Adjoint Data Assimilation of the Flow on the Southern Flank of Georges Bank: March–June 1999
Abstract
:1. Introduction
2. The Adjoint Data Assimilation Model
3. Forward Simulation Results for Tidal and Subtidal Currents
3.1. Tidal Simulation
3.2. Simulation of Subtidal Currents
4. Assimilation Results for Tidal and Subtidal Currents
5. Discussion
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghil, M. Meteorological data assimilation for oceanographers. I. description and theoretical framework. Dyn. Atmos. Ocean. 1989, 13, 171–218. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Lorenc, A.C. A global three-dimensional multi-variated statistical interpolation scheme. Mon. Weather. Rev. 1981, 109, 701–721. [Google Scholar] [CrossRef]
- Blanchet, I.; Frankignoul, C.; Cane, M.A. A comparison of adaptive Kalman filter for a Tropical Pacific Ocean model. Mon. Weather. Rev. 1997, 125, 40–58. [Google Scholar] [CrossRef]
- Chen, C.; Malanotte-Rizzoli, P.; Wei, J.; Beardsley, R.C.; Lai, Z.; Xue, P.; Lyu, S.; Xu, Q.; Qi, J.; Cowles, G.W. Application and comparison of Kalman filters for coastal ocean problems: An example with FVCOM. J. Geophys. Res. 2009, 114, C05011. [Google Scholar] [CrossRef]
- Evensen, G. Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. J. Geophys. Res. 1992, 97, 17905–17924. [Google Scholar] [CrossRef]
- Evensen, G. Open boundary condition for the extended Kalman filter with a quasi-geostrophic ocean model. J. Geophys. Res. 1992, 98, 16529–16546. [Google Scholar] [CrossRef]
- Xue, P.; Chen, C.; Beardsley, R.C.; Limeburner, R. Observing system simulation experiments with ensemble Kalman filters in Nantucket Sound, Massachusetts. J. Geophys. Res. Oceans 2011, 116, C01011. [Google Scholar] [CrossRef]
- Bergamasco, A.; Malanotte-Rizzoli, P.; Thacker, W.C.; Long, R.B. The seasonal steady circulation of the Eastern Mediterranean determined with the adjoint method. Deep-Sea Res. 1993, 40, 1269–1298. [Google Scholar] [CrossRef]
- Le Dimet, F.; Talagrand, O. Variational algorithm for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 1986, 38A, 97–110. [Google Scholar] [CrossRef]
- Morrow, R.A.; De Mey, P. Four-dimensional assimilation of altimetric and cruise data in the Azores current in 1992–1993. J. Geophys. Res. 1995, 100, 25007–25025. [Google Scholar] [CrossRef]
- Thacker, W.C.; Long, R.B. Fitting dynamics to data. J. Geophys. Res. 1988, 93, 1227–1240. [Google Scholar] [CrossRef]
- Tziperman, E.; Thacker, W.C. An optimal-control/adjoint-equations approach to studying the oceanic general circulation. J. Phys. Oceanogr. 1989, 19, 1471–1485. [Google Scholar] [CrossRef]
- Lynch, D.R.; Naimie, C.E.; Hannah, C.G. Hindcasting the Georges Bank circulation. Part I: Detiding. Cont. Shelf Res. 1998, 18, 607–639. [Google Scholar] [CrossRef]
- Lynch, D.R.; Hannah, G. Inverse model for limited-area hindcasts on the continental shelf. J. Atmos. Ocean. Technol. 2001, 18, 962–981. [Google Scholar] [CrossRef]
- Lynch, D.R.; McGillicuddy, D.J., Jr. Objective analysis for coastal regimes. Cont. Shelf Res. 2001, 21, 1299–1315. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr.; Lynch, R.; Wiebe, P.; Runge, J.; Durbin, E.G.; Gentleman, W.C.; Davis, C.S. Evaluating the synopticity of the US GLOBEC Georges Bank broad-scale sampling pattern with observational system simulation experiments. Deep-Sea Res. II 2001, 48, 483–499. [Google Scholar] [CrossRef]
- Naimie, C.E.; Lynch, D.R. Inversion skill for limited-area shelf modeling. Part I: An OSSE case study. Cont. Shelf Res. 2001, 21, 1121–1137. [Google Scholar] [CrossRef]
- Blumberg, A.F. A Primer for ECON-si; Technical Report; HydroQual, Inc.: Mahwah, NJ, USA, 1994; 66p. [Google Scholar]
- Chen, C.; Beardsley, R.C. A numerical study of stratified tidal rectification over finite-amplitude banks, part I: Symmetric banks. J. Phys. Oceanogr. 1995, 25, 2090–2110. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Franks, P.J.S. A 3-D prognostic model study of the ecosystem over Georges Bank and adjacent coastal regions. Part I: Physical model. Deep Sea Res. 2001, 48, 419–456. [Google Scholar] [CrossRef]
- Giering, R.; Kaminski, T. Recipes for adjoint code construction. ACM Trans. Math. Softw. (TOMS) 1998, 24, 437–474. [Google Scholar] [CrossRef]
- Blumberg, A.F.; Mellor, G.L. A Description of a Three-Dimensional Coastal Ocean Circulation Model; Three Dimensional Coastal Models, Coastal and Estuarine Sciences; Heaps, N.S., Ed.; American Geophysical Union: Washington, DC, USA, 1987; pp. 1–16. [Google Scholar]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical #uid problem. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar]
- McGillicuddy, D.J.; Lynch, D.R.; Moore, A.M.; Gentleman, W.C.; Davis, C.S.; Meise, C.J. An adjoint data assimilation approach to diagnosis of physical and biological controls on Pseudocalanus spp. in the Gulf of Maine-Georges Bank region. Fish. Oceanogr. 1998, 7, 205–218. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Limeburner, R. Numerical study of stratified tidal rectification over finite-amplitude banks, 1995. Part II: Georges Bank. J. Phys. Oceanogr. 1995, 25, 2111–2128. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef]
- Naimie, C.E. Georges Bank residual circulation during weak and strong stratification periods: Prognostic numerical model results. J. Geophys. Res. 1996, 101, 6469–6486. [Google Scholar] [CrossRef]
- Naimie, C.E.; Loder, J.W.; Lynch, D.R. Seasonal variation of the three-dimensional residual circulation on Georges Bank. J. Geophys. Res. 1994, 99, 15967–15989. [Google Scholar] [CrossRef]
- Lo, A.K.; McBean, G.A. On the relative errors in methods of flux calculations. J. Appl. Meteorol. 1978, 17, 1704–1711. [Google Scholar] [CrossRef]
- Wyrtki, K. The averaged annual heat balance of the North Pacific Ocean and its relation to the ocean circulation. J. Geophys. Res. 1965, 70, 4547–4559. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, R.; Lentz, S. Classical tidal harmonic analysis with errors in MATLAB using T TIDE. Comput. Geosci. 2002, accepted. [Google Scholar]
- Petrie, B.; Drinkwater, K.; Gregory, D.; Pettipas, R.; Sandstrom, A. Temperature and Salinity Atlas for the Scotian Shelf and the Gulf of Maine; Canadian Technical Report of Hydrography and Ocean Sciences 171; Ocean Science Division, Maritime Region, Department of Fisheries and Oceans, Bedford Institute of Oceanography: Halifax, NS, Canada, 1996; 398p. [Google Scholar]
- Brink, K.; Limeburner, R.; Beardsley, R. Properties of flow and pressure over Georges Bank as observed with near-surface drifters. J. Geophys. Res. 2003, 108, 8001. [Google Scholar] [CrossRef]
- Chen, C. Variability of Currents in Great South Channel and over Georges Bank: Observations and Modeling. Ph.D. Thesis, The MIT/WHOI Joint Program, Woods Hole, MA, USA, 1992. [Google Scholar]
Depth(m) | (cm/s) | (cm/s) | (Deg G) | (Deg G) | |
---|---|---|---|---|---|
M2 | 10 | 0.5 ± 1.2 | −1.0 ± 1.2 | 0 ± 3 | 2 ± 3 |
20 | 1.2 ± 0.9 | −0.1 ± 1.1 | −1 ± 3 | 2 ± 3 | |
30 | 1.6 ± 1.0 | 0.0 ± 1.2 | −1 ± 3 | 1 ± 2 | |
40 | 0.5 ± 0.8 | −1.6 ± 0.9 | −2 ± 2 | 1 ± 2 | |
50 | 0.2 ± 0.7 | −1.9 ± 0.8 | −1 ± 2 | 1 ± 2 | |
60 | 0.1 ± 0.8 | −1.7 ± 0.8 | −1 ± 2 | 0 ± 2 | |
S2 | 10 | 0.9 ± 1.2 | 0.4 ± 1.2 | −1 ± 26 | 8 ± 24 |
20 | 0.2 ± 1.0 | −0.1 ± 1.3 | 4 ± 23 | 0 ± 22 | |
30 | 0.2 ± 0.9 | 0.1 ± 1.1 | 6 ± 21 | −2 ± 19 | |
40 | 0.3 ± 0.7 | 0.0 ± 0.9 | 9 ± 18 | −2 ± 16 | |
50 | 0.4 ± 0.7 | 0.0 ± 0.8 | 10 ± 16 | −5 ± 16 | |
60 | 0.1 ± 0.8 | −0.2 ± 0.8 | 8 ± 18 | −4 ± 19 | |
N2 | 10 | 0.4 ± 1.2 | −0.4 ± 1.3 | −9 ± 13 | 6 ± 14 |
20 | 0.0 ± 1.0 | −0.8 ± 1.3 | 0 ± 14 | −2 ± 12 | |
30 | 0.3 ± 0.9 | −0.4 ± 1.1 | 2 ± 12 | −2 ± 11 | |
40 | 0.6 ± 0.7 | 0.1 ± 0.9 | 0 ± 11 | 0 ± 10 | |
50 | 0.6 ± 0.7 | 0.0 ± 0.9 | −2 ± 10 | −1 ± 10 | |
60 | 0.2 ± 0.7 | −0.4 ± 0.8 | −1 ± 11 | −3 ± 12 | |
K1 | 10 | 0.8 ± 1.1 | 0.7 ± 0.9 | 15 ± 22 | 2 ± 26 |
20 | 1.2 ± 0.9 | 0.8 ± 0.6 | 17 ± 20 | 2 ± 23 | |
30 | 0.8 ± 0.8 | 0.4 ± 0.5 | 18 ± 20 | 4 ± 24 | |
40 | 0.7 ± 0.6 | 0.6 ± 0.5 | 15 ± 14 | 8 ± 17 | |
50 | 0.9 ± 0.8 | 0.7 ± 0.5 | 13 ± 16 | 9 ± 17 | |
60 | 0.7 ± 0.6 | 0.5 ± 0.5 | 10 ± 17 | 13 ± 17 | |
P1 | 10 | 0.3 ± 1.0 | 0.2 ± 0.9 | 15 ± 54 | 2 ± 59 |
20 | 0.4 ± 0.7 | 0.2 ± 0.6 | 17 ± 58 | 2 ± 58 | |
30 | 0.3 ± 0.8 | 0.1 ± 0.5 | 18 ± 57 | 4 ± 69 | |
40 | 0.2 ± 0.6 | 0.2 ± 0.5 | 15 ± 40 | 7 ± 46 | |
50 | 0.3 ± 0.4 | 0.2 ± 0.4 | 13 ± 52 | 8 ± 52 | |
60 | 0.2 ± 0.5 | 0.2 ± 0.4 | 10 ± 55 | 13 ± 58 | |
O1 | 10 | 0.1 ± 1.3 | 0.7 ± 1.1 | 0 ± 24 | −14 ± 27 |
20 | 0.6 ± 0.8 | 0.3 ± 0.7 | −5 ± 27 | −8 ± 33 | |
30 | 0.3 ± 0.8 | 0.2 ± 0.7 | 11 ± 21 | −20 ± 25 | |
40 | 0.5 ± 0.7 | 0.4 ± 0.5 | 11 ± 34 | −19 ± 38 | |
50 | 0.6 ± 0.6 | 0.4 ± 0.6 | −13 ± 44 | 4 ± 43 | |
60 | 0.5 ± 0.5 | 0.3 ± 0.6 | −20 ± 50 | 9 ± 49 | |
L2 | 10 | 1.0 ± 1.1 | 1.3 ± 1.1 | −27 ± 30 | 16 ± 31 |
20 | 0.3 ± 1.0 | 0.7 ± 1.2 | −14 ± 27 | 18 ± 27 | |
30 | 0.9 ± 0.8 | 0.9 ± 0.9 | 1 ± 30 | 6 ± 30 | |
40 | 0.8 ± 0.7 | 0.6 ± 1.0 | 1 ± 23 | 8 ± 23 | |
50 | 0.7 ± 0.8 | 0.4 ± 0.8 | −2 ± 26 | 18 ± 24 | |
60 | 1.0 ± 0.6 | 0.7 ± 0.8 | −2 ± 34 | 23 ± 33 | |
K2 | 10 | 0.2 ± 1.4 | 0.1 ± 1.4 | −1 ± 95 | 8 ± 80 |
20 | 0.0 ± 1.2 | 0.0 ± 1.4 | 4 ± 87 | 0 ± 68 | |
30 | 0.1 ± 1.1 | 0.0 ± 1.1 | 6 ± 91 | −2 ± 82 | |
40 | 0.1 ± 0.9 | 0.0 ± 1.1 | 9 ± 72 | −2 ± 63 | |
50 | 0.1 ± 0.8 | 0.0 ± 0.9 | 10 ± 72 | −5 ± 65 | |
60 | 0.0 ± 0.8 | −0.1 ± 0.8 | 8 ± 92 | −3 ± 80 | |
MU2 | 10 | 0.3 ± 1.1 | 0.9 ± 1.3 | −31 ± 45 | 3 ± 45 |
20 | 0.5 ± 0.9 | 0.4 ± 1.0 | −28 ± 74 | 12 ± 68 | |
30 | 0.3 ± 0.9 | 0.1 ± 0.8 | −17 ± 93 | −8 ± 89 | |
40 | 0.2 ± 0.6 | 0.0 ± 0.8 | 11 ± 95 | −43 ± 82 | |
50 | 0.1 ± 0.7 | −0.1 ± 0.7 | −9 ± 87 | −32 ± 83 | |
60 | 0.1 ± 0.7 | −0.1 ± 0.7 | −17 ± 94 | −35 ± 88 | |
MSF | 10 | 0.9 ± 2.5 | 0.1 ± 2.5 | −58 ± 105 | −94 ± 122 |
20 | 0.1 ± 2.2 | 0.0 ± 2.2 | −30 ± 79 | −76 ± 89 | |
30 | 0.7 ± 2.3 | −0.3 ± 1.5 | −21 ± 41 | −78 ± 176 | |
40 | 0.9 ± 2.3 | −0.1 ± 0.9 | −7 ± 31 | −57 ± 199 | |
50 | 0.7 ± 1.9 | 0.1 ± 0.5 | 13 ± 21 | −43 ± 137 | |
60 | 0.3 ± 1.4 | 0.1 ± 0.6 | 17 ± 26 | −41 ± 113 | |
Overal deviation | 0.6 | 0.6 | 14 | 24 |
Cases | Simulation | Assimilation | ||
---|---|---|---|---|
(cm/s) | (cm/s) | (cm/s) | (cm/s) | |
Total current error | 7.56 | 9.91 | 7.10 | 6.63 |
Subtidal current error | 3.75 | 7.58 | 2.77 | 4.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Xu, Q. Adjoint Data Assimilation of the Flow on the Southern Flank of Georges Bank: March–June 1999. J. Mar. Sci. Eng. 2023, 11, 2247. https://doi.org/10.3390/jmse11122247
Chen C, Xu Q. Adjoint Data Assimilation of the Flow on the Southern Flank of Georges Bank: March–June 1999. Journal of Marine Science and Engineering. 2023; 11(12):2247. https://doi.org/10.3390/jmse11122247
Chicago/Turabian StyleChen, Changsheng, and Qichun Xu. 2023. "Adjoint Data Assimilation of the Flow on the Southern Flank of Georges Bank: March–June 1999" Journal of Marine Science and Engineering 11, no. 12: 2247. https://doi.org/10.3390/jmse11122247
APA StyleChen, C., & Xu, Q. (2023). Adjoint Data Assimilation of the Flow on the Southern Flank of Georges Bank: March–June 1999. Journal of Marine Science and Engineering, 11(12), 2247. https://doi.org/10.3390/jmse11122247