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Abstract: The combination of multi-phase extension and pre-existing fault reactivation results in
a complex fault pattern within hydrocarbon-bearing basins, affecting hydrocarbon exploration at
different stages. We used high-resolution 3D seismic data and well data to reveal the impact of
multi-phase extension and pre-existing fault reactivation on Cenozoic fault pattern changes over time
in the Jiyang Depression of eastern China. The results show that during the Paleocene, a portion of
NW-striking pre-existing faults reactivated under NS extension and controlled the basin structure
(type 1). Other parts of the NW-striking pre-existing faults stopped activity and served as weak
surfaces, and a series of NNE-striking faults were distributed in an en-echelon pattern along the NW
direction at shallow depths (type 2). In areas unaffected by pre-existing faults, NE-striking faults
formed perpendicular to regional stresses. During the Eocene, the regional stresses shifted clockwise
to near-NS extension, and many EW-striking faults developed within the basin. The NE-striking
faults and the EW-striking faults were hard-linked, forming the ENE-striking curved faults that
controlled the structure in the basin (type 3). The NNE-striking faults were distinctly strike-slip at
this time, with the ENE-striking faults forming a horsetail pattern at their tails. Many ENE-striking
faults perpendicular to the extension direction were formed in areas where the basement was more
stable and pre-existing faults were not developed (type 4). There were also developing NS-striking
faults that were small in scale and appeared in positions overlapping different main faults (type 5).
Additionally, different fault patterns can guide different phases of hydrocarbon exploration. Type
1, type 2, and type 3 faults are particularly suitable for early-stage exploration. In contrast, type 4
and type 5 faults are more appropriate for mature exploration areas, where they may reveal smaller
hydrocarbon reservoirs.

Keywords: non-coaxial extension; fault reactivation; fault pattern; Jiyang depression

1. Introduction

In nature, most rift basins have experienced multiple phases of tectonic activity from
the Paleozoic to the Cenozoic, resulting in many non-coaxial extension rift phases [1,2].
Additionally, these activities have further influenced the diverse behaviors of pre-existing
faults. The combination of multi-phase extension and pre-existing fault activity has im-
pacted the growth and development process of fault networks, leading to the formation of
intricate fault systems consisting of faults oriented in different directions [3–6]. Notable
examples of such basins include eastern China (the Bohai Bay Basin (BBB) [7–9]; the South
China Sea (SCS) [10–12]); the North Sea rift [13–15]; the Thailand Basin [16,17]; and the
North West Shelf, Australia [18,19]. These regions experience multi-phase stress, causing
the pre-existing faults to reactivate in later tectonic events [20]. Furthermore, basins are
frequently separated by pre-existing faults, resulting in changes to the basin architecture.
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Concurrently, newly formed basins tend to exhibit fault networks composed of faults with
different ages, strikes, and properties [5,21,22]. Consequently, fault networks in rift basins
are often comprised of non-colinear faults [23–25], leading to complex fault patterns [9,26].
These different types of fault patterns affect the process of sediment entering the basin, fur-
ther affecting the characteristics of sedimentary facies distribution, and ultimately leading
to differences in oil and gas distribution [2,27,28].

The Jiyang Depression, located In eastern China, stretches in a NEE direction and
covers an area of approximately 29,000 square kilometers (Figure 1). The eastern part of the
depression is bounded by the Tan–Lu Fault Zone, while the western and northern parts
are adjacent to the Chengning Uplift. The southern part, on the other hand, is surrounded
by the Qi–Guang Fault and Luxi Uplift [6,8]. Due to the subduction of the Pacific plate,
Indo-Chinese plate collisions, and large-scale faulting [29,30], it is recognized as one of
the most seismically active regions on Earth. These tectonic processes occurred either
simultaneously or at different times, resulting in varying stress regimes during the Cenozoic
era in eastern China. Within the basin, extensional, strike-slip, and inversion structural
styles can be observed, albeit with spatial differences [31,32]. Initially, it was believed that
the fault characteristics in Cenozoic basins in eastern China were caused solely by simple
extensional stress. However, subsequent studies revealed that pre-existing structures (such
as faults, basement structures, and salt structures) within rift basins significantly impact
fault characteristics [33,34]. Additionally, multi-phase extension leads to localized stress
rotation and complex fault characteristics [14,20].
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Figure 1. (a) Bohai Bay Basin (BBB) is located in northern China. (b) Tectonic map of the Bohai
Bay Basin and the research area (Jiyang Depression). (c) The fault system illustrates the structural
framework of the Jiyang Depression.

In this study, we analyze the fault patterns and basin evolution using high-resolution
3D seismic data and well-logging data from the Shengli Oil Field, which has been subjected
to extensive hydrocarbon exploration within the Jiyang Depression. The availability of
abundant seismic data provides us with a unique opportunity to examine local stress
conditions in the study area and compare them with regional stress conditions in the Bohai
Bay Basin. Through this analysis, we aim to explore the influence of both regional and
local stress on tectonic evolution. By studying the fault characteristics and evolutionary
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process specific to the study area, we seek to elucidate the development patterns of the
faults and identify the controlling factors responsible for the spatial variability in fault
evolution within rift basins. As the Jiyang Depression represents a crucial hydrocarbon area
in eastern China, comprehending the spatial variability of fault patterns holds immense
importance for effective hydrocarbon exploration.

2. Geological Setting
2.1. Bohai Bay Basin (BBB)

The Cenozoic BBB is a rift basin located in the northern region of eastern China, with
an overall area of approximately 200,000 km2. The basin’s dynamics are influenced by the
Pacific plate and the Tan–Lu strike-slip fault zone. Over time, the basin has undergone
various tectonic processes such as compression, extension, and strike-slip, forming multiple-
stage faults with different orientations and characteristics [35,36].

During the Triassic to Early Jurassic epochs, the collision between the North and South
China Blocks occurred within the Qinling–Dabie orogenic belt, resulting in the development
of numerous NW-striking thrust faults and folds within the BBB [8,37,38]. In the Middle to
Late Jurassic, the basin experienced weak compression, leading to the deposition of thicker
sedimentary layers. In the Cretaceous epoch, magma upwelling caused significant changes
in the dynamics of the BBB [39,40]. The paleo-Pacific plate moved in a north-northwest
direction, with a subduction rate of 300 mm/a, causing the basin dynamics to shift from
compression to extension [8,29]. As a result, the NW-striking faults underwent negative
inversion and transformed into normal faults [41].

In the early Cenozoic era, the BBB inherited the dynamic background established
during the Cretaceous epoch, with NW-striking faults controlling the overall structure of
the basin [35,42]. Around 43 million years ago, during the Eocene epoch, the subduction
direction of the Pacific plate changed from NNW to WNW and continued throughout the
Paleocene epoch [41,43,44]. This subduction occurred at a high angle of approximately 80◦,
leading to a predominantly north–south-oriented extensional background in eastern China.
Notably, the Tan–Lu Fault zone underwent a change in rotation from right to left during
this period [20,45]. Consequently, the BBB experienced a combination of extensional and
strike-slip stresses, forming the NW-, NNE-, ENE-, and EW-striking faults within the basin.
This complex fault pattern contributes to the diverse structural characteristics observed
within the basin.

2.2. Jiyang Depression

The Jiyang Depression is a significant geological unit in the southwestern region of
the Bohai Bay Basin (BBB) in eastern China. It stretches in an ENE direction and is known
for its abundant petroleum resources. The depression is bordered by the Chengning Uplift
to the north, the Luxi Uplift to the south, the Tan–Lu strike-slip fault to the east, and the
Linqing Depression to the west [8]. It is a rift basin formed on the Paleozoic basement
of northern China during the Cenozoic era. The region has experienced various tectonic
events including the Indo-Chinese (290–210 Ma), Yanshan (210–65 Ma), and Himalayan
movements (65 Ma–now), resulting in the development of complex fault patterns [2,20].

Within the study area, four sags can be identified: the Chezhen Sag, Zhanhua Sag,
Huimin Sag, and Dongying Sag. Initially, researchers identified numerous NE-striking
faults in the Cenozoic basin [7,8]. Benefiting from extensive petroleum exploration, several
NW-striking reverse faults in the Mesozoic basin were subsequently revealed. These NW-
striking faults cut through the basement and experienced extensional or transtensional
stresses during the Cenozoic era, leading to negative inversion processes [7,20,33]. These
faults played a crucial role in shaping the late Mesozoic and early Cenozoic basins. The
orientation of these faults provides valuable information about the seismic profile, allowing
for the study of multi-phase stresses and pre-existing faults on the basin structure and
fault pattern.
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The Jiyang Depression is a superimposed basin with deposits from the Mesozoic to
Cenozoic epochs, developed on the North China Craton. Figure 2 illustrates the stratigraphy
of the study area from bottom to top. The Cambrian–Ordovician epoch is dominated by
shallow marine carbonate strata. The Carboniferous–Permian epoch is characterized by
interfacial and fluvial clastic phases. The Jurassic and Early Cretaceous epochs feature
coal-bearing clastic rocks, red clastic rocks, and locally developed volcanic rocks. The
Paleocene stratum of the Paleogene era has limited exposure. The Eocene–Oligocene strata
consist mainly of lacustrine clastic rock. The Neogene–Quaternary epoch is characterized
by fluvial facies clastic rock.
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The Cenozoic strata include the Paleogene and Neogene strata. The Paleogene strata
include the Kongdian Formation, Shajie Formation, and Dongying Formation from bottom
to top, while the Neogene strata include the Guantao Formation, Pingyuan Formation,
and Minghuazhen Formation from bottom to top. Unconformities resulting from tectonic
events led to the division of the entire sedimentary sequence into several structural layers.
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These structural layers are reflected onto the seismic reflection interface, marked by Tg8,
Tg4, Tg2, Tg, T8, T6, T5, T3, T2, and T0 in the article (Figure 2).

Similar to other regions in eastern China, the tectonic evolution of the Jiyang Depres-
sion involved a stable development stage during the Paleozoic era, followed by activation
and rift basin development in the Mesozoic and Cenozoic eras.

3. Materials and Methods

This study focused on analyzing seismic reflection data, both in 2D and 3D, collected
by the Shengli Oil Branch Company of Sinopec Corp (China Petroleum & Chemical Cor-
poration, Dongying, China) in the Jiyang Depression. The 3D seismic data consist of
9 separate seismic cubes covering the main hydrocarbon areas of the region (Figure 3), with
a line spacing of 25 m and a depth range of up to 5 s of two-way travel time (TWT). These
seismic data primarily exhibit Cenozoic sedimentary characteristics, but also include some
Mesozoic sedimentary features. The study area is further complemented by nearly 500 2D
seismic lines that cover different sags and traverse in the NNE–SSW, EW, and NS directions.
Moreover, over 100 well data points were collected, providing additional information that
allows for accurate seismic interpretation of sedimentary layers and faults. Most wells in
the area penetrate the Cenozoic strata, while only a few reach the Paleozoic strata.
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By processing the seismic data volume, different time slices were obtained, combined
with the ant tracking method, and shallow wells that were drilled in the study area were
used. Six key Cenozoic stratigraphic horizons (T8, T6, T5, T3, T2, and T0) were interpreted.
The activity rates of major faults with different orientations were calculated to understand
the structural history of the region. Through Petrel software 2018, the data volume was
finely interpreted and combined with the time slice, which was used to draw the structural
maps of key layers (Es3, Ed). Based on the evolutionary characteristics of the study area,
different types of fault pattern maps were created to assess the impact of multi-stage
extension and reactivation of pre-existing faults on fault geometry.
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4. Fault Geometries of the Jiyang Depression
4.1. NE-Striking Faults

During the Cenozoic era, a significant number of NE-striking faults emerged in the
Jiyang Depression, establishing the primary fault network system. Major half-graben
basins within the region are bounded by several large-scale boundary faults, including
the Ningnan–Wuannan Fault, Qi–Guang Fault, Yidong–Yinan Fault, and Chenan Fault,
which developed on a large scale and are >100 km in length. These faults contribute to
the displacement of the basement across them and exhibit a “zigzag” pattern in map view,
characterized by alternating NE- and ENE-striking segments. The structural features of the
Jiyang Depression are greatly influenced by these faults.

Moreover, numerous NE-striking faults developed within the basin, governing the
characteristics of secondary structural units such as sags and uplifts. For instance, the
Huimin Sag is influenced by the Xiakou Fault and Linshang Fault, while the Dongying
Sag is affected by the Central Fault, and the Zhanhua Sag is impacted by the Gubei Fault.
Furthermore, the sags contain additional NE-striking faults that shape the development of
local fault blocks (see Figure 4).

Vertically, in terms of fault geometry, the entire fault plane demonstrates a steep upper
part, transitioning into a listric shape at lower depths. These boundary faults intersect
multiple layers, extending from the basement to the Neogene strata. They combine with
secondary faults to form a Y-shaped geometry. In the sags, smaller-scale faults with ENE-
to EW-striking orientations are primarily observed in shallow layers, specifically in the
Eocene and Oligocene strata (Figure 4).

Within the Linnan area located in the southwest part of the Jiyang Depression, deep-
seated NE-striking faults exhibit steep dips. When viewed in plan view, the secondary
faults with an ENE-striking orientation form a horsetail structure alongside the main NE-
striking fault, indicating transtensional characteristics. This phenomenon primarily arises
from strike-slip activity along the Lanliao Fault in the western region and regional stress
changes [9]. In other regions of the Jiyang Depression, the ENE-striking faults display
normal fault characteristics, aligning with the NNW–SSE extension pattern observed
throughout eastern China during the Cenozoic era [8].
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Figure 4. The SN-striking seismic profile reflects the characteristics of the NEE-striking fault. The
location is indicated in Figure 1c and shown in plan view. Seismic profiles (a,b) show the typical
feature of the ENE-striking fault in the eastern part of the study area. Abbreviations: CNF, Chennan
Fault; YNF, Yinan Fault; CDF, Chengdong Fault. Seismic profiles (c,d) show the typical features of
the NEE-striking fault in the western part of the study area. Abbreviations: NNF, Ningnan Fault;
LSF, Linshang Fault; XKF, Xiakou Fault. The boundary faults are listric normal faults and cut the
Paleozoic strata. The ENE-striking fault controls the structural characteristics of the study area.

4.2. NNE-Striking Faults

The eastern part of the Jiyang Depression primarily exhibits a concentration of NNE-
striking faults, in contrast to the relatively underdeveloped western region. Notably,
the area contains several representative faults, namely the Changdi Fault, Gudong Fault,
and Kendong Fault, which are specifically developed in the Changdi–Kendong area (see
Figure 1c). A deep-level analysis using seismic time slices reveals the clear and contin-
uous nature of the NNE-striking faults; these NNE-striking faults are combined in an
en-echelon style and extend along the NW direction. Conversely, at shallower depths, these
NNE-striking faults display discontinuities and develop numerous NE-striking secondary
faults, distributed in an en-echelon pattern along the NNE direction (refer to Figure 5a,b).
Vertically, these fault planes exhibit steep dips, extending from the basement upward and
reaching up to the Oligocene strata. They form a flower-shaped geometry when combined
with secondary faults within the Cenozoic strata (Figure 5c,d). These NW-striking faults
distinctly exhibit strike-slip characteristics, which are closely associated with the strong
strike-slip effect observed along the adjacent Tan–Lu fault zone [20].
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Figure 5. The NW-striking seismic profile reflects the characteristics of the NNE-striking fault. The
location is indicated in Figure 1c and (d). (a) NNE-and NW-striking faults are mainly large-scale
boundary faults and continue at greater depths. (b) NNE-striking faults are discontinued and NE-
striking faults distributed in an en-echelon pattern. (c,d) NNE-striking faults are approximately
upright and form flower-shaped structures with shallow secondary faults. Abbreviations: ZNF,
Zhuangnan Fault; CDF, Changdi Fault; GDF, Gudong Fault; GNF, Gunan Fault; KDF, Kendong Fault.

4.3. NW-Striking Faults

The NW-striking fault is the main fault in the Mesozoic strata in the Jiyang Depression,
which is processed from negative structural inversion resulting from late Triassic thrust
to Cretaceous normal faults [7,8]. During the Paleogene, the fault activity weakened and
became a transfer zone for the development of the Cenozoic fault system. The seismic time
slice reveals that these faults are continuous at deep levels (Figures 6 and 7). However,
at the shallow level, there is no NW-striking fault visible in the west (Figure 7), while in
the east, the NW-striking fault is still visible, and it is abutted by the ENE-striking faults
(Figure 6). Vertically, the dip angle is relatively gentle, with some faults extending upward
to the base of the Eocene strata, and others extending upward to the Neogene strata. The
stratigraphic distribution is thick in the west and thin in the east from the Paleozoic to
the Lower and Middle Jurassic. The stratigraphic distribution of the late Jurassic and
Cretaceous epoch is wedge-shaped, gradually thickening from west to east. During the
Cenozoic era, the strata that developed inherited the wedge-shaped structure of the Upper
Mesozoic strata. The western part is thin, and the eastern part is thick. The Neogene and
Quaternary strata fill the depression and tend to be flat (Figures 6 and 7).
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Figure 6. The NE-striking seismic profile reflects the characteristics of the NW-striking fault. The
location is indicated in Figure 1c and (a,b). (a) NW-striking faults are mainly large-scale boundary
faults and continue at greater depths. (b) NE- and ENE-striking secondary faults abut the NW-
striking fault. (c,d) NW-striking faults cut across the Cenozoic and Paleozoic layers, suggesting their
continuous activity. This stratigraphic distribution is thick in the west and thin in the east from the
Paleozoic to the Lower and Middle Jurassic. The upper Jurassic and Cretaceous strata are exactly the
opposite, with a wedge-shape that is thin in the west and thick in the east. This indicates that the
NW-striking faults reversed in the Mesozoic. Abbreviation: CBF, Chengbei Fault.
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framework of the fault system, reflecting regional NNW–SSE extension. Affected by the 
Tan–Lu Fault zone, a large number of NNE-striking faults have developed in the eastern 
part of the study area, exhibiting obvious strike-slip characteristics. The NW-striking 
faults are the basement faults of the Cenozoic basin, which underwent a structural inver-
sion process in the Mesozoic era. The Cenozoic strata developed in the northeastern re-
gion, reflecting the oblique extension effect. The NS-striking faults are mostly small faults 
that played a role in the transformation. 

Figure 7. The NE-striking seismic profile reflects the characteristics of the NW-striking fault (Luoxi
fault, Guxi fault). The location is indicated in Figure 1c and (a). (a) NW-striking faults are mainly
large-scale boundary faults and continue at greater depths. (b) ENE-striking faults become the
main faults. (c,d) Luoxi Fault only cuts across the Mesozoic and Paleozoic layers, suggesting it
stopped activities in the Cenozoic. The Guxi Fault cuts across the Cenozoic and Paleozoic layers.
Abbreviations: LXF, Luoxi Fault; GXF, Guxi Fault.

4.4. ENE(-Near EW)-Striking Faults

The ENE-striking faults developed on a small scale, and the development time was
relatively late. In the plan view, they are mainly distributed in parallel. Appearing at the
tips of the main faults, the main faults combine to form a horsetail (Figures 5 and 6). The
EW-striking faults are the most developed in the central basin, especially in shallow layers.

4.5. NS-Striking Faults

The NS-striking faults developed on a small scale. In the plan view, they extend for
a short distance; vertically, they only cut one layer or develop within the same layer. The
NS-striking faults always occur in the fault blocks, especially in the overlapping positions
of different main faults, making the fault network complex (Figure 8).
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Figure 8. The ENE-striking seismic profile reflects the characteristics of the NS-striking fault. The
location is indicated in Figure 7a. (a) shows the local coherent slices, which can identify small faults
that are difficult to explain. (b) uses ant body tracking, and small faults in the NS-striking direction
can be seen.

Overall, the Cenozoic fault network in the Jiyang Depression is composed of multi-
directional faults with multiple properties. The NE-striking normal faults form the main
framework of the fault system, reflecting regional NNW–SSE extension. Affected by the
Tan–Lu Fault zone, a large number of NNE-striking faults have developed in the eastern
part of the study area, exhibiting obvious strike-slip characteristics. The NW-striking faults
are the basement faults of the Cenozoic basin, which underwent a structural inversion
process in the Mesozoic era. The Cenozoic strata developed in the northeastern region,
reflecting the oblique extension effect. The NS-striking faults are mostly small faults that
played a role in the transformation.

5. Kinematic Analysis
5.1. Fault Activity in the Jiyang Depression

Figure 9 shows changes in fault activity across different fault strikes in the study
area: (1) the ENE-striking boundary faults of the Jiyang depression started to activate
during Mesozoic and have remained active until present. Their peak activity was observed
during the Es3 sub-sequence, which occurred during the Paleocene. ENE-striking faults
had the strongest activity during this period and played a significant role in controlling the
sedimentary characteristics of various secondary structural units in the Jiyang Depression.
An example is the Xiakou Fault in the Huimin Sag. (2) The NNE-striking faults show
both dip-slip and strike-slip movements. Their activity rate was strongest during the Es3
sub-sequence and gradually weakened over time. Examples of NNE-striking faults include
the Kendong Fault and Changdi Fault (Figure 9). (3) The NW-striking faults were active
earlier and controlled the development of Mesozoic–Paleozoic strata. From the seismic
profile, it is clear that negative inversion occurred during the Late Jurassic–Cretaceous and
the nature of faults changed from thrust faults to normal faults (Figures 6 and 7). During
the Cenozoic, some NW-striking faults activity rates reached their peak during the Es3
sub-sequence, and then gradually weakened until the Neogene (such as the Chengbei Fault
and Guxi Fault). Some NW-striking faults stopped activity in the Es3 sub-sequence (such as
the Wuhaozhuang Fault and Luoxi Fault) [20]. (4) The NS-striking faults are small normal
faults with weak activity (Figures 7 and 8).
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Figure 9. (a) The fault activity rate (fault activity) of the different faults during different periods in
the study area shows the intensity of fault activity. (b) Measurement of the activity rate of dip-slip
faulting. Abbreviations: NNF, Ningnan Fault; CNF, Chengnan Fault; WNF, Wunan Fault; CNF,
Chengnan Fault; XKF, Xiakou Fault; GXF, Guxi Fault; CDF, Changdi Fault; KDF, Kendong Fault; LSF,
Linshang Fault; GDF, Gudong Fault; GBF, Gubei Fault; GNF, Gunan Fault.

5.2. Jiyang Depression Fault Pattern Change with Time

The fault pattern in the Jiyang Depression changed over time (Figure 10). The two
phases of extension occurred during the Paleocene and Eocene [8,41,46]. During the second
extension, some NW-striking faults reactivated and formed new faults. Cenozoic basins
exhibit various fault patterns, including curved faults, horsetail structures, and en-echelon
patterns. Under the influence of multi-phase extension and pre-existing faults, most of
these fault patterns evolved over time.
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system map of the Ed formation in the Jiyang Depression. The NW-striking faults disappeared. The 
NE- and ENE-striking faults developed in this stage. 
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gions within the BBB. As time progressed into the Early Cretaceous epoch, the region un-
derwent extensional rifting, causing the previously existing NW-striking thrust faults to 
transform into normal faults. During the Cenozoic era, the BBB resided in the subduction 
zone between the Pacific plate and the Eurasian plate. Between 66 and 50 Ma, the subduc-
tion rate varied from 120–140 mm/year around 80 Ma to 80–100 mm/year approximately 
60 Ma [8,37,47]. During the Cenozoic era, the BBB resided in the subduction zone between 
the Pacific plate and the Eurasian plate [48,49]. The steep subduction resulted in mantle 
upwelling, leading to NNW–SSE extension and the initiation of rift formation. Under re-
gional oblique extension, the NW-striking faults were reactivated, while NE-striking 
faults developed within the basin. From 56 to 43 Ma, the Pacific plate continued its NNW 
movement [50,51], and the subduction rate decreased from 80 mm/year to 60 mm/year 
[48,49]. Most NW-striking faults in the basin ceased activity, with only a few remaining 
active (Chengbei Sag, Zhanhua Sag). 

A number of NE-striking faults originated as a result of the interplay between pre-
existing faults and the Tan–Lu strike-slip fault zone. These geological processes led to the 
formation of a succession of NNE-striking faults, exhibiting an en-echelon arrangement 

Figure 10. Fault system map of different formations in the Jiyang Depression. (a) Fault system map of
the Es3 member in the Jiyang Depression. The NNE- and NW-striking faults continue in the eastern
part of the study area. NE-striking faults continue in the western of the study area. (b) Fault system
map of the Ed formation in the Jiyang Depression. The NW-striking faults disappeared. The NE- and
ENE-striking faults developed in this stage.

We have shown that the fault pattern at the base of the syn-rift section in the Jiyang
Depression is dominated by NW- and NE-striking boundary faults (Late Mesozoic to
Paleocene) [8,46]. Then, in the early Eocene, NE-striking and NNE-striking faults developed
within the depression. Most of the NE- and NNE-striking faults cut downwards through
the Cenozoic strata. The origin of the NE-striking faults was due to the NNW-oriented
extensional stress and developed in the whole study area. The origin of the NNE-striking
faults was due to the oblique extensional reactivation of the pre-existing NW-striking faults
and the NNE-striking faults are best developed on the eastern side and show an en-echelon
pattern (Figure 10a). Until the Middle Eocene, the ENE-striking faults were activated and
developed in the tips of the NE- and NNE-striking faults and formed horsetail patterns.
The new faults (EW-striking faults) were able to develop with thicker sediments and a more
stable basement, as well as in areas with a lower density of pre-existing faults (Figure 10b).

6. Discussion
6.1. Analysis of Control Factors for the Development of Fault Patterns in the Jiyang Depression

Previously, we discussed how the combination of existing faults and various stress
phases impacted the modifications in fault patterns within the Jiyang Depression. On a
larger scale, the BBB experienced a collision between the South China continent and the
North China Craton during the Late Triassic, resulting in land–land convergence. This
convergence process generated thrust faults oriented towards the north in multiple regions
within the BBB. As time progressed into the Early Cretaceous epoch, the region underwent
extensional rifting, causing the previously existing NW-striking thrust faults to transform
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into normal faults. During the Cenozoic era, the BBB resided in the subduction zone
between the Pacific plate and the Eurasian plate. Between 66 and 50 Ma, the subduction
rate varied from 120–140 mm/year around 80 Ma to 80–100 mm/year approximately
60 Ma [8,37,47]. During the Cenozoic era, the BBB resided in the subduction zone between
the Pacific plate and the Eurasian plate [48,49]. The steep subduction resulted in mantle
upwelling, leading to NNW–SSE extension and the initiation of rift formation. Under re-
gional oblique extension, the NW-striking faults were reactivated, while NE-striking faults
developed within the basin. From 56 to 43 Ma, the Pacific plate continued its NNW move-
ment [50,51], and the subduction rate decreased from 80 mm/year to 60 mm/year [48,49].
Most NW-striking faults in the basin ceased activity, with only a few remaining active
(Chengbei Sag, Zhanhua Sag).

A number of NE-striking faults originated as a result of the interplay between pre-
existing faults and the Tan–Lu strike-slip fault zone. These geological processes led to the
formation of a succession of NNE-striking faults, exhibiting an en-echelon arrangement
extending towards the NW orientation. Between 43 and 32 Ma, the Pacific plate transitioned
from NNW to NWW-trending movement [50], and the subduction rate continued to decline.
Consequently, the regional stress shifted to NS extension. During this period, newly
formed EW-striking faults connected with NE-striking faults, giving rise to extensive ENE-
striking faults that controlled the deposition within the basin [2,9]. The NNE-striking
faults showcased strike-slip characteristics [20]. Starting from 23 Ma, the Pacific plate’s
subduction weakened, resulting in lower-intensity extension within the BBB. This initiated
thermal subsidence in the BBB, causing primary fault activity to weaken or cease, leaving
behind a series of secondary fractures in the shallow layer [52].

The influence of multi-phase extension on fault patterns has been demonstrated
through analog models [24,53]. These experiments illustrate that faults created in the
second phase are perpendicular to the direction of tension and intersect with or alter
the orientation near the faults produced in the first phase. In recent years, seismic data
from various regions, including the North Sea [14,54], Thailand Basin [17], and Bohai Bay
Basin [20], have provided insights into natural fault patterns. Analysis of these examples
reveals how pre-existing faults differentially impact the development of subsequent fault
patterns. Similarly, the Jiyang Depression exhibits a diverse range of patterns: (1) In
areas without pre-existing faults, NNW extension during the early Cenozoic led to the
formation of numerous NE-striking faults. As the stress rotated clockwise from a NNW
to NS extension, a significant number of EW-striking faults developed within the basin.
These EW-striking faults interconnected with NE-striking faults, creating boundary faults
for the sags in the basin. These faults exhibit a curved pattern, exemplified by faults like
the Xiakou and Linshang faults [2,9] (Figure 11a). (2) In areas where pre-existing faults are
present, during the early Cenozoic, a portion of the NW-striking faults became inactive
and transformed into weak surfaces. This led to the formation of a series of NNE-striking
faults, exhibiting an en-echelon style extending towards the NW orientation. When the
second phase of extension occurred, the NNE-striking faults experienced stretching due
to NS extension, exhibiting a strike-slip nature. The resulting EW-striking fault formed
at their tips was influenced to bend in an ENE-striking manner. Together, they formed a
horsetail structure that controlled the evolution of the eastern part of the Jiyang Depression
(Figure 11b). (3) In areas where pre-existing faults were present, during the early Cenozoic,
a portion of the NW-striking faults remained active. These active faults connected with the
later-formed ENE-striking faults, controlling the structure of the basin (Figure 11c).
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pre-existing fault stopped being active. The NNE-striking fault were active and exhibited an en-
echelon arrangement extending towards the NW orientation. During the second extension, NNE-
striking faults and newly generated ENE-striking faults formed horsetail structures. (c) During the 
first extension, the pre-existing fault reactivated under oblique extension, and the NE-striking fault 
approached the pre-existing fault. During the second extension, the newly formed faults intersected 
the pre-existing fault, leading to the basin structure complex. Abbreviations: CDF, Changdi Fault; 
GDF, Gudong Fault; KDF, Kendong Fault. 
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contained only water and lacked any hydrocarbon resources. This discrepancy can likely 
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Figure 11. Simplified models showing the influence of multi-phase extension and pre-existing fault
reactivation on the fault pattern. (a) During the first extension, areas without pre-existing faults
formed NE-striking normal faults perpendicular to the extension direction. During the second
extension, the newly formed EW-striking faults connected with the early NE-striking faults, forming
a large ENE-striking fault that exhibited “zigzag” characteristics. (b) During the first extension,
the pre-existing fault stopped being active. The NNE-striking fault were active and exhibited an
en-echelon arrangement extending towards the NW orientation. During the second extension, NNE-
striking faults and newly generated ENE-striking faults formed horsetail structures. (c) During the
first extension, the pre-existing fault reactivated under oblique extension, and the NE-striking fault
approached the pre-existing fault. During the second extension, the newly formed faults intersected
the pre-existing fault, leading to the basin structure complex. Abbreviations: CDF, Changdi Fault;
GDF, Gudong Fault; KDF, Kendong Fault.

6.2. Implications for Hydrocarbon Exploration by Multi-Phase Extension

During previous exploration efforts, numerous reservoirs within the Jiyang Depression
were found to be abundant in hydrocarbon resources. The source rocks of the Jiyang
Depression are manly located in the Eocene period, and Shahejie-3 Formation (early Eocene)
is the main source rock layer. There are two hydrocarbon expulsion periods, Dongying
Formation (Oligocene) and Guantao Formation (Miocene), and the Guantao Formation is
the main hydrocarbon expulsion period. In the research area, certain reservoirs contained
only water and lacked any hydrocarbon resources. This discrepancy can likely be attributed
to the disruption of reservoirs and the diffusion of hydrocarbons caused by multi-phase
extension and pre-existing fault activity. The fault system resulting from the combination
of multi-phase extension and pre-existing faults had various effects on the transport and
accumulation of hydrocarbons [9,33,55]: (1) Pre-existing and boundary faults that formed
early cut through reservoirs and source rocks, serving as excellent conduits for vertical
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hydrocarbon transport. For example, the Chengbei Sag is located in the southeast part
of the research area. The Chengbei Fault boundary, as a pre-existing fault, was later
subjected to multiphase extension and reactivation (Figures 6 and 10), accumulating rich
hydrocarbon reservoirs in different layers. (2) Late-developed EW-striking faults and
early-developed NE-striking faults connected with each other to create curved faults. In
areas where the strike changes occurred, hard linkages formed a transfer zone. These zones
often act as conduits for material sources to enter the basin, making them highly favorable
for hydrocarbon accumulation. For example, the Xiakou Fault and Linshang Fault in the
southwest part of the research area are combinations of this fault pattern (Figures 4c and 10).
After a long period of exploration, a large number of oil reservoirs have been discovered in
their hanging walls. (3) Faults striking in the EW and NS directions, developed within the
rock layers, can increase the number of traps and expand their area. Although these faults
are relatively smaller in size, less displaced, less active, and consistently closed, they tend
to become reservoirs more easily for hydrocarbon storage. These small faults have been
discovered in the Linnan Sag in the southwest part of the study area and the Tanhai area
in the east part of the study area (Figures 8 and 10), which have good sealing properties
and are favorable hydrocarbon reservoirs. When conducting hydrocarbon exploration, it is
preferable to focus on the first and second types of faults during the early stages. These
types have the potential to lead to the discovery of additional hydrocarbon reservoirs.
Conversely, mature basins that have already reached a high water-bearing stage should
prioritize exploration of the third type of fault.

7. Conclusions

This study discusses the fault pattern evolution in rift basins under multi-phase
extension. We show that pre-existing faults subjected to multi-phase extension exhibit
different reactivation characteristics, affecting later fault patterns. The Jiyang Depression is
a “natural laboratory” in which we can study the influence of multi-phase extension on
fault pattern evolution.

We found five fault patterns in the study area: Type 1 NW-striking pre-existing faults,
Type 2 newly formed NNE-striking faults intersecting the extension direction at a small
angle, Type 3 newly formed NE-striking faults that are linked by NE- and EW-striking
faults, Type 4 newly formed ENE-striking faults that are perpendicular to the extension
direction, and Type 5 newly formed NS-striking faults, which developed on a small scale
and mainly occur in the fault blocks. The fault pattern evolution is affected by stress
changes and the pre-existing faults were reactivated at a later stage.

Stress changes significantly affect the evolution of fault patterns. Pre-existing faults un-
dergo reactivation during later stages. All fault patterns observed in the Jiyang Depression
experienced distinct evolutions. Pre-existing faults undergo extension and reactivation,
while new faults develop in shallow layers following an en-echelon pattern. Curved faults
in the study area formed later than pre-existing faults due to clockwise regional stress
changes in the Cenozoic era. Faults with different orientations, which formed during vari-
ous periods, eventually became hard-linked and take on a zig-zag pattern as curved faults.

The combination of multi-phase extension and pre-existing faults leads to diverse
fault patterns with varied roles during different stages of hydrocarbon exploration. Type
1, type 2, and type 3 faults are particularly suitable for early-stage exploration, often
resulting in the discovery of larger hydrocarbon reservoirs. In contrast, type 4 and type 5
faults are more appropriate for mature exploration areas, where they may reveal smaller
hydrocarbon reservoirs.

In this study, the reactivation of pre-existing faults is a key issue that involves many
factors. In addition to the stress direction, fluids play an important role. Therefore, future
studies of the impact of fluids on the activation of faults may be very challenging.
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