuge, D.; Wang, S.; Wang, D.Z. A joint liner ship path, speed and deployment problem under emission reduction measures. Transp. Res. Part B Methodol. 2021, 144, 155–173. [Google Scholar] [CrossRef]
- Hasselaar, T.W.; Xing-Kaeding, Y. Evaluation of an energy saving device via validation speed/power trials and full scale CFD investigation. Int. Shipbuild. Prog. 2017, 63, 169–195. [Google Scholar] [CrossRef]
- Themelis, N.; Spandonidis, C.C.; Giordamlis, C. Evaluating the efficiency of an energy-saving device by performance monitoring. In Proceedings of the 4th Hull Performance & Insight Conference (HullPIC’19), Gubbio, Italy, 6–8 May 2019. [Google Scholar]
- Yang, Z.; Zhang, D.; Caglayan, O.; Jenkinson, I.; Bonsall, S.; Wang, J.; Huang, M.; Yan, X. Selection of techniques for reducing shipping NOx and SOx emissions. Transp. Res. Part D Transp. Environ. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Ren, J.; Lützen, M. Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. Transp. Res. Part D Transp. Environ. 2015, 40, 43–60. [Google Scholar] [CrossRef]
- Atari, S.; Prause, G. Risk assessment of emission abatement technologies for clean shipping. In Proceedings of the International Conference on Reliability and Statistics in Transportation and Communication, Riga, Latvia, 18–21 October 2017; Volume 36, pp. 93–101. [Google Scholar]
- Armellini, A.; Daniotti, S.; Pinamonti, P.; Reini, M. Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations. Appl. Energy 2018, 211, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Zhen, L.; Sun, Q.; Zhang, W.; Wang, K.; Yi, W. Column generation for low carbon berth allocation under uncertainty. J. Oper. Res. Soc. 2020, 72, 2225–2240. [Google Scholar] [CrossRef]
- Zis, T.P.; Cullinane, K.; Ricci, S. Economic and environmental impacts of scrubbers investments in shipping: A multi-sectoral analysis. Marit. Policy Manag. 2021, 49, 1097–1115. [Google Scholar] [CrossRef]
- Meng, Q.; Du, Y.; Wang, Y. Shipping log data based container ship fuel efficiency modeling. Transp. Res. Part B Methodol. 2016, 83, 207–229. [Google Scholar] [CrossRef]
- Zhen, L.; Hu, Y.; Wang, S.; Laporte, G.; Wu, Y. Fleet deployment and demand fulfillment for container shipping liners. Transp. Res. Part B Methodol. 2019, 120, 15–32. [Google Scholar] [CrossRef]
- Ship and Bunker (S&B). World Bunker Prices. 2022. Available online: https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average (accessed on 13 September 2022).
- Wang, Y.; Meng, Q.; Du, Y. Liner container seasonal shipping revenue management. Transp. Res. Part B Methodol. 2015, 82, 141–161. [Google Scholar] [CrossRef]
- Silverstream. What is Air Lubrication? 2022. Available online: https://www.silverstream-tech.com/what-is-air-lubrication/ (accessed on 16 September 2022).
- Ship and Bunker (S&B). Interview: Air Lubrication Firm Silverstream Targets 500 Sales by 2025. 2021. Available online: https://shipandbunker.com/news/world/170808-interview-air-lubrication-firm-silverstream-targets-500-sales-by-2025 (accessed on 16 September 2022).
- Fagerholt, K.; Psaraftis, H.N. On two speed optimization problems for ships that sail in and out of emission control areas. Transp. Res. Part D Transp. Environ. 2015, 39, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Drewry. COVID-19 Drives up Ship Operating Costs. 2020. Available online: https://www.drewry.co.uk/news/news/covid-19-drives-up-ship-operating-costs (accessed on 30 October 2022).
- Wang, S.; Tian, X.; Yan, R.; Liu, Y. A deficiency of prescriptive analytics—No perfect predicted value or predicted distribution exists. Electron. Res. Arch. 2022, 30, 3586–3594. [Google Scholar] [CrossRef]
- Yi, W.; Wu, S.; Zhen, L.; Chawynski, G. Bi-level programming subsidy design for promoting sustainable prefabricated product logistics. Clean. Logist. Supply Chain 2021, 1, 100005. [Google Scholar] [CrossRef]
- Ao, D.; Li, J. Subjective assessment for an advanced driver assistance system: A case study in China. J. Intell. Connect. Veh. 2022, 5, 112. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.E.; Jia, X.; Zeng, S.; Wang, Y. FPGA accelerated model predictive control for autonomous driving. J. Intell. Connect. Veh. 2022, 5, 63–71. [Google Scholar] [CrossRef]
- Lyu, N.; Wang, Y.; Wu, C.; Peng, L.; Thomas, A.F. Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions. J. Intell. Connect. Veh. 2022, 5, 17–35. [Google Scholar] [CrossRef]
- Huang, D.; Wang, S. A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme. Multimodal Transp. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y. Is uncertainty always bad for the performance of transportation systems? Commun. Transp. Res. 2021, 1, 100021. [Google Scholar] [CrossRef]
- Theodoropoulos, P.; Spandonidis, C.C.; Themelis, N.; Giordamlis, C.; Fassois, S. Evaluation of Different Deep-Learning Models for the Prediction of a Ship’s Propulsion Power. J. Mar. Sci. Eng. 2021, 9, 116. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R. A global method from predictive to prescriptive analytics considering prediction error for “predict, then optimize” with an example of low-carbon logistics. Clean. Logist. Supply Chain. 2022, 4, 100062. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R. “Predict, then optimize” with quantile regression: A global method from predictive to prescriptive analytics and applications to multimodal transportation. Multimodal Transp. 2022, 1, 100035. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S. Integrating prediction with optimization: Models and applications in transportation management. Multimodal Transp. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Wu, L.; Adulyasak, Y.; Cordeau, J.-F.; Wang, S. Vessel Service Planning in Seaports. Oper. Res. 2022, 70, 2032–2053. [Google Scholar] [CrossRef]
- Zhen, L.; Wu, Y.; Wang, S.; Hu, Y.; Yi, W. Capacitated closed-loop supply chain network design under uncertainty. Adv. Eng. Informatics 2018, 38, 306–315. [Google Scholar] [CrossRef]
- Zhen, L.; Tan, Z.; Wang, S.; Yi, W.; Lyu, J. Shared mobility oriented open vehicle routing with order radius decision. Transp. Res. Part A Policy Pract. 2021, 144, 19–33. [Google Scholar] [CrossRef]
- Zhen, L.; Wu, Y.; Wang, S.; Yi, W. Crowdsourcing mode evaluation for parcel delivery service platforms. Int. J. Prod. Econ. 2021, 235, 108067. [Google Scholar] [CrossRef]
Parameters | Value Setting |
---|---|
180,000 USD | |
790.5 USD/ton | |
200,000 tons (normal distribution with standard deviation 3000) | |
10 | |
8 | |
3 ton/day (normal distribution with standard deviation 0.5) | |
and | 8 and 22 knots, respectively |
, , and | 0.000220, 2.5506, and 0.2072, respectively |
and () | 2.5506 and 0.2072, respectively |
, , , , and | 0.000225, 0.000230, 0.000235, 0.000240, and 0.000245, respectively |
5% | |
40,000 USD |
Route ID | Port Rotation (City) |
---|---|
1 | Singapore → Ho Chi Minh → Singapore |
2 | Singapore → Laem Chabang → Singapore |
3 | Trincomalee → Tuticorin → Trincomalee |
4 | Singapore → Kochi → Singapore |
5 | Kaohsiung → Bagui Bay/San Fernando → Manila → Kaohsiung |
6 | Chennai → Singapore → Port Klang → Chennai |
7 | Singapore → Mormugao → Singapore |
8 | Singapore → General Santos → Manila → Singapore |
9 | Hai Phong → Zhanjiang → Hong Kong → Cam Ranh → Hai Phong |
Case ID | Route ID | Distance (n Mile) | OBJ | Time (s) | Gap |
---|---|---|---|---|---|
1 | 1, 2 | 2816 | 792,315.16 | 715.92 | 0.00% |
2 | 3, 4 | 4196 | 1,037,293.47 | 805.80 | 0.00% |
3 | 5, 6 | 4470 | 1,120,442.39 | 2920.35 | 0.00% |
4 | 7, 8 | 7919 | 1,700,707.68 | 3651.80 | 27.99% |
5 | 1, 2, 3 | 3306 | 1,003,645.12 | 857.12 | 0.00% |
6 | 1, 3, 4 | 5494 | 1,375,231.25 | 1411.20 | 0.00% |
7 | 5, 6, 9 | 6338 | 1,731,652.32 | 3702.36 | 37.21% |
8 | 1, 2, 7 | 7250 | 1,743,557.05 | 3667.23 | 12.31% |
9 | 5, 7, 8 | 9045 | 2,145,864.20 | 3693.32 | 39.95% |
10 | 1, 2, 3, 4 | 7012 | 1,792,859.55 | 3695.99 | 12.85% |
b (USD) | 1000 | 5000 | 10,000 | 20,000 | 30,000 | 40,000 | |
---|---|---|---|---|---|---|---|
g (%) | |||||||
5 | Y (5,0) | Y (1,4) | N | N | N | N | |
10 | Y (5,0) | Y (4,1) | Y (1,4) | N | N | N | |
20 | Y (5,0) | Y (5,0) | Y (4,1) | Y (1,4) | N | N | |
30 | Y (5,0) | Y (5,0) | Y (4,1) | Y (3,1) | Y (1,4) | N | |
40 | Y (4,0) | Y (4,0) | Y (4,0) | Y (3,1) | Y (3,1) | Y (3,1) | |
50 | Y (4,0) | Y (4,0) | Y (4,0) | Y (3,1) | Y (3,1) | Y (3,1) |
a (USD/ton) | OBJ | ||
---|---|---|---|
550 | 1,230,647.85 | 0 | 5 |
600 | 1,260,706.41 | 0 | 5 |
650 | 1,290,278.00 | 1 | 4 |
700 | 1,319,530.17 | 1 | 4 |
750 | 1,348,782.57 | 1 | 4 |
800 | 1,378,034.74 | 1 | 4 |
850 | 1,407,286.91 | 1 | 4 |
900 | 1,436,539.04 | 1 | 4 |
950 | 1,465,791.31 | 1 | 4 |
1000 | 1,493,564.26 | 4 | 1 |
1050 | 1,521,242.47 | 4 | 1 |
1100 | 1,548,920.63 | 4 | 1 |
1150 | 1,576,598.92 | 4 | 1 |
1200 | 1,604,276.43 | 4 | 1 |
c (USD) | OBJ | ||
---|---|---|---|
60,000 | 772,476.72 | 1 | 4 |
70,000 | 822,476.46 | 1 | 4 |
80,000 | 872,476.85 | 1 | 4 |
90,000 | 922,476.51 | 1 | 4 |
100,000 | 972,476.73 | 1 | 4 |
120,000 | 1,072,476.68 | 1 | 4 |
140,000 | 1,172,476.88 | 1 | 4 |
160,000 | 1,272,476.72 | 1 | 4 |
180,000 | 1,372,476.72 | 1 | 4 |
200,000 | 1,472,476.76 | 1 | 4 |
220,000 | 1,572,476.49 | 1 | 4 |
240,000 | 1,672,476.83 | 1 | 4 |
260,000 | 1,763,638.77 | 3 | 1 |
280,000 | 1,843,638.06 | 3 | 1 |
300,000 | 1,923,638.88 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Huang, Y.; Wang, H.; Zhen, L.; Shao, W. Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization. J. Mar. Sci. Eng. 2023, 11, 36. https://doi.org/10.3390/jmse11010036
Wu Y, Huang Y, Wang H, Zhen L, Shao W. Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization. Journal of Marine Science and Engineering. 2023; 11(1):36. https://doi.org/10.3390/jmse11010036
Chicago/Turabian StyleWu, Yiwei, Yadan Huang, Hans Wang, Lu Zhen, and Wei Shao. 2023. "Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization" Journal of Marine Science and Engineering 11, no. 1: 36. https://doi.org/10.3390/jmse11010036
APA StyleWu, Y., Huang, Y., Wang, H., Zhen, L., & Shao, W. (2023). Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization. Journal of Marine Science and Engineering, 11(1), 36. https://doi.org/10.3390/jmse11010036