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Abstract: Marine dissolved organic matter (DOM) is a key component of the global carbon cycle.
While marine DOM properties are usually characterized by chemical approaches, an effort to integrate
its variations in an ecological perspective is needed. Heterotrophic prokaryotes being the main
consumers of marine DOM, targeting their responses to varying DOM properties provides an effect-
based characterization of DOM properties. Dilution experiments of natural marine prokaryotic
assemblages were used to assess the spatio-temporal heterogeneity of DOM properties in the coastal
environment through its potential to stimulate heterotrophic prokaryotic growth. Reduced top-down
pressures allowed to repeatedly evidence a stronger bottom-up stimulation potential of heterotrophic
prokaryotes’ net growth with DOM collected in harbours under strong human and continental
influence compared to DOM collected in more open coastal sites. Shedding the light on high
spatial heterogeneity of DOM properties that corresponded only partly to dissolved organic carbon
concentrations, this experimental approach represents a simple and reproducible method to improve
our understanding of the marine DOM cycle.

Keywords: carbon cycle; dissolved organic matter; heterotrophic prokaryotes; growth stimulation
potential; coastal ecosystem; Mediterranean sea

1. Introduction

Marine dissolved organic matter (DOM) represents a dynamic component in the
interactions between geosphere, hydrosphere and biosphere and, as such, has the potential
to influence the global carbon cycle [1]. Heterotrophic prokaryotes (HP) are considered as
the major consumers and mineralizers of DOM in the ocean, thus initiating the microbial
loop [2]. Forty PgC are recycled each year by the microbial loop which demonstrates that
HP represent a very dynamic compartment in global biogeochemical cycles. Prokaryotic
DOM uptake induces different processes, assimilation and mineralization of DOM being
two essential processes in the marine DOM cycle [3]. Their relative contributions are
influenced by DOM properties [4].

In coastal areas, the ecosystem is exposed to rapid changes in environmental conditions
and human pressures. Numerous studies have also demonstrated that primary production
by phytoplankton is stimulated in coastal areas feeding the base of the heterotrophic
food web [5,6]. Interestingly, Coclet et al. [7,8] observed the selection of prokaryotic taxa
adapted to a greater availability of nutritive resources in the most enclosed and chemically
contaminated sites of an urbanized Mediterranean bay, suggesting intriguing trophic
responses of HP to coastal human influences. Considering the human footprint on the
Mediterranean Sea shore line [9], a better evaluation of human influence on marine DOM
and its cycling appears of particular importance. For that purpose, it is required to get a
simple and reliable method to evaluate the effect of spatio-temporal variations of DOM
properties on the heterotrophic growth in the highly variable coastal area.

J. Mar. Sci. Eng. 2023, 11, 1841. https://doi.org/10.3390/jmse11101841 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11101841
https://doi.org/10.3390/jmse11101841
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-5368-5232
https://orcid.org/0000-0002-7601-3380
https://orcid.org/0000-0003-2363-8376
https://orcid.org/0000-0002-4107-0916
https://doi.org/10.3390/jmse11101841
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11101841?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1841 2 of 8

Several chemical and biological methods exist to assess the effect of DOM properties on
heterotrophic microorganisms. Biological methods allow measuring bacterial production
and bacterial growth, using the incorporation of radiolabelled tracers into stable macro-
molecules, in particular DNA, RNA, proteins or phospholipids. The main drawbacks of
these techniques are (i) they require special equipment for the use of radioactive or stable
isotopes and (ii) they involve the use of several conversion factors that are not easy to esti-
mate accurately [10]. Among the chemical methods, the measurement of dissolved organic
carbon (DOC) consumption by heterotrophic microorganisms is the most widely used, but
it has several drawbacks, particularly for its application to the ocean environment [11].
Indeed, the low concentrations of DOC observed in the ocean, especially in oligotrophic
area, require long incubation times of several days to observe a significant consumption,
even with highly precise equipment.

In this study, we proposed a simple, rapid and reproducible method to compare the
effect of DOM properties on the growth of heterotrophic prokaryotes from different water
samples. The method is based on the potential of the pool of dissolved substances to stim-
ulate HP growth in the absence of significant top-down pressure. It consists of exposing
natural microbial communities to various DOM pools in dilution experiments (also referred
to as seawater culture) [12] with short-term growth monitoring by flow cytometry. The
method requires very few manipulations and is based on ecological responses, with the
use of natural complex communities. It was used for a first assessment of the spatial het-
erogeneity of dissolved substances in the coastal north-west Mediterranean Sea. Based on
previous studies, we hypothesized that DOM of the enclosed harbours within the strongly
urbanized and land-connected Toulon Bay could sustain more efficiently the heterotrophic
base of the marine planktonic food web. We repeatedly observed a stimulation of HP
growth with the water of the harbour compared to more open coastal areas. This difference
in biological responses only partly corresponded to DOC variations, proving the usefulness
of this easy-to-use method to complement classical chemical characterization of DOM.

2. Materials and Methods

Two different water bodies were considered on the French coast of the NW Mediter-
ranean Sea: (i) enclosed waters from a large harbour within the strongly urbanized and
land-connected Toulon Bay (further referred to as H), and (ii) open coastal waters under
little anthropogenic and continental influences sampled at the mouth or outside from the
bay (furthered referred to as O). Toulon Bay was chosen because of its numerous human
activities, resulting in chemical contaminations gradients and associated HP abundance and
diversity gradients previously observed in the water column on a restricted geographical
scale [7,13,14]. Both areas were sampled at three distinct dates (March, July and November
2020) to presumably cover different seasonal variations in water composition, in terms
of both DOM pool and prokaryotic community composition. Although the comparison
between an enclosed urbanized station and a more open to the sea station was always
preserved, the COVID-19 outbreak did not allow us to access the same harbour or to use
boats for sampling off the coast during the different lockdowns decided in France. This
forced us to choose different sampling stations at the different sampling dates (Figure 1).
Since the aim of our study was not to compare sites but rather to use contrasted DOM pools
to validate the usefulness of the methods, we believe that sampling different stations does
not alter our conclusions. The different H stations are located in enclosed docs of Toulon
harbour area and are, therefore, subject to strong anthropogenic pressures and influence
of freshwater loadings. All three O stations were all under weak anthropogenic influence,
either being located off the coast (ONOV, OMAR) in a rather open area or along the coast
(OJUL), without any major human activity in their close vicinity and more exposed to sea
currents than H stations. Station OJUL was located farther in the east to access a rocky
shoreline, with very few human frequentation, within a marine-protected area (Port-Cros
National Park).
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was calcinated (450 °C, 6 h) before being rinsed with Milli-Q water and the targeted sam-
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Figure 1. Location of the sampling stations. H: Harbour area under high anthropogenic and conti-
nental influences. O: open area under low anthropogenic and continental influences. Mar, Jul and
Nov: sampling campaigns of March, July and November, respectively.

To avoid any contamination during the sampling and the experiments, all the ma-
terial used was previously washed three times with Milli-Q water, then with 10% (v/v)
hydrochloric acid (HCl, Analytical Grade, Fisher Scientific, Leicester, UK) and finally rinsed
three times with Milli-Q water. The material was then conditioned with the target sample.
At each station and each date, a unique sample of 2 L of surface water (−1 m) was collected
with a van Dorn horizontal sampler and transferred in fluorinated ethylene propylene
bottle (FEP, Nalgene, Fisher Scientific, Leicester, UK). Samples were brought back in the
lab in a cool box and processed within half a day in order to avoid any major change in
dissolved substances properties or prokaryotic communities.

The initial quantity of DOM was estimated at each site and for each sampling date
by measuring DOC concentrations. For that, 24 mL samples filtered through a 0.2 µm PES
syringe filter were collected in previously conditioned glass tubes and stored at 4 ◦C. DOC
concentrations were determined by high temperature catalytic oxidation using a Shimadzu
TOC-VCSH carbon analyser with an accuracy of 1.2 µM. Prior to oxidation, samples were
acidified with 2 M high purity HCl and purged for 3 min with O2 to remove inorganic
carbon. In order to obtain satisfactory analytical precision (±1%), up to 5 repeated injections
were performed. Every 8 samples, the system blank was measured with Milli-Q water
and the operation of the instrument was verified by comparing data with DOC Consensus
Reference Material (SUPER-05) [15,16].

For each water sample, a 0.2 µm mixed cellulose esters membrane (Whatman, 47 mm)
was rinsed with 100 mL of 10% (v/v) hydrochloric acid (HCl, Analytical Grade, Fisher
Scientific, Leicester, UK) and 1 L of Milli-Q water to avoid any significant contamination
of the filtrate. Then, 500 mL of seawater was filtered through to isolate the dissolved
substances’ pool in the filtrate. Similarly, a glass fibre filter (GF/C, Whatman, 1.2 µm,
47 mm) was calcinated (450 ◦C, 6 h) before being rinsed with Milli-Q water and the targeted
sample. Then, 100 mL of raw seawater was filtered to isolate the free-living HP community
in the filtrate while removing most of the potential grazers. Dilution experiments were then
conducted by exposing each isolated HP community to each isolated dissolved substance
pool, resulting in 4 experimental conditions at each sampling date (Figure 2). Because of a
conservation issue after the July sampling campaign, we were unable to use the community
from H in the incubation experiments. At this date, only the data with the community from
O could be acquired.
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considered as HP were smaller than 2.0 µm Fluoresbrite® YG Microspheres (Polysciences 
Inc., Eppelheim, Germany), exhibited low complexity (low SSC), emitted green fluores-

Figure 2. Schematic representation of the experimental design. At each sampling date, two seawater
samples were taken from two contrasted stations. The heterotrophic prokaryotic communities and the
pool of dissolved substances were isolated by filtration through 0.7 µm and 0.2 µm filters, respectively.
Experimental mixtures were then made by exposing each community to each pool of dissolved
substances, in triplicates. H and O represent raw waters from the harbours and the open sites,
respectively.

The different experimental conditions were performed in triplicate. For each replicate,
54 mL of isolated dissolved substances (<0.2 µm) was inoculated with 6 mL of free-living HP
(<1.2 µm) for 48 h at 20 ◦C in a 60 mL FEP bottle (Figure 2). These incubations were carried
out under conditions promoting HP growth (removal of most of the grazers, reduced
competition for resources and viral pressure by dilution) and inhibiting any fresh DOM
production by phytoplankton production (darkness). Diluting the prokaryotes allowed us
to expose them to a large majority of dissolved substances originating from another water
sample, without manipulating them too much. This dilution also maximized the analytical
precision of the growth estimations while establishing more homogeneous competition
and growth conditions between the different incubations.

To measure bacterial growth, 1 mL of subsamples was taken from each bottle at the
initial and final time of incubation, fixed with 0.25% glutaraldehyde (final concentration)
and frozen at −80 ◦C until further analysis. After thawing, samples were stained with SYBR
Green (1× final concentration) for 15 min in darkness and heterotrophic prokaryotes were
counted with an Accuri C6 flow cytometer (BD Biosciences, Becton, NJ, USA). Cells consid-
ered as HP were smaller than 2.0 µm Fluoresbrite® YG Microspheres (Polysciences Inc.,
Eppelheim, Germany), exhibited low complexity (low SSC), emitted green fluorescence and
no red fluorescence [17]. Data were acquired using BD Accuri CFlow Plus software and HP
abundances were expressed as numbers of cells per mL (cell·mL−1). HP abundances were
used to calculate net bacterial growth (cell·mL−1·h−1) by subtracting initial abundances
from final abundances and dividing by incubation time (48 h).



J. Mar. Sci. Eng. 2023, 11, 1841 5 of 8

3. Results and Discussion

In situ variability showed that DOM quantitative properties varied from a spatial but
also temporal point of view. The DOC concentration varied between 65.8 and 112.8 µM
(Figure 3). On the basis of the sampling campaigns of March and July, DOC concen-
tration tended to significantly increase in the harbour when compared to the open area
(p-value < 0.05). Human activities could also contribute to higher DOC concentrations in
the harbour area through substantial anthropogenic DOC (ADOC) inputs [18,19]. Although
the organic contamination of the water column has not been documented yet in Toulon Bay,
the strong organic contamination recorded in the sediments [20,21] and the contamination
of the water by sediment resuspension [22,23] do not let any doubt about its occurrence.
However, in November, no significant difference in DOC concentration was demonstrated
between the harbour area under high anthropogenic pressure and the open area under low
anthropogenic pressure, suggesting a temporal variability in human influence on DOM
quantitative properties.
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Figure 3. DOC concentration in the sampled waters for each campaign. Error bars represent standard
error calculated from replicated measurements. Letters above error bars represent the result of
Tukey multiple comparisons, the absence of common letters indicating a significant difference
(p-value < 0.05).

Significantly higher DOC concentrations were observed in July relative to March for
both sites (p-value < 0.05), while DOC concentrations in July and November were not
significantly different (p-value > 0.05). With average concentrations of 71.8, 101.7 and
104.7 µM in March, July and November, respectively, our data are in good agreement with
the annual cycle of the DOM in surface waters of the Mediterranean Sea [24–26].

With a maximal increase of 34.9 µM for H and 30.9 µM for O, the temporal variability
in DOC concentration appeared higher than the spatial one at a given date (maximal
significant spatial difference of 11.9 µM observed in March). This suggests a globally higher
influence of temporal processes than spatial heterogeneity of sources and water residence
time on DOC concentration. Such trend suggests an important control of phytoplanktonic
growth and continental inputs on quantitative properties of DOM at rather large scale in
the coastal area, in agreement with previous observations on phytoplanktonic dynamics in
the studied area [27].

The dilution experiments showed a significant net growth after only 48 h of incubation
(Figure 4). HP growth was always significantly higher with dissolved substances of the
harbour area, regardless of HP community origin and sampling date. This systematic dif-
ference in HP growth suggests that the harbour area hosted more dissolved substances that
have a high growth-stimulating potential than open coastal areas under low anthropogenic
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influences. Based on our observations, heavily anthropized coastal environments such as
harbour could be considered as hotspots for heterotrophic secondary production. In March
and July, the higher DOC concentration in harbour area could be responsible for the differ-
ences in growth stimulation observed. However, significantly higher HP growth can be
observed without a significantly higher DOC concentration such as in November where no
significant difference in DOC concentration was observed between sites. This observation
was comforted by the absence of significant correlation between DOC concentration and net
HP growth (p-value > 0.05). Considering similar competitive and top-down pressures in all
experimental conditions, this observation suggests that our experimental approach could
be able to differentiate DOM pools based on their potential to support heterotrophic growth
at the base of the marine planktonic food web, while conventional chemical measurement
hardly do so. While previous work monitored HP growth in experimental approaches
to decipher its mains controls, it highlighted the predominant influence of grazing by
comparing filtered vs. non-filtered conditions [28]. By a systematic dilution of filtered
HP community, our approach allowed us to demonstrate the heterogeneity of bottom up
constrains in the coastal environment.
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Figure 4. Net HP growth as a function of DOM origin for each campaign. HP origin is specified on
the right-hand side, one panel corresponding to one community. H: harbour. O: open coastal area.
Orange bars: DOM from H. Blue bars: DOM from O. Error bars represent the standard deviation
between experimental triplicates. a and b represent the result of Tukey post-hocpost hoc multiple
comparisons within the same block, the absence of common letters indicating significant difference
(p < 0.05).

To conclude, the method presented here provides several advantages: it requires few
materials, it is easy to set up, results are obtained quickly with only 2 days of incubation
using equipment found in most of oceanography laboratories and, thus, numerous com-
parisons could be performed at the same time. It allowed us to evidence important spatial
differences in the ability of DOM to sustain heterotrophic growth at the basis of marine
planktonic food webs. Further systematic deployment along with classical measurements
of DOM properties could open interesting perspectives for a causal understanding of the
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links between DOM fate and microbial loop functioning in marine waters, as well as for a
better biogeochemical understanding of human influence on the coastal ocean.
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