Spatiotemporal Variation in Extreme Precipitation in Beijiang River Basin, Southern Coastal China, from 1959 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Precipitation Indexes
2.3. Data Processing Method
2.3.1. The Mann–Kendall Trend Test
- (1)
- Inspection statistics
- (2)
- Detection of Mann–Kendall mutation
2.3.2. The Linear Trend Estimation
2.3.3. Coefficient of Variation (CV)
2.3.4. Continuous Wavelet Transform (CWT)
3. Results
3.1. Annual Average and Spatial Variation
3.2. Analysis of Mutation Point and Change Trend
3.2.1. Analysis of Mutation Point and Linear Trend
3.2.2. Analysis of Spatial Difference of Change Trend
3.3. Analysis of Continuous Wavelet Transformation
3.4. Correlation Analysis between R95ds Distribution within the Year and Monthly Precipitation
4. Discussion
4.1. Spatial Variation in Annual Average Values
4.2. Mutation Point
4.3. Significant Decline of CWD
4.4. Oscillating Periods of Extreme Precipitation
4.5. Limitations and Future Research
5. Conclusions
- (1)
- The spatial variations in annual average PRCPTOT, SDII, Rx1day, Rx5day, and CWD were similar, and the values decreased from the southeast (Fogang and Qingyuan) to the periphery. CDD values decreased from south to north, while R95ds roughly showed a decreasing trend from the southeast-northwest strip to both sides.
- (2)
- M-K trend tests showed that there were mutations in all precipitation index sequences, and mutation points were mainly concentrated in 1986–1991 and 2005–2010. Change amplitude after mutation was generally larger than that before mutation. Continuous wavelet transformation results showed that each precipitation index had a significant oscillation period of 2–4 year in most of the time domain.
- (3)
- There were some spatial differences in the temporal changes of each precipitation index, and CWD declined significantly. R95ds distribution within the year showed a significantly positive correlation with monthly precipitation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis [eb/ol]. Available online: https://www.Ipcc.Ch/report/ar6/wg1/ (accessed on 6 May 2022).
- Chen, Y.; Li, W.; Jiang, X. Detectable intensification of hourly and daily scale precipitation extremes across eastern china. J. Clim. 2021, 34, 1185–1201. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441. [Google Scholar] [CrossRef]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in china from 1982 to 2010 based on a modified temperature vegetation drought index (mtvdi). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, P.; Zhang, M.; Ge, Z.; Hao, B.; Song, Z.; Huang, J.; Ma, M.; Yang, H.; Han, X. Responses of seasonal indicators to extreme droughts in southwest china. Remote Sens. 2020, 12, 818. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Sun, Y. Characteristics of extreme temperature and precipitation in china in 2017 based on etccdi indices. Progress. Inquisitiones De Mutat. Clim. 2019, 15, 363–373. (In Chinese) [Google Scholar] [CrossRef]
- ETCCDI. Etccdi Climate Change Indices: Definitions of the 27 Core Indices [eb/ol]. Available online: http://etccdi.Pacificclimate.Org/list_27_indices.Shtml (accessed on 23 April 2022).
- Zhang, X.B.; Alexander, L.; Hegerl, G.C. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. J. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H. An integrated approach to investigate the coupling coordination between urbanization and flood disasters in china from 2001 to 2018. J. Clean. Prod. 2022, 375, 134191. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Li, Y.; Yang, H.; Tanka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Karl, T.R.; Easterling, D.R. Changes in the probability of heavy precipitation: Important indicators of climatic change. Clim. Change 1999, 42, 243–283. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. Summary for Policymakers. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Li, W.; Chen, Y. Detectability of the trend in precipitation characteristics over china from 1961 to 2017. Int. J. Climatol. 2021, 41, E1980–E1991. [Google Scholar] [CrossRef]
- He, B.; Zhai, P. Characteristics of the persistent and non-persistent extreme precipitation in china from 1961 to 2016. Clim. Change. Res. 2018, 14, 437–444. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T.; Stone, D. Detectable anthropogenic shift toward heavy precipitation over eastern china. J. Clim. 2017, 30, 1381–1396. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Fan, J.; Zhang, F. Spatiotemporal trends of temperature and precipitation extremes across contrasting climatic zones of china during 1956–2015. Theor. Appl. Climatol. 2019, 138, 1877–1897. [Google Scholar] [CrossRef]
- Wu, W.B.; You, Q.L.; Wang, D. Characteristics of extreme precipitation in china based on homogenized precipitation data. J. Nat. Resour. 2016, 31, 1015–1026. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Qin, D. Changes in mean and extreme temperature and precipitation over the arid region of northwestern china: Observation and projection. Adv. Atmos. Sci. 2017, 34, 289–305. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhou, T.J.; Dai, A.G. Observed changes in the distributions of daily precipitation frequency and amount over china from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H. Trends in total precipitation and frequency of daily precipitation extremes over china. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Gao, T.; Xie, L. Study on progress of the trends and physical causes of extreme precipitation in china during the last 50 years. Adv. Earth Sci. 2014, 29, 577–589. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, B.; Xu, Y.; Wu, J. Changes in temperature and precipitation extreme indices over china: Analysis of a high resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Zhang, W. Temporal and spatial variations of extreme precipitation in the main river basins of china in the past 60 years. Chin. J. Atmos. Sci. 2022, 46, 707–724. (In Chinese) [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Luo, Z. Analyses on characteristics of extreme precipitation indices in the yangtze river basin in the past 53 years. Resour. Environ. Yangtze Basin 2018, 27, 1879–1890. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, T. Characteristics and changes of extreme precipitation in the yellow–huaihe and yangtze–huaihe rivers basins, china. J. Clim. 2011, 24, 3781–3795. (In Chinese) [Google Scholar] [CrossRef]
- Su, B.D.; Xiao, B.; Zhu, D.M.; Jiang, T. Trends in frequency of precipitation extremes in the yangtze river basin, china: 1960–2003. Hydrol. Sci. J. -J. Des Sci. Hydrol. 2005, 50, 479–492. [Google Scholar] [CrossRef]
- Ma, J.; Gao, Y. Analysis of annual precipitation and extreme precipitation change in the upper yellow river basin in recent 50 years. Plateau Meteorol. 2019, 38, 124–135. (In Chinese) [Google Scholar] [CrossRef]
- Hu, Y.; Maskey, S.; Uhlenbrook, S. Trends in temperature and rainfall extremes in the yellow river source region, China. Clim. Change 2012, 110, 403–429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Singh, V.P.; Peng, J. Spatial-temporal changes of precipitation structure across the pearl river basin, China. J. Hydrol. 2012, 440, 113–122. (In Chinese) [Google Scholar] [CrossRef]
- Yang, T.; Shao, Q.; Hao, Z. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the pearl river basin, china. J. Hydrol. 2010, 380, 386–405. (In Chinese) [Google Scholar] [CrossRef]
- Xia, J.; She, D.; Zhang, Y. Spatio-temporal trend and statistical distribution of extreme precipitation events in huaihe river basin during 1960–2009. J. Geogr. Sci. 2012, 22, 195–208. [Google Scholar] [CrossRef]
- Pan, X.; Yin, Y.; Wang, X. Spatio–temporal characteristics of the occurrence timing of extreme precipitation in the huai river basin from 1960 to 2014. Plateau Meteorol. 2019, 38, 377–385. (In Chinese) [Google Scholar] [CrossRef]
- Xi, Z.; Yang, X.; Liu, Y. Characteristics of extreme precipitation change from 1961 to 2017 in Songliao Basin. Res. Soil Water Conserv. 2019, 26, 199–203, 212. (In Chinese) [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P.A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar]
- IPCC, C.C. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge UK; New York, NY, USA, 2007; pp. 113–119. [Google Scholar]
- Wu, C.; Xian, Z.; Huang, G. Meteorological drought in the beijiang river basin, South China: Current observations and future projections. Stoch. Environ. Res. Risk Assess. 2016, 30, 1821–1834. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, D.; Wei, X.; Wang, X.; Liang, Z.; Jiang, X. Variation characteristics of the precipitation structure during the rainy season in the beijiang river basin, China. Trop. Geogr. 2020, 40, 145–153. (In Chinese) [Google Scholar] [CrossRef]
- Wen, K.; Song, L. The Meteorology Disaster Almanac over China (Guangdong); Wen, K., Song, L., Eds.; China Meteorological Press: Beijing, China, 2007; Chapter 1: Rainstorms and floods; pp. 13–115. (In Chinese) [Google Scholar]
- Liu, Y.; Hong, G. Drought and Water-logging New Characteristic Analysis in Beijing River Basin During Flooding Season and Future Forecasting. Pearl River 2008, 39, 21–25. [Google Scholar]
- Li, J. Analysis of “2012 6” rainstorm flood in Lianjiang River Basin. Pearl River 2013, 34, 26–27. [Google Scholar] [CrossRef]
- Wen, K.; Song, L. The Meteorology Disaster Almanac over China (Guangdong); Wen, K., Song, L., Eds.; China Meteorological Press: Beijing, China, 2007; Chapter 3: Drought disaster; pp. 203–207. (In Chinese) [Google Scholar]
- Zhang, Q.; Zhou, Y.; Vijay, P. Scaling and clustering effects of extreme precipitation distributions. J. Hydrol. 2012, 454, 187–194. [Google Scholar] [CrossRef]
- Burn, D.; Hag Elnur, M. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, W.; Jeon, S.; Wang, S.; Lim, C.; Song, C.; Sung, M. Long-term trend and correlation between vegetation greenness and climate variables in asia based on satellite data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef]
- Wang, J. Determining the most accurate program for the mann-kendall method in detecting climate mutation. Theor. Appl. Climatol. 2020, 142, 847–854. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Tram, V.N.Q.; Nhat, T.T. Hydro-meteorological trend analysis using the mann-kendall and innovative-sen methodologies: A case study. Int. J. Glob. Warm. 2020, 20, 145–164. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T. Trends analysis of rainfall and rainfall extremes in sarawak, malaysia using modified mann-kendall test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H. Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 2020, 8, e14. [Google Scholar] [CrossRef]
- He, Q.; Gu, Y.; Zhang, M. Spatiotemporal trends of pm2.5 concentrations in central china from 2003 to 2018 based on maiac-derived high-resolution data. Environ. Int. 2020, 137, 105536. [Google Scholar] [CrossRef]
- Tucker, C.J.; Newcomb, W.W.; Los, S.O. Mean and inter-year variation of growing-season normalized difference vegetation index for the sahel 1981-1989. Int. J. Remote Sens. 1991, 12, 1133–1135. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Fan, Y. Temporal evolution characteristics of pm2.5 concentration based on continuous wavelet transform. Sci. Total Environ. 2020, 699, 134244. [Google Scholar] [CrossRef] [PubMed]
- Lapins, S.; Roman, D.C.; Rougier, J. An examination of the continuous wavelet transform for volcano-seismic spectral analysis. J. Volcanol. Geotherm. Res. 2020, 389, 106728. [Google Scholar] [CrossRef]
- Peng, J.; Luo, X.X.; Liu, F.; Zhang, Z.H. Analysing the influences of enso and pdo on water discharge from the yangtze river into the sea. Hydrol. Process. 2018, 32, 1090–1103. [Google Scholar] [CrossRef]
- Sagaidachnyi, A.; Fomin, A.; Usanov, D.; Skripal, A. Real-time technique for conversion of skin temperature into skin blood flow: Human skin as a low-pass filter for thermal waves. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1009–1019. [Google Scholar] [CrossRef]
- Shao, Y.; Ma, Z.; Wang, J.; Bi, J. Estimating daily ground-level pm2.5 in china with random-forest-based spatiotemporal kriging. Sci. Total Environ. 2020, 740, 139761. [Google Scholar] [CrossRef]
- Shukla, K.; Kumar, P.; Mann, G.; Khare, M. Mapping spatial distribution of particulate matter using kriging and inverse distance weighting at supersites of megacity delhi. Sustain. Cities Soc. 2020, 54, 101997. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Lai, C. Spatio-temporal change characteristics of precipitation in the pearl river basin in recent 40 years. J. China Hydrol. 2016, 36, 31–37. (in Chinese). [Google Scholar] [CrossRef]
- Milly, P.C.; Betancourt, J.; Falkenmark, M. Climate change. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Shao, Q.; Hao, Z. Non-stationary modelling of extreme precipitation by climate indices during rainy season in hanjiang river basin, china. Int. J. Climatol. 2019, 39, 4154–4169. [Google Scholar] [CrossRef]
- Romero, L.; Perez-Sanchez, M.; Lopez, P. Improvement of sustainability indicators when traditional water management changes: A case study in alicante (spain). AIMS Environ. Sci. 2017, 4, 502–522. [Google Scholar] [CrossRef]
- He, C.; Chen, F.; Wang, Y. Flood frequency analysis of manas river basin in china under non-stationary condition. J. Flood Risk Manag. 2021, 14, 12745. [Google Scholar] [CrossRef]
- Faulkner, D.; Warren, S.; Spencer, P. Can we still predict the future from the past? Implementing non-stationary flood frequency analysis in the uk. J. Flood Risk Manag. 2020, 13, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Slater, L.J.; Anderson, B.; Buechel, M. Non-stationary weather and water extremes: A review of methods for their detection, attribution, and management. Hydrol. Earth Syst. Sci. 2021, 25, 3897–3935. [Google Scholar] [CrossRef]
- Ansa, T.S.; Chithra, N.R.; Thampi, S.G. Assessment of non-stationarity and uncertainty in precipitation extremes of a river basin under climate change. Environ. Model. Assess. 2021, 26, 295–312. [Google Scholar] [CrossRef]
- Luo, Y.; Gu, R. The pattern and evolutional trend of Chinese manufacturing’s spatial agglomeration: An empirical analysis based on data from 1980 to 2011. Econ. Geogr. 2014, 34, 82–89. (In Chinese) [Google Scholar]
- Qiao, J.; Shi, H. China’s industrial structure and its changes since 1990s. Hum. Geogr. 2007, 22, 55–59. (In Chinese) [Google Scholar] [CrossRef]
- He, C.F.; Chen, T.M.; Mao, X.Y.; Zhou, Y. Economic transition, urbanization and population redistribution in china. Habitat Int. 2016, 51, 39–47. [Google Scholar] [CrossRef]
- Yang, H. China must continue the momentum of green law. Nature 2014, 509, 535–537. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Huang, X.; Wu, D.; Wang, Z.; Yang, H. Optimization of ecological security patterns considering both natural and social disturbances in china’s largest urban agglomeration. Ecol. Eng. 2022, 19, 106647. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, H.; Wei, X. Spatiotemporal variation in precipitation during rainy season in beibu gulf, south china, from 1961 to 2016. Water 2020, 12, 1170. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, H.; Wei, X. Spatiotemporal variation in relative humidity in guangdong, china, from 1959 to 2017. Water 2020, 12, 3576. [Google Scholar] [CrossRef]
- Strokal, M.; Janssen, A.; Chen, X.; Kroeze, C.; Li, F.; Ma, L.; Yu, H.; Zhang, F.; Wang, M. Green agriculture and blue water in china: Reintegrating crop and livestock production for clean water. Front. Agric. Sci. Eng. 2021, 8, 72–80. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. China’s new leaders offer great hope. Nature 2013, 493, 163. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement key to china’s environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Hu, J.; Thompson, J.R.; Flower, R.J. Achievements, challenges and global implications of china’s carbon neutral pledge. Front. Environ. Sci. Eng. 2022, 16, 111. [Google Scholar] [CrossRef]
- Wang, H.; Feng, J.; Fan, Z. Analysis of flood risk in temporary flood storage and detention area of feilaixia reservoir area. China Rural. Water Hydropower 2022, 41, 111–116. (In Chinese) [Google Scholar] [CrossRef]
- Chen, S.; Xie, L.; Tao, D. Study on heavy metal migration characteristics with runoff sediment of polymetallic mine in beijiang river basin. Pearl River 2012, 43, 59–63. (In Chinese) [Google Scholar] [CrossRef]
- Yang, H.; Ma, M.; Flower, R.J.; Thompson, J.R.; Ge, W. Preserve precambrian fossil heritage from mining. Nat. Ecol. Evol. 2017, 1, 1048–1049. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, X.; Zhu, S. Effect of lucc on hydrological response in beijiang basin. Yangtze River 2020, 51, 89–96. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Hu, M.; Guo, X.; Yang, H.; Zhang, Z.; Zhang, K. Effects of topographic factors on runoff and soil loss in southwest china. Catena 2018, 160, 394–402. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, Z. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: Contribution, key techniques, and challenges. Adv. Eng. Sci. 2022, 54, 47–59. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C. Key aspects of the future hydropower development in China. Hydropower New Energy 2021, 35, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Sun, Z. The complementary between wind power, solar power and hydropower is the only way to neutralize carbon in china. Hydropower Pumped Storage 2021, 7, 15–19. (In Chinese) [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Oni, O.A.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Yu, G.; Hao, T.; Zhu, J. Discussion on action strategies of china’s carbon peak and carbon neutrality. Bull. Chin. Acad. Sci. 2022, 37, 423–434. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, J.; Du, X.; Zhou, X. Study on hydropower development strategy for new power systems. J. Hydroelectr. Eng. 2022, 41, 106–115. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Z.; Wei, C.; Liu, D.; Lin, Q.; Huang, Y.; Wang, C.; Ji, D.; Ma, J.; Yang, H. The influence of hydraulic characteristics on algal bloom in three gorges reservoir, china: A combination of cultural experiments and field monitoring. Water Res. 2022, 211, 118030. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xie, P.; Ni, L.; Flower, R.J. Pollution in the yangtze. Science 2012, 337, 410. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, P.E.; Eloranta, A.P.; Amundsen, P.-A.; Brabrand, Å.; Charmasson, J.; Helland, I.P.; Power, M.; Sánchez -Hernández, J.; Sandlund, O.T.; Sauterleute, J.F.; et al. Effects of water level regulation in alpine hydropower reservoirs: An ecosystem perspective with a special emphasis on fish. Hydrobiologia 2017, 794, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wang, Z.; Xiang, X.; Yang, H.; Li, C.; Li, S.; Wu, L. Dynamic simulation of co2 flux in a hydropower reservoir in southwest china. J. Hydrol. 2022, 613, 128354. [Google Scholar] [CrossRef]
- Cheng, C. Function remolding of hydropower systems for carbon neutral and its key problems. Autom. Electr. Power Syst. 2021, 45, 29–36. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, L.; Xu, Y. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality. Bull. Chin. Acad. Sci. 2022, 37, 529–540. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, J.; Li, S.; Gao, J. Technical and economic analysis of water energy storage to promote new energy development. J. Hydroelectr. Eng. 2022, 41, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Ding, T.; Gao, H. Atmospheric circulation in East Asia in summer 2019 and its influence on climate of China. Meteor. Mon. 2020, 46, 129–137. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, W.; Li, W. Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in Eastern China. J. Meteor. Res. 2014, 28, 1075–1084. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, K.; Li, Y.; Lin, M. A study of the development process of a mesoscale convective system ahead of a upper-level trough and its mechanism. Acta Meteorol. Sin. 2011, 69, 770–781. [Google Scholar] [CrossRef]
- Chen, S.; Sun, G.; Zeng, D. Study of atmospheric low-frequency system and strong precipitation processes in Southern China. Plateau Meteorol. 2017, 36, 480–490. [Google Scholar] [CrossRef]
- Paek, H.; Yu, J.; Zheng, F. Impacts of ENS0 diversity on the westem Pacific and North Pacific subtmpical highs during boreal summer. CliInate Dyn. 2016, 27, 211–221. [Google Scholar] [CrossRef]
- Lv, A.; Qu, B.; Jia, S. Influence of three phases of Eino-Southern Oscillation on daily precipitation regimes in China. Hydrol. Earth Syst. Sci. 2019, 23, 883–896. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, Z.; Lu, J. Analysis of Correlation between the Spatio-Temporal Distribution of Precipitation in Beijiang River Basin and SST in Nino 3. J. Nat. Resour. 2013, 28, 786–798. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z. Correlational study between the precipitation in the first rainy season in Guangdong Beijiang river basin and the global SST and teleconnections. Sci. Geogr. Sin. 2014, 34, 1239–1246. [Google Scholar] [CrossRef]
- Qian, W.; Jiang, N.; Du, J. Seven Anomalous Synoptic Patterns of Regional Heavy Rain in Eastern China. Meteorol. Mon. 2016, 42, 674–685. [Google Scholar] [CrossRef]
Indexes | Definitions | Units |
---|---|---|
PRCPTOT | Annual total precipitation. | mm |
SDII | The ratio of annual precipitation to the number of precipitation days. The precipitation day is defined as the day with precipitation ≥ 1 mm. | mm/d |
Rx1day | Maximum 1-day precipitation in a year. | mm |
Rx5day | Maximum consecutive 5-day precipitation in a year. | mm |
CDD | Maximum number of consecutive dry days of a year. The dry day is defined as the day with precipitation < 1 mm. | d |
CWD | Maximum number of consecutive wet days of a year. The wet day is defined as the day with precipitation ≥ 1 mm. | d |
R95ds | Annual number of days with daily precipitation exceeding the 95th percentile threshold. The 95th percentile threshold is calculated based on the precipitation series of all wet days at each station. | d |
Indexes | PRCPTOT (mm) | SDII (mm/d) | Rx1day (mm) | Rx5day (mm) | CDD (d) | CWD (d) | R95ds (d) |
---|---|---|---|---|---|---|---|
Annual mean | 1696.8 | 14.02 | 107.4 | 191.8 | 33 | 15 | 6 |
Indexes | Mutation Year | Before the Mutation | After the Mutation | The Overall Trend | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M-K Statistics | Trend | Annual Mean | CV | M-K Statistics | Trend | Annual Mean | CV | M-K Statistics | Trend | ||
PRCPTOT | 2006 | 0.08 | ↑ | 1737.5 | 0.153 | 0.37 | ↑ | 1549.5 | 0.174 | −1.27 | ↓ |
SDII | 1990 | −1.43 | ↓ | 13.83 | 0.087 | −0.64 | ↓ | 14.75 | 0.080 | −0.28 | ↓ |
2007 | −0.64 | ↓ | 14.75 | 0.080 | 0.82 | ↑ | 13.60 | 0.080 | |||
Rx1day | 1982 | −1.72 | ↓ | 105.9 | 0.149 | 0.02 | ↑ | 113.0 | 0.137 | −0.81 | ↓ |
2007 | 0.02 | ↑ | 113.0 | 0.137 | 0.82 | ↑ | 98.6 | 0.138 | |||
Rx5day | 1991 | −1.14 | ↓ | 190.1 | 0.150 | −0.42 | ↓ | 203.8 | 0.181 | −0.60 | ↓ |
2009 | −0.42 | ↓ | 203.8 | 0.181 | 0.98 | ↑ | 176.0 | 0.160 | |||
CDD | 1986 | −0.23 | ↓ | 30.8 | 0.272 | −0.31 | ↓ | 34.8 | 0.282 | 1.20 | ↑ |
CWD | 2001 | −0.36 | ↓ | 15.7 | 0.177 | −0.34 | ↓ | 13.1 | 0.188 | −2.54 | ↓ |
R95ds | 2005 | 0.29 | ↑ | 6.2 | 0.258 | −0.18 | ↓ | 5.3 | 0.321 | −1.06 | ↓ |
Indexes | Significant Cycles (a) | Corresponding Periods | Indexes | Significant Cycles (a) | Corresponding Periods |
---|---|---|---|---|---|
PRCPTOT | 2.1~3.8 2~3 2.7~5.2 | 1959–1965 1969–1992 1992–2009 | SDII | 2~4 2~6 2.2~3.8 | 1959–1982 1983–2009 2010–2018 |
Rx1day | 2~3 2~4.5 | 1961–1989 1999–2011 | Rx5day | 2~2.5 2~3 2~6 | 1960–1970 1976–1985 1992–2012 |
CDD | 2~2.3 2~4 2.2~4 | 1965–1968 1973–1999 2000–2012 | CWD | 2~7 2.3~4.5 | 1961–1980 1984–2008 |
R95ds | 2~3.7 2~3 2~5 | 1959–1966 1970–1994 1987–2009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yang, H.; Wei, X.; Liang, Z. Spatiotemporal Variation in Extreme Precipitation in Beijiang River Basin, Southern Coastal China, from 1959 to 2018. J. Mar. Sci. Eng. 2023, 11, 73. https://doi.org/10.3390/jmse11010073
Liu Z, Yang H, Wei X, Liang Z. Spatiotemporal Variation in Extreme Precipitation in Beijiang River Basin, Southern Coastal China, from 1959 to 2018. Journal of Marine Science and Engineering. 2023; 11(1):73. https://doi.org/10.3390/jmse11010073
Chicago/Turabian StyleLiu, Zhanming, Hong Yang, Xinghu Wei, and Zhaoxiong Liang. 2023. "Spatiotemporal Variation in Extreme Precipitation in Beijiang River Basin, Southern Coastal China, from 1959 to 2018" Journal of Marine Science and Engineering 11, no. 1: 73. https://doi.org/10.3390/jmse11010073
APA StyleLiu, Z., Yang, H., Wei, X., & Liang, Z. (2023). Spatiotemporal Variation in Extreme Precipitation in Beijiang River Basin, Southern Coastal China, from 1959 to 2018. Journal of Marine Science and Engineering, 11(1), 73. https://doi.org/10.3390/jmse11010073