
Citation: Huo, S.; Liu, Y.; Wang, J.; Li,

R.; Liu, X.; Shi, J. A Pre-Procession

Module for Point-Based Deep

Learning in Dense Point Clouds in

the Ship Engineering Field. J. Mar.

Sci. Eng. 2023, 11, 2248. https://

doi.org/10.3390/jmse11122248

Academic Editor: Marco Cococcioni

Received: 12 October 2023

Revised: 23 November 2023

Accepted: 23 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

A Pre-Procession Module for Point-Based Deep Learning in
Dense Point Clouds in the Ship Engineering Field
Shilin Huo 1, Yujun Liu 1, Ji Wang 1,2,3,* , Rui Li 1, Xiao Liu 1 and Jiawei Shi 1

1 School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China;
huoshilin@mail.dlut.edu.cn (S.H.); yjliu@dlut.edu.cn (Y.L.); lirui@dlut.edu.cn (R.L.);
liuxiao@dlut.edu.cn (X.L.); sjw123@mail.dlut.edu.cn (J.S.)

2 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, China
* Correspondence: wangji@dlut.edu.cn; Tel.: +86-188-4090-2302; Fax: +86-0411-84706506

Abstract: Recently, point cloud technology has been applied in the ship engineering field. However,
the dense point cloud acquired by terrestrial laser scanning (TLS) technology in ship engineering
applications brings an obstacle to some powerful and advanced point-based deep learning point
cloud processing methods. This paper presents a deep learning pre-procession module to ensure
the feasibility of processing dense point clouds on commonly available computer devices. The pre-
procession module is designed according to the traditional point cloud processing methods and the
PointNet++ paradigm, and is evaluated on two ship structure datasets and two popular point cloud
datasets. Experimental results illustrate that (i) the proposed module improves the performance of
point-based deep learning semantic segmentation networks, and (ii) the proposed module empowers
the existing point-based deep learning networks with the capability to process dense input point
clouds. The proposed module may provide a useful semantic segmentation tool for realistic dense
point clouds in various industrial applications.

Keywords: intelligent manufacturing; ship structure; laser scanning; deep learning; point cloud

1. Introduction

Recently, advanced point cloud technology has been applied in the ship engineering
field. For instance, in the construction quality analysis of hull blocks [1], steel parts
reconstruction [2], ship overload identification [3], ship berthing angle estimation [4], and
3D target detection for ship navigation [5]. However, the dense point cloud acquired by
terrestrial laser scans (TLS) technology in the ship engineering field (Figure 1 shows two
instances) presents an obstacle to point cloud processing technologies. In particular, some
powerful and advanced deep learning methods struggle to handle dense point sets. This
paper aims to develop a feasible method to ensure the procession of dense point clouds in
deep learning applications.

Since point-based neural networks directly process raw point data and avoid the
quantization of artifacts [6] generated by the 3D grid, or voxel-based approaches [7], they
are indisputably the most advanced point cloud deep learning methods. All of the point-
based neural networks are inspired by the milestone work of PointNet [6], who designed a
sophisticated network structure to achieve permutation invariance of input points. The
most significant successors are PointNet++ [8], who considered the local features of the
whole point cloud, and the Dynamic Graph Convolution Neural Network (DGCNN) [9],
who applied the graph neural network to generate edge features in the feature spaces.
Extensive variants of these three methods have been developed for various applications. In
the application of autonomous driving and augmented reality, 3D Single-Stage Detectors
(3DSSD) [10] utilized the PointNet++ backbone and considered furthest-point-sampling

J. Mar. Sci. Eng. 2023, 11, 2248. https://doi.org/10.3390/jmse11122248 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11122248
https://doi.org/10.3390/jmse11122248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-3118-3749
https://doi.org/10.3390/jmse11122248
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11122248?type=check_update&version=1

J. Mar. Sci. Eng. 2023, 11, 2248 2 of 20

(FPS) in the feature spaces to predict the 3D box containing classification objects. Instance-
Aware Single-Stage Detectors (IA-SSD) [11] also used the Set Abstraction (SA) layers
in PointNet++ to aggregate local features. The Point-Voxel Region-based Convolution
Neural Network (PV-RCNN++) [12] combined the 3D CNN and PointNet++ to predict
the RoI-grid. In the 3D registration application, Deep Closest Point (DCP) [13], the Inliers
Estimation Network (INENet) [14], and You Only Hypothesize Once (YOHO) [15] applied
the PointNet++ modules to generate the features of all points, and then predicted point-
corresponding relationships according to the feature distances. The PointNet branch
plays an important role in the feature aggregation step of modern 3D registration deep
learning methods. In the 3D scene segmentation application, the Linked Dynamic Graph
Convolution Neural Network (LDGCNN) [16] and the Dual-Graph Attention Convolution
Network (DGACN) [17] extended the DGCNN method to a linked feature version and a
dual graph version, respectively. PatchFormer [18] developed an efficient point transformer
according to the PointNet modules and the transformer paradigm [19]. In recent years,
point-based neural networks have become a pivotal component in the point cloud deep
learning field, and are developing rapidly.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 2 of 22

furthest-point-sampling (FPS) in the feature spaces to predict the 3D box containing
classification objects. Instance-Aware Single-Stage Detectors (IA-SSD) [11] also used the
Set Abstraction (SA) layers in PointNet++ to aggregate local features. The Point-Voxel
Region-based Convolution Neural Network (PV-RCNN++) [12] combined the 3D CNN
and PointNet++ to predict the RoI-grid. In the 3D registration application, Deep Closest
Point (DCP) [13], the Inliers Estimation Network (INENet) [14], and You Only Hypothe-
size Once (YOHO) [15] applied the PointNet++ modules to generate the features of all
points, and then predicted point-corresponding relationships according to the feature
distances. The PointNet branch plays an important role in the feature aggregation step of
modern 3D registration deep learning methods. In the 3D scene segmentation applica-
tion, the Linked Dynamic Graph Convolution Neural Network (LDGCNN) [16] and the
Dual-Graph Attention Convolution Network (DGACN) [17] extended the DGCNN
method to a linked feature version and a dual graph version, respectively. PatchFormer
[18] developed an efficient point transformer according to the PointNet modules and the
transformer paradigm [19]. In recent years, point-based neural networks have become a
pivotal component in the point cloud deep learning field, and are developing rapidly.

Figure 1. Two dense point cloud instances. The top row shows the scanning point cloud of a hull
plate containing 885,692 points, and the bottom row shows the scanning point cloud of a hull block
consisting 8,169,359 points.

However, most point-based neural networks are designed for experimental datasets
(such as the well-known datasets ModelNet [20], KITTI [21], nuScenes [22], and 3DMatch
[23]), and these methods typically involve a relatively small number of sampled points
(usually 2048, 4096 or 8192 points) during the processing phase. This point scale clearly
differs significantly from the realistic point cloud in the ship engineering field. In some
tasks, such as classification, a small number of sampled points do not significantly impact
the overall performance of deep learning networks. However, in other applications, such

Figure 1. Two dense point cloud instances. The top row shows the scanning point cloud of a hull
plate containing 885,692 points, and the bottom row shows the scanning point cloud of a hull block
consisting 8,169,359 points.

However, most point-based neural networks are designed for experimental datasets
(such as the well-known datasets ModelNet [20], KITTI [21], nuScenes [22], and 3DMatch [23]),
and these methods typically involve a relatively small number of sampled points (usually
2048, 4096 or 8192 points) during the processing phase. This point scale clearly differs
significantly from the realistic point cloud in the ship engineering field. In some tasks, such
as classification, a small number of sampled points do not significantly impact the overall
performance of deep learning networks. However, in other applications, such as semantic
segmentation, sparse sampling disregards local information in the original data, resulting

J. Mar. Sci. Eng. 2023, 11, 2248 3 of 20

in a decrease in resolution and making it difficult to obtain detailed processing results of the
whole point cloud. One possible processing approach is to manually design a method after
obtaining semantic segmentation results through point-based neural networks, which uses
the prediction results of the sampled points to infer the labels of the remaining points in
the original point cloud; however, this approach clearly lacks accuracy and persuasiveness.
Obviously, developing a network that can directly achieve semantic segmentation from a
dense input point cloud is evidently more reasonable. Furthermore, in situations where
high-precision prediction or regression results are required, using a large number of raw
points can fully take into account the information in the original scanning data, which may
better improve the prediction or regression results of deep learning methods.

Therefore, for point clouds in the ship engineering field, a point-based deep learning
structure that can handle dense input points is needed. Most point-based deep learning
methods, when dealing with dense input points, result in memory and time consumption
that is unbearable for general researchers. Based on traditional point cloud processing
methods and the PointNet++ paradigm, we propose a pre-procession module which allows
for the calculation of dense point sets in common commercial graphics cards. Employing
the traditional point segmentation methods, the whole input point cloud is divided into
multiple sub-regions, and based on the performance of the available graphics card, the
input point cloud is processed in a time-sharing and batch-wise manner. Using a modified
PointNet++ module, these sub-regions are reorganized to achieve successful execution of
dense point sets on common GPUs. The proposed module may provide a powerful tool for
realistic point clouds in various industrial applications.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
pre-procession module for a point-based deep learning method. To evaluate the perfor-
mance of the proposed pre-procession module, it is integrated into some existing PointNet
variants, and the experiment results are shown in Section 3. Finally, conclusions are drawn
in Section 4.

2. The Proposed Pre-Procession Module

The proposed pre-procession module consists of two parts, a pre-segmentation part
and a modified PointNet++ module (as shown in Figure 2). In the first part, traditional
point segmentation methods are employed to divide the dense input point sets into smaller
regions. In the second part, users can determine the number of regions processed in each
iterative step based on the available GPU memory, enabling the computation of the dense
point cloud in multiple steps. The proposed module is a convenient and efficient method
with low device requirements. It can be flexibly integrated with any PointNet++ variant,
and Section 2.2 illustrates the process of combining it with conventional point-based neural
networks.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 22

Figure 2. The framework of the proposed pre-procession module.

2.1. Pre-Segmentation Methods
First, we assume that the point number of the input point cloud is M, which will be

divided into N regions, with each region containing K points. Note that there is no re-
quirement for M to be equal to 𝑁 × 𝐾. This is because it is generally difficult to divide a
point cloud into N equal parts, and an extreme instance is that M is a prime number.
Therefore, this paper only requires that these N regions contain a sufficient number of
total points.

The most simplistic method of pre-segmentation is to haphazardly select N subsets
from the original data, each containing K individuals (as shown in Figure 3). The mem-
bers within these subsets have no relationship or connection with each other, as the se-
lection process is done without any conscious thought or consideration. In PointNet, if
the consideration of the T-Net is disregarded, this approach is feasible since the map
constructed by the multi-layer perceptron (MLP) ignores the interconnection among the
points before the max pool step. However, more advanced point-based methods incor-
porate the PointNet++ structure to generate CNN-like hierarchical features that reflect
local geometric properties, and this simple segmentation approach appears to be unrea-
sonable.

Figure 3. Haphazard selection of the original data. Each elongated, colored cube represents a 1 × 3
tensor.

We present two segmentation methods here: random radius nearest neighbors
(RNN) sampling and random RNN sampling based on region growing results.

RNN is a data search approach based on the kd-tree [24] data structure. It can be
implemented through the K-Nearest Neighbors (KNN) method [25] in some simpler ap-

Figure 2. The framework of the proposed pre-procession module.

J. Mar. Sci. Eng. 2023, 11, 2248 4 of 20

2.1. Pre-Segmentation Methods

First, we assume that the point number of the input point cloud is M, which will
be divided into N regions, with each region containing K points. Note that there is no
requirement for M to be equal to N × K. This is because it is generally difficult to divide
a point cloud into N equal parts, and an extreme instance is that M is a prime number.
Therefore, this paper only requires that these N regions contain a sufficient number of
total points.

The most simplistic method of pre-segmentation is to haphazardly select N subsets
from the original data, each containing K individuals (as shown in Figure 3). The members
within these subsets have no relationship or connection with each other, as the selection
process is done without any conscious thought or consideration. In PointNet, if the consid-
eration of the T-Net is disregarded, this approach is feasible since the map constructed by
the multi-layer perceptron (MLP) ignores the interconnection among the points before the
max pool step. However, more advanced point-based methods incorporate the PointNet++
structure to generate CNN-like hierarchical features that reflect local geometric properties,
and this simple segmentation approach appears to be unreasonable.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 22

Figure 2. The framework of the proposed pre-procession module.

2.1. Pre-Segmentation Methods
First, we assume that the point number of the input point cloud is M, which will be

divided into N regions, with each region containing K points. Note that there is no re-
quirement for M to be equal to 𝑁 × 𝐾. This is because it is generally difficult to divide a
point cloud into N equal parts, and an extreme instance is that M is a prime number.
Therefore, this paper only requires that these N regions contain a sufficient number of
total points.

The most simplistic method of pre-segmentation is to haphazardly select N subsets
from the original data, each containing K individuals (as shown in Figure 3). The mem-
bers within these subsets have no relationship or connection with each other, as the se-
lection process is done without any conscious thought or consideration. In PointNet, if
the consideration of the T-Net is disregarded, this approach is feasible since the map
constructed by the multi-layer perceptron (MLP) ignores the interconnection among the
points before the max pool step. However, more advanced point-based methods incor-
porate the PointNet++ structure to generate CNN-like hierarchical features that reflect
local geometric properties, and this simple segmentation approach appears to be unrea-
sonable.

Figure 3. Haphazard selection of the original data. Each elongated, colored cube represents a 1 × 3
tensor.

We present two segmentation methods here: random radius nearest neighbors
(RNN) sampling and random RNN sampling based on region growing results.

RNN is a data search approach based on the kd-tree [24] data structure. It can be
implemented through the K-Nearest Neighbors (KNN) method [25] in some simpler ap-

Figure 3. Haphazard selection of the original data. Each elongated, colored cube represents a 1× 3 tensor.

We present two segmentation methods here: random radius nearest neighbors (RNN)
sampling and random RNN sampling based on region growing results.

RNN is a data search approach based on the kd-tree [24] data structure. It can be
implemented through the K-Nearest Neighbors (KNN) method [25] in some simpler ap-
plications. It is an important technique in the computer graphics field. Our random RNN
sampling method begins by selecting N seed points from the whole M points. Subsequently,
for each seed point, we search for all of the nearest neighbors of the query point in a given
radius R. If the count of these neighbors is greater than or equal to K, we randomly select K
members from these neighbors. If the count is less than K, we augment these neighbors by
adding some duplicated instances of that seed point to ensure that the neighbors contain
K members (as shown in Figure 4). Figure 5 illustrates the workflow of the random RNN
sampling method.

Our random RNN sampling based on region growing results contains two steps:
region growing of the original point cloud and random RNN sampling of each region.
Region growing [26] is a popular traditional method for point cloud segmentation, which
exploits curvatures [27] and the angles of normal vectors between neighboring points to
achieve growth and expansion of the initial random seed points. It divides the original
point cloud into simple sub-regions with coherent geometric structures. After obtaining the
sub-regions of the original point cloud, each sub-region is treated as an independent point
cloud, and the aforementioned random RNN sampling method is utilized (as shown in
Figure 6). Due to the varying sizes of each sub-region, the number of sampling seed points

J. Mar. Sci. Eng. 2023, 11, 2248 5 of 20

differ. This paper proposes the following equation to determine the number of sampling
seed points for each region.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 22

plications. It is an important technique in the computer graphics field. Our random RNN
sampling method begins by selecting N seed points from the whole M points. Subse-
quently, for each seed point, we search for all of the nearest neighbors of the query point
in a given radius R. If the count of these neighbors is greater than or equal to K, we ran-
domly select K members from these neighbors. If the count is less than K, we augment
these neighbors by adding some duplicated instances of that seed point to ensure that the
neighbors contain K members (as shown in Figure 4). Figure 5 illustrates the workflow of
the random RNN sampling method.

Figure 4. The RNN search scenarios of each seed point. Suppose 𝐾 = 5; the seed point of case 1
contains just two neighbor points, so three duplicated instances of the seed point are added to ob-
tain a 5 × 3 tensor. The seed point of case 2 contains 14 neighbor points, and five points are ran-
domly picked from them to generate a 5 × 3 tensor.

Figure 5. Workflow of the random RNN sampling method. In the last column, each green point
represents a 1 × 3 tensor.

Our random RNN sampling based on region growing results contains two steps:
region growing of the original point cloud and random RNN sampling of each region.
Region growing [26] is a popular traditional method for point cloud segmentation, which
exploits curvatures [27] and the angles of normal vectors between neighboring points to
achieve growth and expansion of the initial random seed points. It divides the original
point cloud into simple sub-regions with coherent geometric structures. After obtaining
the sub-regions of the original point cloud, each sub-region is treated as an independent
point cloud, and the aforementioned random RNN sampling method is utilized (as
shown in Figure 6). Due to the varying sizes of each sub-region, the number of sampling

Figure 4. The RNN search scenarios of each seed point. Suppose K = 5; the seed point of case
1 contains just two neighbor points, so three duplicated instances of the seed point are added to
obtain a 5× 3 tensor. The seed point of case 2 contains 14 neighbor points, and five points are
randomly picked from them to generate a 5× 3 tensor.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 22

plications. It is an important technique in the computer graphics field. Our random RNN
sampling method begins by selecting N seed points from the whole M points. Subse-
quently, for each seed point, we search for all of the nearest neighbors of the query point
in a given radius R. If the count of these neighbors is greater than or equal to K, we ran-
domly select K members from these neighbors. If the count is less than K, we augment
these neighbors by adding some duplicated instances of that seed point to ensure that the
neighbors contain K members (as shown in Figure 4). Figure 5 illustrates the workflow of
the random RNN sampling method.

Figure 4. The RNN search scenarios of each seed point. Suppose 𝐾 = 5; the seed point of case 1
contains just two neighbor points, so three duplicated instances of the seed point are added to ob-
tain a 5 × 3 tensor. The seed point of case 2 contains 14 neighbor points, and five points are ran-
domly picked from them to generate a 5 × 3 tensor.

Figure 5. Workflow of the random RNN sampling method. In the last column, each green point
represents a 1 × 3 tensor.

Our random RNN sampling based on region growing results contains two steps:
region growing of the original point cloud and random RNN sampling of each region.
Region growing [26] is a popular traditional method for point cloud segmentation, which
exploits curvatures [27] and the angles of normal vectors between neighboring points to
achieve growth and expansion of the initial random seed points. It divides the original
point cloud into simple sub-regions with coherent geometric structures. After obtaining
the sub-regions of the original point cloud, each sub-region is treated as an independent
point cloud, and the aforementioned random RNN sampling method is utilized (as
shown in Figure 6). Due to the varying sizes of each sub-region, the number of sampling

Figure 5. Workflow of the random RNN sampling method. In the last column, each green point
represents a 1× 3 tensor.

Suppose there are l regions, where l is less than or equal to N, and each region contains
K or more points. After arranging these regions in descending order based on their point
count, the number of points in the i-th region is denoted as Ni, and the undetermined seed
point number in the i-th region is denoted as Si. We have N1 ≥ N2 ≥ · · · ≥ Nl . Then, Si
can be determined by Equation (1).

Si = 1 + b Ni − 1

∑l
j=1
(

Nj − 1
) × (N − l)c+ f (i) (1)

where f (k) =

1, i f k ≤
(

N − l −∑l
i=1 b

Ni−1
∑l

j=1(Nj−1)
× (N − l)c

)
0, else

. It is easy to verify that

(i) ∑l
i=1 Si = N.

(ii)
N − l −∑l

i=1 b
Ni−1

∑l
j=1(Nj−1)

× (N − l)c = ∑l
i=1

Ni−1
∑l

j=1(Nj−1)
× (N − l)−∑l

i=1 b
Ni−1

∑l
j=1(Nj−1)

×(N−l)c = ∑l
i=1

(
Ni−1

∑l
j=1(Nj−1)

× (N − l)− b Ni−1
∑l

j=1(Nj−1)
× (N − l)c

)
≤ l.

Thus, the proposed Equation (1) is reasonable.

J. Mar. Sci. Eng. 2023, 11, 2248 6 of 20

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 22

seed points differ. This paper proposes the following equation to determine the number
of sampling seed points for each region.

Figure 6. Workflow of the random RNN sampling method based on region growing results. The
input point cloud is divided into two regions according to the region growing method. Suppose 𝐾 = 5, 𝑁 = 10, according to Equation (1), we have 𝑆ଵ = 6 and 𝑆ଶ = 4.

Suppose there are l regions, where l is less than or equal to N, and each region con-
tains K or more points. After arranging these regions in descending order based on their
point count, the number of points in the i-th region is denoted as 𝑁, and the undeter-
mined seed point number in the i-th region is denoted as 𝑆. We have 𝑁ଵ ≥ 𝑁ଶ ≥ ⋯ ≥ 𝑁.
Then, 𝑆 can be determined by Equation (1). 𝑆 = 1 + ⌊ 𝑁 − 1∑ ൫𝑁 − 1൯ୀଵ × ሺ𝑁 − 𝑙ሻ⌋ + 𝑓ሺ𝑖ሻ (1)

where 𝑓ሺ𝑘ሻ = ൝1, 𝑖𝑓 𝑘 ≤ ൬𝑁 − 𝑙 − ∑ ⌊ ேିଵ∑ ൫ேೕିଵ൯ೕసభ × ሺ𝑁 − 𝑙ሻ⌋ୀଵ ൰0, 𝑒𝑙𝑠𝑒 . It is easy to verify that

(i) ∑ 𝑆ୀଵ = 𝑁.
(ii) 𝑁 − 𝑙 − ∑ ⌊ ேିଵ∑ ൫ேೕିଵ൯ೕసభ × ሺ𝑁 − 𝑙ሻ⌋ୀଵ = ∑ ேିଵ∑ ൫ேೕିଵ൯ೕసభ × ሺ𝑁 − 𝑙ሻୀଵ − ∑ ⌊ ேିଵ∑ ൫ேೕିଵ൯ೕసభ × ሺ𝑁 −ୀଵ𝑙ሻ⌋ = ∑ ൬ ேିଵ∑ ൫ேೕିଵ൯ೕసభ × ሺ𝑁 − 𝑙ሻ − ⌊ ேିଵ∑ ൫ேೕିଵ൯ೕసభ × ሺ𝑁 − 𝑙ሻ⌋൰ୀଵ ≤ 𝑙.

Thus, the proposed Equation (1) is reasonable.
Through the use of these two methods, one can obtain the seed points (a 𝑁 × 3

tensor) and the neighbor points of these seed points (a 𝑁 × 𝐾 × 3 tensor). The 𝑁 × 𝐾
points are the actual perceived point cloud of the deep learning neural network. With the
increase of N and K, the size of this point cloud can become quite large. These two
methods will inevitably result in duplicate points in the perceived point cloud (as shown
in Figure 7). Researchers can avoid this limitation by designing more sophisticated and
complex methodologies. In this paper, on one hand, due to the relatively low proportion
of the duplicate points, and on the other hand, for the purpose of ensuring fast execution,
we accept the presence of these duplicate points. In addition, the random sampling
method mentioned here can be replaced by the farthest point sampling (FPS) algorithm.
But due to the slower execution speed of the FPS algorithm in dense point sets, we do not
adopt it here.

Figure 6. Workflow of the random RNN sampling method based on region growing results. The
input point cloud is divided into two regions according to the region growing method. Suppose
K = 5, N = 10, according to Equation (1), we have S1 = 6 and S2 = 4.

Through the use of these two methods, one can obtain the seed points (a N × 3 tensor)
and the neighbor points of these seed points (a N× K× 3 tensor). The N× K points are the
actual perceived point cloud of the deep learning neural network. With the increase of N
and K, the size of this point cloud can become quite large. These two methods will inevitably
result in duplicate points in the perceived point cloud (as shown in Figure 7). Researchers
can avoid this limitation by designing more sophisticated and complex methodologies. In
this paper, on one hand, due to the relatively low proportion of the duplicate points, and
on the other hand, for the purpose of ensuring fast execution, we accept the presence of
these duplicate points. In addition, the random sampling method mentioned here can be
replaced by the farthest point sampling (FPS) algorithm. But due to the slower execution
speed of the FPS algorithm in dense point sets, we do not adopt it here.

Compared to the random RNN sampling method, the second sampling method
considers the sub-region information of the seed points during the RNN search process;
therefore, it may perform better in some tasks. Furthermore, the pre-segmentation part
of the proposed module can be replaced by any traditional point cloud segmentation or
grouping approach; for example, the super voxel growing method [28].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 22

Figure 7. An instance of duplicate points.

Compared to the random RNN sampling method, the second sampling method
considers the sub-region information of the seed points during the RNN search process;
therefore, it may perform better in some tasks. Furthermore, the pre-segmentation part of
the proposed module can be replaced by any traditional point cloud segmentation or
grouping approach; for example, the super voxel growing method [28].

2.2. The Modified PointNet++ Module
The pre-segmentation results, N seed points (a 𝑁 × 3 tensor) and 𝑁 × 𝐾 neighbor

points (a 𝑁 × 𝐾 × 3 tensor), are fed into the point-based deep learning neural network.
We treat these input data as two separate components: one is a point cloud containing N
points, and the other comprises N sub point clouds, each containing K points. The mod-
ified PointNet++ module aims to accomplish two tasks: (1) batch processing of the latter
N sub point clouds, and (2) establishing a connection between these two data compo-
nents.

Figure 8 illustrates the structure of the modified PointNet++ module. The module
involves four parts.

(1) All input sub point clouds are normalized into a unit sphere to ensure the feature
presentation ability of the feature perceptron modules and the comparability of these sub
point clouds. Supposing that the i-th sub point cloud is denoted by 𝐏 ∈ 𝐑×ଷ, and its
corresponding seed point is denoted by 𝑝 ∈ 𝐑ଵ×ଷ, 𝐏 is normalized by Equation (2).

𝐏 = 1𝑅 ൮𝐏 − ൦𝑝𝑝⋮𝑝൪×ଷ
൲ (2)

where 𝑅 is the search radius of the RNN sampling method mentioned in Section 2.1.
(2) Determine the batch size 𝐵௦ of the sub point clouds. In general, for the sake of

convenience, it is feasible to predefine the values of the variables 𝐵௦ and N to fulfill 𝐵௦|𝑁
(i.e., N is divisible by 𝐵௦). The calculation of local features for all sub point clouds is iter-

Figure 7. An instance of duplicate points.

J. Mar. Sci. Eng. 2023, 11, 2248 7 of 20

2.2. The Modified PointNet++ Module

The pre-segmentation results, N seed points (a N × 3 tensor) and N × K neighbor
points (a N × K × 3 tensor), are fed into the point-based deep learning neural network.
We treat these input data as two separate components: one is a point cloud containing N
points, and the other comprises N sub point clouds, each containing K points. The modified
PointNet++ module aims to accomplish two tasks: (1) batch processing of the latter N sub
point clouds, and (2) establishing a connection between these two data components.

Figure 8 illustrates the structure of the modified PointNet++ module. The module
involves four parts.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 22

atively performed ேೞ times, with the feature for each sub point cloud predicted using the
standard, stacked PointNet++ set abstraction (SA) modules. In the case of multiple input
raw point clouds (i.e., the input is a 𝐵 × 𝑁 × 3 tensor and a 𝐵 × 𝑁 × 𝐾 × 3 tensor, B is
the batch size of raw point clouds), we can regard the number of sub point clouds as 𝐵 × 𝑁, and then calculate features through the aforementioned process.

(3) The features of the N sub point clouds are an 𝑁 × 𝐶 tensor, where C represents
the number of the feature channel. If considering the multiple input raw point clouds, the
features will be a ሺ𝐵 × 𝑁ሻ × 𝐶 tensor, which can be reshaped as 𝐵 × 𝑁 × 𝐶 size. Either
the 𝑁 × 𝐶 feature tensor or the 𝐵 × 𝑁 × 𝐶 feature tensor will serve as extra information,
which will be jointly fed into any existing PointNet variant along with the 𝑁 × 3 point
coordinate tensor or the 𝐵 × 𝑁 × 3 point coordinate tensor.

(4) (Optional) In some tasks, such as semantic segmentation, the feature propagation
(FP) module corresponding to the SA modules of the sub point cloud is executed using
an iterative process similar to ‘(2)’. In each iteration, the stacked full connection layers
and drop out layers are carried out to reduce the GPU memory consumption.

Figure 8. The modified PointNet++ module.

By employing this modified PointNet++ module, the maximum number of points
processed in real time within the whole deep learning network is reduced to maxሺ𝐵 ×𝑁, 𝐵௦ × 𝐾ሻ (this value is 𝐵 × 𝑁 × 𝐾 in the standard PointNet variants), while the farthest
point sampling (FPS) algorithm is now capable of handling a maximum of maxሺ𝑁, 𝐾ሻ
points (this value is 𝑁 × 𝐾 in the standard PointNet variants). This leads to a reduction
in GPU memory consumption of the SA modules and the FP modules during the pro-
cessing of dense point sets. In the case of recursively utilizing this module (as shown in
Figure 9), people can calculate a larger point set with a smaller GPU memory.

Figure 8. The modified PointNet++ module.

(1) All input sub point clouds are normalized into a unit sphere to ensure the feature
presentation ability of the feature perceptron modules and the comparability of these sub
point clouds. Supposing that the i-th sub point cloud is denoted by Pi ∈ RK×3, and its
corresponding seed point is denoted by pi ∈ R1×3, Pi is normalized by Equation (2).

Pi =
1
R

Pi −

pi
pi
...
pi

K×3

 (2)

where R is the search radius of the RNN sampling method mentioned in Section 2.1.
(2) Determine the batch size Bs of the sub point clouds. In general, for the sake of

convenience, it is feasible to predefine the values of the variables Bs and N to fulfill Bs|N
(i.e., N is divisible by Bs). The calculation of local features for all sub point clouds is
iteratively performed N

Bs
times, with the feature for each sub point cloud predicted using

the standard, stacked PointNet++ set abstraction (SA) modules. In the case of multiple
input raw point clouds (i.e., the input is a B× N × 3 tensor and a B× N × K × 3 tensor,
B is the batch size of raw point clouds), we can regard the number of sub point clouds as
B× N, and then calculate features through the aforementioned process.

(3) The features of the N sub point clouds are an N × C tensor, where C represents
the number of the feature channel. If considering the multiple input raw point clouds, the

J. Mar. Sci. Eng. 2023, 11, 2248 8 of 20

features will be a (B× N)× C tensor, which can be reshaped as B× N × C size. Either the
N× C feature tensor or the B× N× C feature tensor will serve as extra information, which
will be jointly fed into any existing PointNet variant along with the N × 3 point coordinate
tensor or the B× N × 3 point coordinate tensor.

(4) (Optional) In some tasks, such as semantic segmentation, the feature propagation
(FP) module corresponding to the SA modules of the sub point cloud is executed using an
iterative process similar to ‘(2)’. In each iteration, the stacked full connection layers and
drop out layers are carried out to reduce the GPU memory consumption.

By employing this modified PointNet++ module, the maximum number of points pro-
cessed in real time within the whole deep learning network is reduced to max(B× N, Bs × K)
(this value is B× N × K in the standard PointNet variants), while the farthest point sam-
pling (FPS) algorithm is now capable of handling a maximum of max(N, K) points (this
value is N×K in the standard PointNet variants). This leads to a reduction in GPU memory
consumption of the SA modules and the FP modules during the processing of dense point
sets. In the case of recursively utilizing this module (as shown in Figure 9), people can
calculate a larger point set with a smaller GPU memory.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 22

Figure 9. Simplified illustration of recursively utilizing the modified PointNet++ module. In this
network, the maximum number of points processed in real-time is reduced to maxሺ𝐵 × 𝑁ଵ, 𝐵௦ ×𝐾, 𝐵௦ × 𝑁ଶሻ, and the farthest point sampling algorithm is now capable of handling a maximum of maxሺ𝑁ଵ, 𝑁ଶ, 𝐾ሻ points.

The integration of the modified PointNet++ module with any existing PointNet
variant can be easily accomplished. For instance, in Section 3, it is connected with
PointNet++, DGCNN and the Partial Registration Network (PRnet) [29]. Essentially, the
modified PointNet++ module serves as a complementary deep learning network struc-
ture to the pre-segmentation methods proposed in Section 2.1. Consequently, when the
modified PointNet++ module is combined with any existing method, the loss function
remains consistent with the aggregated existing method.

3. Experimental Results
The proposed module is integrated into PointNet++ and DGCNN to evaluate its

semantic segmentation performance. In addition, the applications of the proposed mod-
ule in other deep learning tasks are tested to show the feasibility of the proposed module
in various PointNet variants.

3.1. Dataset
All deep learning networks in this paper are evaluated on four datasets:
(i) ModelNet10 [20]: ModelNet10 dataset is a collection of 3D meshed models used

for the object classification task in computer vision and machine learning research. It
contains 4899 CAD models from 10 categories (toilets, chairs, nightstands, bookshelves,
dressers, beds, tables, sofas, desks and monitors). We utilize a subset containing four
random categories of ModelNet10 to test the proposed module. In the subset, 1000 sam-
ples are used for training and 290 samples for testing.

(ii) Stanford 3D semantic parsing dataset [30]: Stanford 3D semantic parsing dataset
includes point clouds and corresponding semantic labels for six areas of 271 indoor
scenes. The semantic labels of all these scenes are divided into 13 categories, such as
chairs, walls, ceilings, tables, and some other structural elements.

(iii) Our hull block dataset: 149 standard CAD models of ship hull blocks are gath-
ered. They are divided into four categories (bottom blocks, side shell blocks, deck blocks,
fore and aft blocks, note that ‘fore and aft block’ is one category) and split into 120 train-
ing samples and 29 testing samples.

(iv) Our hull block butt-joint part dataset: In the ship construction step, all hull
blocks are joined together with butt joints; thus, the construction quality control of hull
block butt-joints plays a significant role in shipyards. We gather 74 hull block butt-joint
part point clouds from CAD models and realistic scanning scenes. Each point cloud
contains semantic labels from four categories (hull plates, T-steels, flat steels and bulb flat
steels). All point clouds are split into 60 training samples and 14 testing samples.

In the pre-procession step, the neighbor research radius is set to 0.2 after the point
clouds are rescaled into a unit sphere. In the region growing configuration, the minimum
point number and maximum point number of each region are set to 800 and 100,000, the
neighbor point number is set to 30, the threshold of normal vectors to determine whether
to add the neighbor point to the region of the central point is set to 15°, the curvature
threshold which determines whether to consider the point in the region growing step is
set to 0.05. According to these configurations, each input point cloud can be divided into
sub-regions.

Figure 9. Simplified illustration of recursively utilizing the modified PointNet++ mod-
ule. In this network, the maximum number of points processed in real-time is reduced to
max(B× N1, Bs × K, Bs × N2), and the farthest point sampling algorithm is now capable of han-
dling a maximum of max(N1, N2, K) points.

The integration of the modified PointNet++ module with any existing PointNet variant
can be easily accomplished. For instance, in Section 3, it is connected with PointNet++,
DGCNN and the Partial Registration Network (PRnet) [29]. Essentially, the modified
PointNet++ module serves as a complementary deep learning network structure to the
pre-segmentation methods proposed in Section 2.1. Consequently, when the modified
PointNet++ module is combined with any existing method, the loss function remains
consistent with the aggregated existing method.

3. Experimental Results

The proposed module is integrated into PointNet++ and DGCNN to evaluate its
semantic segmentation performance. In addition, the applications of the proposed module
in other deep learning tasks are tested to show the feasibility of the proposed module in
various PointNet variants.

3.1. Dataset

All deep learning networks in this paper are evaluated on four datasets:
(i) ModelNet10 [20]: ModelNet10 dataset is a collection of 3D meshed models used

for the object classification task in computer vision and machine learning research. It
contains 4899 CAD models from 10 categories (toilets, chairs, nightstands, bookshelves,
dressers, beds, tables, sofas, desks and monitors). We utilize a subset containing four
random categories of ModelNet10 to test the proposed module. In the subset, 1000 samples
are used for training and 290 samples for testing.

(ii) Stanford 3D semantic parsing dataset [30]: Stanford 3D semantic parsing dataset
includes point clouds and corresponding semantic labels for six areas of 271 indoor scenes.
The semantic labels of all these scenes are divided into 13 categories, such as chairs, walls,
ceilings, tables, and some other structural elements.

J. Mar. Sci. Eng. 2023, 11, 2248 9 of 20

(iii) Our hull block dataset: 149 standard CAD models of ship hull blocks are gathered.
They are divided into four categories (bottom blocks, side shell blocks, deck blocks, fore
and aft blocks, note that ‘fore and aft block’ is one category) and split into 120 training
samples and 29 testing samples.

(iv) Our hull block butt-joint part dataset: In the ship construction step, all hull blocks
are joined together with butt joints; thus, the construction quality control of hull block
butt-joints plays a significant role in shipyards. We gather 74 hull block butt-joint part point
clouds from CAD models and realistic scanning scenes. Each point cloud contains semantic
labels from four categories (hull plates, T-steels, flat steels and bulb flat steels). All point
clouds are split into 60 training samples and 14 testing samples.

In the pre-procession step, the neighbor research radius is set to 0.2 after the point
clouds are rescaled into a unit sphere. In the region growing configuration, the minimum
point number and maximum point number of each region are set to 800 and 100,000, the
neighbor point number is set to 30, the threshold of normal vectors to determine whether
to add the neighbor point to the region of the central point is set to 15◦, the curvature
threshold which determines whether to consider the point in the region growing step is
set to 0.05. According to these configurations, each input point cloud can be divided into
sub-regions.

The existing PointNet variants adopt their default configurations as presented in the
original papers. When the proposed module is taken into consideration, we designate the
variables B, N, K and Bs as 5, 640, 256, and 50, respectively, which means that for each
model or point cloud in the four aforementioned datasets, 163,840 points are sampled to
represent the input 3D geometries. Therefore, in order to ensure sampling quality, we
require the point number in each instance of the datasets to be greater than 163,840. This
point number threshold is set to 300,000. For the Stanford 3D semantic parsing dataset,
unfortunately, some scenes have to be discarded as their point numbers are less than
300,000, and the final number of instances remaining is 199. These 199 scenes are split into
160 training samples and 39 testing samples. Readers may easily notice that the processing
point number of the proposed module (163,840 points) is significantly larger than the point
numbers in the original PointNet variants (1024 or 2048 points). Each sampled point cloud
is rescaled into a unit sphere, and just their 3D coordinates are utilized as input data; the
remaining information, such as normal vectors, colors, etc., is disregarded. In the training
step, all data are augmented by randomly rotating, translating, scaling and perturbing the
point coordinates.

3.2. Semantic Segmentation

To test the semantic segmentation performance of the proposed module, it is embedded
into PointNet++ and DGCNN, and evaluated on the Stanford 3D semantic parsing dataset
and our hull block butt-joint part dataset. As the Kernel Point Convolution (KPconv) [31]
can process more points than the original PointNet++ and DGCNN, it is also evaluated in
this section. The architecture of the proposed module is set as the configuration shown in
Figures 10 and 11 to meet the input 5× 640× 256× 3 tensor procedure.

The set abstraction part of the proposed module is shown in Figure 10. Since the SA
modules are utilized to generate the feature of the 50× 256× 3 tensor, the sample point
number of the FPS method in the first SA module is set as 64, the local search number
and radius are set to 32 and 0.3, and the layer sizes of the multi-layer perceptron are set
to (64, 128), which means that the multi-layer perceptron consists of two fully connected
layers — the first layer contains 64 units and the second layer contains 128 units. The
second SA module is similar to the first SA module. The FPS sample point number is set to
32, the local search number is set to 16, the local search radius is set to 0.5, and the layer
sizes of the multi-layer perceptron are set to (128, 128). As for the third SA module, all local
points and features are aggregated to compute the feature of the seed points, so the FPS
and the local neighbor search procedures are abandoned, and the layer sizes of multi-layer
perceptron are set to (128, 128).

J. Mar. Sci. Eng. 2023, 11, 2248 10 of 20

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 22

The existing PointNet variants adopt their default configurations as presented in the
original papers. When the proposed module is taken into consideration, we designate the
variables 𝐵, 𝑁, 𝐾 and 𝐵௦ as 5, 640, 256, and 50, respectively, which means that for each
model or point cloud in the four aforementioned datasets, 163,840 points are sampled to
represent the input 3D geometries. Therefore, in order to ensure sampling quality, we
require the point number in each instance of the datasets to be greater than 163,840. This
point number threshold is set to 300,000. For the Stanford 3D semantic parsing dataset,
unfortunately, some scenes have to be discarded as their point numbers are less than
300,000, and the final number of instances remaining is 199. These 199 scenes are split
into 160 training samples and 39 testing samples. Readers may easily notice that the
processing point number of the proposed module (163,840 points) is significantly larger
than the point numbers in the original PointNet variants (1024 or 2048 points). Each
sampled point cloud is rescaled into a unit sphere, and just their 3D coordinates are uti-
lized as input data; the remaining information, such as normal vectors, colors, etc., is
disregarded. In the training step, all data are augmented by randomly rotating, translat-
ing, scaling and perturbing the point coordinates.

3.2. Semantic Segmentation
To test the semantic segmentation performance of the proposed module, it is em-

bedded into PointNet++ and DGCNN, and evaluated on the Stanford 3D semantic pars-
ing dataset and our hull block butt-joint part dataset. As the Kernel Point Convolution
(KPconv) [31] can process more points than the original PointNet++ and DGCNN, it is
also evaluated in this section. The architecture of the proposed module is set as the con-
figuration shown in Figures 10 and 11 to meet the input 5 × 640 × 256 × 3 tensor pro-
cedure.

Figure 10. Configuration of the set abstraction part of the proposed module. Figure 10. Configuration of the set abstraction part of the proposed module.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 22

Figure 11. Configuration of the feature propagation part of the proposed module.

The set abstraction part of the proposed module is shown in Figure 10. Since the SA
modules are utilized to generate the feature of the 50 × 256 × 3 tensor, the sample point
number of the FPS method in the first SA module is set as 64, the local search number and
radius are set to 32 and 0.3, and the layer sizes of the multi-layer perceptron are set to ሺ64,128ሻ, which means that the multi-layer perceptron consists of two fully connected
layers — the first layer contains 64 units and the second layer contains 128 units. The
second SA module is similar to the first SA module. The FPS sample point number is set
to 32, the local search number is set to 16, the local search radius is set to 0.5, and the layer
sizes of the multi-layer perceptron are set to ሺ128,128ሻ. As for the third SA module, all
local points and features are aggregated to compute the feature of the seed points, so the
FPS and the local neighbor search procedures are abandoned, and the layer sizes of mul-
ti-layer perceptron are set to ሺ128,128ሻ.

The PointNet++ or the DGCNN is subsequently connected to the proposed module.
Their input data are a 5 × 640 × 3 tensor and a 5 × 640 × 128 tensor, which can be
treated as the 3D coordinates and corresponding features of five mini point clouds, and
each point cloud contains 640 points. As the input point number is different from the
original PointNet++ or DGCNN, some parameters of these two PointNet variants require
modification. The parameters of three SA modules in the PointNet++ are set as shown in
Figure 12, and their explanation is similar to that of the proposed module, hence there is
no need to reiterate it. As for DGCNN, due to the limited association between its network
architecture and the input point number, we only make slight modifications to its pa-
rameters; the local search number is set to 64, and the final embedded channel is set to
512.

Figure 11. Configuration of the feature propagation part of the proposed module.

J. Mar. Sci. Eng. 2023, 11, 2248 11 of 20

The PointNet++ or the DGCNN is subsequently connected to the proposed module.
Their input data are a 5× 640× 3 tensor and a 5× 640× 128 tensor, which can be treated
as the 3D coordinates and corresponding features of five mini point clouds, and each point
cloud contains 640 points. As the input point number is different from the original Point-
Net++ or DGCNN, some parameters of these two PointNet variants require modification.
The parameters of three SA modules in the PointNet++ are set as shown in Figure 12,
and their explanation is similar to that of the proposed module, hence there is no need to
reiterate it. As for DGCNN, due to the limited association between its network architecture
and the input point number, we only make slight modifications to its parameters; the local
search number is set to 64, and the final embedded channel is set to 512.

The feature propagation part of the proposed module is shown in Figure 11. The
feature propagation architecture contains three standard feature propagation modules,
three full connection layers and two drop out layers. During each iteration, if the preceding
network is PointNet++, the feature propagation architecture receives a 50× 1× 128 tensor.
However, if the preceding network is DGCNN, the feature propagation architecture receives
a 50× 1× 512 tensor, as its final embedded channel is set to 512. The first FP module is
denoted as ‘Feature Propagation Module 3’ since it gathers the input points, input features,
and output points of ‘Set Abstraction Module 3’, illustrated in Figure 10 through a skip link
concatenation procedure. The second FP module utilizes the input points, input features,
and output points of ‘Set Abstraction Module 2’, as well as the output features of the first
FP module, to generate high-level features. As just the coordinates of each dataset are used,
the final FP module only gathers the input points and output points of ‘Set Abstraction
Module 1’. The output features are processed by ‘Full Connection Layer 1’, which consists
of 64 units, ‘Drop Out Layer 1’, which may set the output value of each neuron in the
preceding layer to zero with probability 0.4, ‘Full Connection Layer 2’, ‘Drop Out Layer 2’,
and the output layer ‘Full Connection Layer 3’. If the whole network is evaluated on the
Stanford 3D semantic parsing dataset, the output channel is 13. If the whole network is
tested on our hull block butt-joint part dataset, the output channel is 4.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 22

Figure 12. Configuration of the set abstraction part of the standard PointNet++ network after the set
abstraction part of the proposed module.

The feature propagation part of the proposed module is shown in Figure 11. The
feature propagation architecture contains three standard feature propagation modules,
three full connection layers and two drop out layers. During each iteration, if the pre-
ceding network is PointNet++, the feature propagation architecture receives a 50 × 1 ×128 tensor. However, if the preceding network is DGCNN, the feature propagation ar-
chitecture receives a 50 × 1 × 512 tensor, as its final embedded channel is set to 512. The
first FP module is denoted as ‘Feature Propagation Module 3’ since it gathers the input
points, input features, and output points of ‘Set Abstraction Module 3’, illustrated in
Figure 10 through a skip link concatenation procedure. The second FP module utilizes
the input points, input features, and output points of ‘Set Abstraction Module 2’, as well
as the output features of the first FP module, to generate high-level features. As just the
coordinates of each dataset are used, the final FP module only gathers the input points
and output points of ‘Set Abstraction Module 1’. The output features are processed by
‘Full Connection Layer 1’, which consists of 64 units, ‘Drop Out Layer 1’, which may set
the output value of each neuron in the preceding layer to zero with probability 0.4, ‘Full
Connection Layer 2’, ‘Drop Out Layer 2’, and the output layer ‘Full Connection Layer 3’.
If the whole network is evaluated on the Stanford 3D semantic parsing dataset, the out-
put channel is 13. If the whole network is tested on our hull block butt-joint part dataset,
the output channel is 4.

Similar to the configuration in Figure 12, the three feature propagation modules of
the original PointNet++ are modified to an FP module with a multi-layer perceptron ሺ512, 256ሻ (with two full connection layers; the first layer contains 512 neurons, while the
second layer includes 256 neurons), an FP module with a multi-layer perceptron ሺ256, 128ሻ and an FP module with a multi-layer perceptron ሺ256, 128ሻ.

As for KPconv, each point cloud is down-sampled into 81,920 points. The super
parameters of KPConv are consistent with that in its original work. Note that the original
work of KPconv achieves the segmentation of dense point clouds by dividing the whole
point cloud into unrelated sub-point clouds in many random sphere regions. We may
certainly adhere to this approach to deal with a dense or even infinite number of points,
but the maximum point number that KPConv can actually handle should be the max
point number of the sub point clouds.

In the training step, the Adam [32] algorithm is applied to optimize the networks
containing the proposed modified PointNet++ module. The learning rate is set to 0.001,
the weight decay rate is set to 0.0001, the momentum value of batch-normalization is 0.9, 𝛽ଵ and 𝛽ଶ are set to their default values 0.9 and 0.999, and the data batch size is 5.

Figure 12. Configuration of the set abstraction part of the standard PointNet++ network after the set
abstraction part of the proposed module.

Similar to the configuration in Figure 12, the three feature propagation modules of the
original PointNet++ are modified to an FP module with a multi-layer perceptron (512, 256)
(with two full connection layers; the first layer contains 512 neurons, while the second layer
includes 256 neurons), an FP module with a multi-layer perceptron (256, 128) and an FP
module with a multi-layer perceptron (256, 128).

As for KPconv, each point cloud is down-sampled into 81,920 points. The super
parameters of KPConv are consistent with that in its original work. Note that the original
work of KPconv achieves the segmentation of dense point clouds by dividing the whole

J. Mar. Sci. Eng. 2023, 11, 2248 12 of 20

point cloud into unrelated sub-point clouds in many random sphere regions. We may
certainly adhere to this approach to deal with a dense or even infinite number of points,
but the maximum point number that KPConv can actually handle should be the max point
number of the sub point clouds.

In the training step, the Adam [32] algorithm is applied to optimize the networks
containing the proposed modified PointNet++ module. The learning rate is set to 0.001, the
weight decay rate is set to 0.0001, the momentum value of batch-normalization is 0.9, β1
and β2 are set to their default values 0.9 and 0.999, and the data batch size is 5.

Tables 1 and 2 show the semantic segmentation results of seven methods (original
PointNet++, PointNet++ with our random RNN sampling, PointNet++ with our random
RNN sampling based on region growing results, original DGCNN, DGCNN with our ran-
dom RNN sampling, DGCNN with our random RNN sampling based on region growing
results, and KPConv) on the hull block butt-joint part dataset and the Stanford 3D semantic
parsing dataset. Compared to the original PointNet++ and DGCNN, the incorporation
of our proposed modules in PointNet++ and DGCNN yields superior performance. For
PointNet++ on the Stanford 3D semantic parsing dataset, the improvements from both
random RNN sampling pre-processing and region growing pre-processing are similar (as
shown in Table 2, 86.7% and 86.2%), while for other cases, the improvement effect of the re-
gion growing pre-processing module surpasses the random RNN sampling pre-processing
module. The advantage of our region growing pre-processing module may potentially
be attributed to its incorporation of implicit prior region segmentation knowledge, where
the ground truth semantic segmentation information is generally closely associated with
the region segmentation information. Figures 13 and 14 show four semantic segmentation
instances from our hull block butt-joint part dataset and the Stanford 3D semantic parsing
dataset, respectively. In the two figures, each column represents one instance, different
semantic labels are represented by different colors, and the overall prediction accuracy
of each instance is shown in the title of its corresponding subplot. Our pre-processing
module outperforms KPConv in our hull block butt-joint part dataset, and achieves similar
segmentation accuracy of KPConv in the Stanford 3D semantic parsing dataset. Compared
with the sparse representation of 2048 points in the original PointNet++ and DGCNN, the
163,840 points processed by the proposed modules preserve a more comprehensive range
of the original point cloud information, and its geometric structure closely resembles that
of the original point cloud, which may be an attractive advantage of our work.

To analyze the properties of our region growing preprocessing module, the point
intersection over union (IoU) results on our hull block butt-joint part dataset are considered.
As shown in Table 3, the methods embedding our random RNN sampling based on region
growing results outperform the methods embedding our random RNN sampling in the
segmentation of the ‘hull plate’ and ‘T-steel’ classes. As most points in the hull block butt-
joint part dataset belong to these two classes, the overall accuracies of the corresponding
methods in Table 1 are better. As for the Stanford 3D semantic parsing dataset, as shown
in Table 4, the methods embedding our random RNN sampling based on region growing
results outperform the methods embedding our random RNN sampling in most classes.
However, in some classes, like ‘beam’, ‘ceiling’, ‘sofa’ and ‘window’, the latter outperform
the former; since these classes contain a considerable number of points in the whole point
clouds, the overall accuracies of the former in Table 2 are sometimes superior to the latter,
and sometimes inferior to the latter.

J. Mar. Sci. Eng. 2023, 11, 2248 13 of 20

Table 1. Results of 3D semantic segmentation in our hull block butt-joint part dataset.

Deep Learning Method Train Overall Accuracy Test Overall Accuracy

PointNet++ 88.5% 86.9%
PointNet++ with random RNN sampling 87.1% 80.4%
PointNet++ with region growing results 94.0% 89.7%
DGCNN 81.9% 79.0%
DGCNN with random RNN sampling 86.7% 79.8%
DGCNN with region growing results 93.8% 89.1%
KPConv 89.6% 87.4%

Table 2. Results of 3D semantic segmentation in the Stanford 3D semantic parsing dataset.

Deep Learning Method Train Overall Accuracy Test Overall Accuracy

PointNet++ 83.8% 84.2%
PointNet++ with random RNN sampling 90.6% 86.7%
PointNet++ with region growing results 90.2% 86.2%
DGCNN 90.8% 84.0%
DGCNN with random RNN sampling 90.2% 83.4%
DGCNN with region growing results 92.5% 86.2%
KPConv 93.5% 86.5%

Table 3. IoU results in our hull block butt-joint part dataset.

Deep Learning Method Hull Plate T-Steel Flat Steel Bulb Flat Steel

PointNet++ with random
RNN sampling 64.4 69.0 65.6 73.0

PointNet++ with region
growing results 84.3 71.5 23.9 60.2

DGCNN with random
RNN sampling 66.6 59.7 47.1 50.4

DGCNN with region
growing results 92.7 83.7 52.5 28.0

Table 4. IoU results in the Stanford 3D semantic parsing dataset.

Deep Learning Method Beam Board Book. Ceil. Chair Clut. Col. Door Floor Sofa Table Wall Wind.

PointNet++ with
random RNN sampling 77.2 48.8 43.2 89.0 63.1 46.5 42.0 62.3 92.4 70.0 61.7 73.0 42.1

PointNet++ with region
growing results 73.5 51.2 62.9 90.0 71.1 49.7 75.4 64.9 94.2 60.6 66.0 77.0 65.8

DGCNN with random
RNN sampling 87.8 58.9 64.2 91.5 62.0 49.0 63.5 59.7 94.2 80.1 67.7 75.8 81.1

DGCNN with region
growing results 85.0 73.4 65.8 90.8 70.6 50.6 65.9 63.7 94.7 86.5 73.7 76.8 75.9

J. Mar. Sci. Eng. 2023, 11, 2248 14 of 20
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 22

Ground truth
data

PointNet++

accuracy: 88.0% accuracy: 89.1% accuracy: 81.6% accuracy: 86.0%

PointNet++
with random

RNN sam-
pling

accuracy: 80.8% accuracy: 84.0% accuracy: 90.7% accuracy: 87.5%

PointNet++
with region
growing re-

sults

accuracy: 95.8% accuracy: 91.6% accuracy: 90.4% accuracy: 85.8%

DGCNN

accuracy: 81.5% accuracy: 88.5% accuracy: 85.1% accuracy: 84.3%

DGCNN with
random RNN

sampling

accuracy: 77.1% accuracy: 73.5% accuracy: 90.1% accuracy: 87.6%

DGCNN with
region grow-

ing results

accuracy: 97.6% accuracy: 96.4% accuracy: 98.1% accuracy: 97.6%

KPConv

accuracy: 86.0% accuracy: 85.8% accuracy: 90.8% accuracy: 89.6%

Figure 13. Four semantic segmentation instances in our hull block butt-joint part dataset.

Figure 13. Four semantic segmentation instances in our hull block butt-joint part dataset.

J. Mar. Sci. Eng. 2023, 11, 2248 15 of 20J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 22

Ground truth
data

PointNet++

accuracy: 90.1% accuracy: 88.0% accuracy: 82.6% accuracy: 93.2%

PointNet++
with random

RNN sam-
pling

accuracy: 73.1% accuracy: 87.0% accuracy: 85.5% accuracy: 72.2%

PointNet++
with region
growing re-

sults

accuracy: 83.2% accuracy: 90.8% accuracy: 84.8% accuracy: 76.4%

DGCNN

accuracy: 68.3% accuracy: 43.8% accuracy: 54.6% accuracy: 63.6%

DGCNN with
random RNN

sampling

accuracy: 86.8% accuracy: 88.8% accuracy: 87.2% accuracy: 88.7%

DGCNN with
region grow-

ing results

accuracy: 87.5% accuracy: 88.2% accuracy: 86.1% accuracy: 90.6%

KPConv

accuracy: 87.0% accuracy: 84.2% accuracy: 87.9% accuracy: 82.8%

Figure 14. Four semantic segmentation instances in the Stanford 3D semantic parsing dataset.

To analyze the properties of our region growing preprocessing module, the point
intersection over union (IoU) results on our hull block butt-joint part dataset are consid-
ered. As shown in Table 3, the methods embedding our random RNN sampling based on
region growing results outperform the methods embedding our random RNN sampling

Figure 14. Four semantic segmentation instances in the Stanford 3D semantic parsing dataset.

J. Mar. Sci. Eng. 2023, 11, 2248 16 of 20

3.3. Other Applications

To show that the proposed module is applicable in different point-based deep learn-
ing tasks, this section utilizes the proposed module to process two other deep learning
applications, classification and 3D registration, both with dense input points.

In the classification task, the proposed module is also embedded into PointNet++
and DGCNN, and evaluated in the ModelNet10 dataset and our hull block dataset. The
architecture of the classification networks is similar, as shown in Figures 10 and 12. The
training configuration is the same as that of the semantic segmentation experiment part
in Section 3.2.

Tables 5 and 6 show the classification results of six methods in our hull block dataset
and ModelNet10 dataset. It can be found that four test accuracies in Table 5 are the same,
which is caused by the scarcity of our hull block dataset. The proposed module outperforms
the original PointNet++ and DGCNN in Table 5. The classification ability of the proposed
module is similar to the original PointNet++ and DGCNN (as shown in Table 6, PointNet++
with random RNN sampling achieves 95.1% test accuracy, which is close to 95.2% in
PointNet++, and DGCNN with region growing results achieves 98.3% test accuracy, which
outperforms 96.0% in DGCNN) in ModelNet10. Tables 5 and 6 illustrate the feasibility of
the proposed module in the classification task of dense input points (each input point cloud
contains 163,840 points).

Table 5. Results of 3D object classification in our hull block dataset.

Deep Learning Method Train Accuracy Test Accuracy

PointNet++ 97.5% 93.1%
PointNet++ with random RNN sampling 98.3% 96.6%
PointNet++ with region growing results 97.5% 96.6%
DGCNN 90.8% 86.2%
DGCNN with random RNN sampling 98.3% 96.6%
DGCNN with region growing results 98.3% 96.6%

Table 6. Results of 3D object classification in ModelNet10.

Deep Learning Method Train Accuracy Test Accuracy

PointNet++ 97.4% 95.2%
PointNet++ with random RNN sampling 96.5% 95.1%
PointNet++ with region growing results 94.7% 94.8%
DGCNN 97.8% 96.0%
DGCNN with random RNN sampling 98.3% 96.9%
DGCNN with region growing results 98.4% 98.3%

As for the 3D registration task, the proposed module is embedded into PRnet, and
evaluated in our hull block dataset and the ModelNet10 dataset.

PRnet is a deep learning network designed for a partial-to-partial point cloud registra-
tion task. PRnet is self-supervised, jointly learning an appropriate geometric representation,
a key point detector that finds points in common between partial views, and key point-to-
key point correspondences [28]. The architecture illustrated in Figure 10 is used to replace
the original prediction point embedding head of PRnet, and the remaining parts of PRnet
follows their original configurations.

Tables 7 and 8 show the 3D registration results of three methods (PRnet, PRnet with
our random RNN sampling, and PRnet with our random RNN sampling based on region
growing results) in our hull block dataset and ModelNet10. Figures 15 and 16 show four
registration instances from the two datasets. In the two figures, each row represents one
instance, the initial positions and final poses after alignment of the fixed-point clouds and
the float point clouds are shown; in each subplot, the purple point cloud represent the
fixed-point cloud, while the green point cloud represent the float point cloud. Similar to

J. Mar. Sci. Eng. 2023, 11, 2248 17 of 20

the classification results, the utilization of the proposed module empowers PRnet with the
capability to process dense input point clouds.

Table 7. Results of 3D registration in our hull block dataset.

Deep Learning Method Train Total Loss Test Total Loss

PRnet 0.28 0.24
PRnet with random RNN sampling 0.15 0.16
PRnet with region growing results 0.18 0.16

Table 8. Results of 3D registration in the ModelNet10 dataset.

Deep Learning Method Train Total Loss Test Total Loss

PRnet 0.27 0.26
PRnet with random RNN sampling 0.17 0.17
PRnet with region growing results 0.16 0.15

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 22

Figure 15. Four registration instances in our hull block dataset. Figure 15. Four registration instances in our hull block dataset.

J. Mar. Sci. Eng. 2023, 11, 2248 18 of 20
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 22

Figure 16. Four registration instances in the ModelNet10 dataset.

4. Conclusions
To process general dense point clouds in the ship engineering field by point-based

deep learning methods, this paper presents a pre-procession module which utilizes the
traditional point cloud processing methods and the PointNet++ paradigm. We evaluate
the semantic segmentation performance, classification performance, and 3D registration
performance of the proposed module on two ship structure datasets, our hull block da-
taset and our hull block butt-joint part dataset, and two popular point cloud datasets, the
ModelNet10 dataset and the Stanford 3D semantic parsing dataset. The experimental
results show that:

(i) In the point-based semantic segmentation task, the proposed modules achieve
89.7% and 89.1% overall accuracies on our hull block butt-joint part dataset, which out-
perform the original PointNet++, DGCNN, and KPConv. In the Stanford 3D semantic
parsing dataset, the proposed modules achieve 86.7% and 86.2% overall accuracies,
which outperform the original PointNet++ and DGCNN, and achieve a similar perfor-
mance of 86.5% accuracy in KPConv.

(ii) In the 3D classification task, the proposed module obtains 96.6% accuracy, which
outperforms the original PointNet++ and DGCNN in our hull block dataset. In Mod-
elNet10, PointNet++ with random RNN sampling achieves a 95.1% test accuracy, which
is close to 95.2% in PointNet++, and DGCNN with region growing results achieves a
98.3% test accuracy, which outperforms 96.0% in DGCNN.

(iii) In the 3D registration task, the utilization of the proposed module empowers
PRnet with the capability to process dense input point clouds.

Figure 16. Four registration instances in the ModelNet10 dataset.

4. Conclusions

To process general dense point clouds in the ship engineering field by point-based
deep learning methods, this paper presents a pre-procession module which utilizes the
traditional point cloud processing methods and the PointNet++ paradigm. We evaluate
the semantic segmentation performance, classification performance, and 3D registration
performance of the proposed module on two ship structure datasets, our hull block dataset
and our hull block butt-joint part dataset, and two popular point cloud datasets, the
ModelNet10 dataset and the Stanford 3D semantic parsing dataset. The experimental
results show that:

(i) In the point-based semantic segmentation task, the proposed modules achieve 89.7%
and 89.1% overall accuracies on our hull block butt-joint part dataset, which outperform the
original PointNet++, DGCNN, and KPConv. In the Stanford 3D semantic parsing dataset,
the proposed modules achieve 86.7% and 86.2% overall accuracies, which outperform the
original PointNet++ and DGCNN, and achieve a similar performance of 86.5% accuracy in
KPConv.

(ii) In the 3D classification task, the proposed module obtains 96.6% accuracy, which
outperforms the original PointNet++ and DGCNN in our hull block dataset. In ModelNet10,
PointNet++ with random RNN sampling achieves a 95.1% test accuracy, which is close
to 95.2% in PointNet++, and DGCNN with region growing results achieves a 98.3% test
accuracy, which outperforms 96.0% in DGCNN.

(iii) In the 3D registration task, the utilization of the proposed module empowers
PRnet with the capability to process dense input point clouds.

The proposed module is highly applicable to the semantic segmentation of dense
input clouds, and may provide technical support to some further complex procession of
dense point clouds based on the semantic segmentation results. The proposed module
may provide a useful semantic segmentation tool for realistic dense point clouds in various
industrial applications.

J. Mar. Sci. Eng. 2023, 11, 2248 19 of 20

Author Contributions: Conceptualization, S.H., Y.L. and J.W.; Methodology, S.H.; Software, S.H.;
Validation, S.H.; Investigation, S.H.; Data curation, S.H.; Writing—original draft, S.H.; Writing—review
& editing, S.H.; Visualization, J.W.; Supervision, Y.L., J.W., R.L., X.L. and J.S.; Funding acquisition,
J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (51979033)
and the Dalian Science and Technology Innovation Foundation (2019J12GX021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.; Huo, S.; Liu, Y.; Li, R.; Liu, Z. Research of Fast Point Cloud Registration Method in Construction Error Analysis of Hull

Blocks. Int. J. Nav. Archit. Ocean Eng. 2020, 12, 605–616. [CrossRef]
2. Wei, Y.; Ding, Z.; Huang, H.; Yan, C.; Huang, J.; Leng, J. A Non-Contact Measurement Method of Ship Block Using Image-Based

3D Reconstruction Technology. Ocean Eng. 2019, 178, 463–475. [CrossRef]
3. Zhang, W.; Wu, Y.; Tian, X.; Bao, W.; Yu, T.; Yang, J. Application Research of Ship Overload Identification Algorithm Based

on Lidar Point Cloud. In Proceedings of the 2022 2nd International Conference on Electrical Engineering and Mechatronics
Technology (ICEEMT), Hangzhou, China, 1–3 July 2022; pp. 377–381.

4. Lu, X.; Li, Y.; Xie, M. Preliminary Study for Motion Pose of Inshore Ships Based on Point Cloud: Estimation of Ship Berthing
Angle. Measurement 2023, 214, 112836. [CrossRef]

5. Wen, Y.; Chen, X.; Liu, C.; Liu, K. Research on Ship 3D Target Detection Method Based on Lidar Point Clouds. In Proceedings of
the International Conference on Mechanisms and Robotics (ICMAR 2022), Zhuhai, China, 25–27 February 2022; pp. 103–108.

6. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp.
652–660.

7. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October
2015; pp. 922–928.

8. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30.

9. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. Graph. 2019, 38, 1–12. [CrossRef]

10. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3DSSD: Point-Based 3D Single Stage Object Detector. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11037–11045.

11. Zhang, Y.; Hu, Q.; Xu, G.; Ma, Y.; Wan, J.; Guo, Y. Not All Points Are Equal: Learning Highly Efficient Point-Based Detectors for
3D LiDAR Point Clouds. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 18931–18940.

12. Shi, S.; Jiang, L.; Deng, J.; Wang, Z.; Guo, C.; Shi, J.; Wang, X.; Li, H. PV-RCNN++: Point-Voxel Feature Set Abstraction with Local
Vector Representation for 3D Object Detection. Int. J. Comput. Vis. 2023, 131, 531–551. [CrossRef]

13. Wang, Y.; Solomon, J. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp.
3522–3531.

14. Wu, Y.; Zhang, Y.; Fan, X.; Gong, M.; Miao, Q.; Ma, W. INENet: Inliers Estimation Network with Similarity Learning for Partial
Overlapping Registration. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1413–1426. [CrossRef]

15. Wang, H.; Liu, Y.; Dong, Z.; Wang, W. You Only Hypothesize Once: Point Cloud Registration with Rotation-Equivariant
Descriptors. In Proceedings of the 30th ACM International Conference on Multimedia, ACM, Lisboa, Portugal, 10–14 October
2022; pp. 1630–1641.

16. Zhang, K.; Hao, M.; Wang, J.; de Silva, C.W.; Fu, C. Linked Dynamic Graph CNN: Learning on Point Cloud via Linking
Hierarchical Features. arXiv 2019, arXiv:1904.10014.

17. Huang, C.-Q.; Jiang, F.; Huang, Q.-H.; Wang, X.-Z.; Han, Z.-M.; Huang, W.-Y. Dual-Graph Attention Convolution Network for
3-D Point Cloud Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–13. [CrossRef] [PubMed]

18. Zhang, C.; Wan, H.; Shen, X.; Wu, Z. PatchFormer: An Efficient Point Transformer with Patch Attention. In Proceedings of the
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–20 June 2022; pp.
11789–11798.

https://doi.org/10.1016/j.ijnaoe.2020.06.006
https://doi.org/10.1016/j.oceaneng.2019.03.015
https://doi.org/10.1016/j.measurement.2023.112836
https://doi.org/10.1145/3326362
https://doi.org/10.1007/s11263-022-01710-9
https://doi.org/10.1109/TCSVT.2022.3213592
https://doi.org/10.1109/TNNLS.2022.3162301
https://www.ncbi.nlm.nih.gov/pubmed/35385393

J. Mar. Sci. Eng. 2023, 11, 2248 20 of 20

19. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.S.; Koltun, V. Point Transformer. In Proceedings of the 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 11799–11808.

20. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A Deep Representation for Volumetric Shapes. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1912–1920.

21. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision Meets Robotics: The Kitti Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

22. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
Multimodal Dataset for Autonomous Driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11618–11628.

23. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3Dmatch: Learning Local Geometric Descriptors from Rgb-D
Reconstructions. arXiv 2017, arXiv:1603.08182.

24. Friedman, J.H.; Bentley, J.L.; Finkel, R.A. An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans.
Math. Softw. 1977, 3, 209–226. [CrossRef]

25. Ram, P.; Sinha, K. Revisiting Kd-Tree for Nearest Neighbor Search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1378–1388.

26. Durovsky, F. Point Cloud Based Bin Picking: Object Recognition and Pose Estimation Using Region Growing Segmentation
Algorithm. Appl. Mech. Mater. 2015, 791, 189–194. [CrossRef]

27. Hackel, T.; Wegner, J.D.; Schindler, K. Fast Semantic Segmentation of 3D Point Clouds with Strongly Varying Density. In
Proceedings of the 2016 ISPRS Annual Congress of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Prague, Czech Republic, 12–19 July 2016; Volume III–3, pp. 177–184.

28. Lin, Y.; Wang, C.; Zhai, D.; Li, W.; Li, J. Toward Better Boundary Preserved Supervoxel Segmentation for 3D Point Clouds. ISPRS
J. Photogramm. Remote Sens. 2018, 143, 39–47. [CrossRef]

29. Wang, Y.; Solomon, J.M. PRNet: Self-Supervised Learning for Partial-to-Partial Registration. In Proceedings of the Advances
in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32, pp.
8812–8824.

30. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 1534–1543.

31. Thomas, H.; Qi, C.R.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for
Point Clouds. arXiv 2019, arXiv:1904.08889.

32. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/0278364913491297
https://doi.org/10.1145/355744.355745
https://doi.org/10.4028/www.scientific.net/AMM.791.189
https://doi.org/10.1016/j.isprsjprs.2018.05.004

	Introduction
	The Proposed Pre-Procession Module
	Pre-Segmentation Methods
	The Modified PointNet++ Module

	Experimental Results
	Dataset
	Semantic Segmentation
	Other Applications

	Conclusions
	References

