CO2 Injection Monitoring: Enhancing Time-Lapse Seismic Inversion for Injected Volume Estimation in the Utsira Formation, Sleipner Field, North Sea
Abstract
:1. Introduction
2. Background—Study Area
3. CO2 Plume Migration as Evidenced in the Monitoring 4D Seismic Data
4. Time-Lapse Synthetic Modeling
4.1. Seismic Data Conditioning
4.2. Correlation between Base and Monitor Volume
4.3. Applying Phase and Time Matching
4.4. Matching of Shaping Filter
4.5. Correcting for Shallow Statics
4.6. Repicking Horizon on the Monitor Data
4.7. Calibration: Correcting Time-Variant Shifts, Cross-Plotting Coefficients and Shifts, and Preconditioning
5. Discussion of Results
5.1. Impact of Data Conditioning on Volume Estimation
5.2. Enhanced Inversion and CO2 Volume Estimation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, T.; Blunt, M.J.; Anthony, E.J.; Park, A.H.A.; Hughes, R.W.; Yan, J. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Rutqvist, J. The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 2012, 30, 525–551. [Google Scholar] [CrossRef]
- Hajiabadi, S.H.; Bedrikovetsky, P.; Borazjani, S.; Mahani, H. Well Injectivity during CO2 geosequestration: A review of hydro-physical, chemical, and geomechanical effects. Energy Fuels 2021, 35, 9240–9267. [Google Scholar] [CrossRef]
- Satoh, H.; Shimoda, S.; Yamaguchi, K.; Kato, H.; Yamashita, Y.; Miyashiro, K.; Saito, S. The long-term corrosion behavior of abandoned wells under CO2 geological storage conditions:(1) Experimental results for cement alteration. Energy Procedia 2013, 37, 5781–5792. [Google Scholar] [CrossRef]
- Benisch, K.; Bauer, S. Short-and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int. J. Greenh. Gas Control 2013, 19, 220–233. [Google Scholar] [CrossRef]
- Benson, S.; Myer, L. Monitoring to ensure safe and effective geologic sequestration of carbon dioxide. In Proceedings of the Workshop on Carbon Dioxide Capture and Storage, Regina, SK, Canada, 18–21 November 2002. [Google Scholar]
- Shao, Q.; Boon, M.; Youssef, A.; Kurtev, K.; Benson, S.M.; Matthai, S.K. Modelling CO2 plume spreading in highly heterogeneous rocks with anisotropic, rate-dependent saturation functions: A field-data based numeric simulation study of Otway. Int. J. Greenh. Gas Control 2022, 119, 103699. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Cole, D.R.; Graham, D.E.; Hosseini, S.A.; Hovorka, S.; Moortgat, J. Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int. J. Greenh. Gas Control 2006, 54, 282–296. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, T. Towards real-time monitoring: Data assimilated time-lapse full waveform inversion for seismic velocity and uncertainty estimation. Geophys. J. Int. 2022, 223, 811–824. [Google Scholar] [CrossRef]
- Souza, R.; Lumley, D.; Shragge, J.; Davolio, A.; Schiozer, D.J. Analysis of time-lapse seismic and production data for reservoir model classification and assessment. J. Geophys. Eng. 2018, 15, 1561–1587. [Google Scholar] [CrossRef]
- Hetz, G.; Datta-Gupta, A. Integration of Time-Lapse Seismic and Production Data: Analysis of Spatial Resolution. Transp. Porous Media 2020, 134, 679–705. [Google Scholar] [CrossRef]
- Arts, R.J.; Elsayed, R.; Van Der Meer, L.; Eiken, O.; Ostmo, S.; Chadwick, A.; Zinszner, B. Estimation of the mass of injected CO2 at Sleipner using time-lapse seismic data. In Proceedings of the 64th European Association of Geoscientists & Engineers (EAGE) Conference and Exhibition, Florence, Italy, 27 May 2002. [Google Scholar] [CrossRef]
- Ghaderi, A.; Landrø, M. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics 2009, 74, O17–O28. [Google Scholar] [CrossRef]
- Chadwick, R.A.; Marchant, B.P.; Williams, G.A. CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner. Energy Procedia 2014, 63, 4224–4239. [Google Scholar] [CrossRef]
- Cowton, L.R.; Neufeld, J.A.; White, N.J.; Bickle, M.J.; Williams, G.A.; White, J.C.; Chadwick, R.A. Benchmarking of vertically-integrated CO2 flow simulations at the Sleipner Field, North Sea. Earth Planet. Sci. Lett. 2018, 491, 121–133. [Google Scholar] [CrossRef]
- Furre, A.K.; Eiken, O.; Alnes, H.; Vevatne, J.N.; Kiær, A.F. 20 years of monitoring CO2 injection at Sleipner. Energy Procedia 2017, 114, 3916–3926. [Google Scholar] [CrossRef]
- Chadwick, R.A.; Kirby, G.A.; Holloway, S.; Gregersen, U.; Johannessen, P.N.; Zweigel, P.; Arts, R. Saline Aquifer CO2 Storage (SACS2); Final Report, Geological Characterization of the Utsira Sand Reservoir and Caprocks (Work Area 1); British Geological Survey: Nottingham, UK, 2002; 79p. Available online: https://nora.nerc.ac.uk/id/eprint/511461/ (accessed on 22 September 2023).
- Ravasi, M.; Vasconcelos, I.; Curtis, A.; Kritski, A. Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields. Geophysics 2015, 80, S137–S150. [Google Scholar] [CrossRef]
- Dupuy, B.; Romdhane, A.; Eliasson, P.; Querendez, E.; Yan, H.; Torres, V.A.; Ghaderi, A. Quantitative seismic characterization of CO2 at the Sleipner storage site, North Sea. Interpretation 2017, 5, SS23–SS42. [Google Scholar] [CrossRef]
- Zweigel, P.; Arts, R.; Lothe, A.E.; Lindeberg, E.B. Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea). Geol. Soc. Lond. Spec. Publ. 2004, 233, 165–180. [Google Scholar] [CrossRef]
- Olsen, L.; Sveian, H.; Ottesen, D.; Rise, L. Quaternary glacial, interglacial and interstadial deposits of Norway and adjacent onshore and offshore areas. Quat. Geol. Nor. Geol. Surv. Nor. Spec. Publ. 2013, 13, 79–144. Available online: https://www.ngu.no/upload/Publikasjoner/Special%20publication/SP13_s79-144.pdf (accessed on 4 October 2023).
- Norwegian Petroleum, (2015, February 24). Field: Volve. Norwegianpetroleum. No. Available online: https://www.norskpetroleum.no/en/facts/field/volve/ (accessed on 11 October 2021).
- Arts, R.J.; Chadwick, A.; Eiken, O.; Thibeau, S.; Nooner, S. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 2008, 26. [Google Scholar] [CrossRef]
- Cho, Y.; Jun, H. Estimation and uncertainty analysis of the CO2 storage volume in the Sleipner field via 4D reversible-jump Markov-chain Monte Carlo. J. Pet. Sci. Eng. 2021, 200, 108333. [Google Scholar] [CrossRef]
- Romdhane, A.; Dupuy, B.; Querendez, E.; Eliasson, P. Toward quantitative CO2 monitoring at Sleipner, Norway. Geophys. Monit. Geol. Carbon Storage 2022, 383–402. [Google Scholar] [CrossRef]
- Wang, Y.; Morozov, I. Waveform Calibration of Time-Lapse Seismic Data, Geoconvention, Calgary, Canada, 7–11 May 2018. Available online: https://geoconvention.com/wp-content/uploads/abstracts/2018/204_GC2018_Waveform_Calibration_of_Time-Lapse_Seismic_Data.pdf (accessed on 12 October 2023).
- Levson, N. The Wiener (root mean square) error criterion in filter design and prediction. J. Math. Phys. 1946, 25, 261–278. [Google Scholar] [CrossRef]
- Hanafy, S.M.; Hoteit, H.; Li, J.; Schuster, G.T. Near-surface real-time seismic imaging using parsimonious interferometry. Sci. Rep. 2021, 11, 7194. [Google Scholar] [CrossRef]
- Arts, R.; Eiken, O.; Chadwick, R.A.; Zweigel, P.; Van der Meer, L.; Zinszner, B. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 2004, 29, 1383–1393. [Google Scholar] [CrossRef]
- Nooner, S.L.; Zumberge, M.A.; Eiken, O.; Stenvold, T. Constraints on in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. Int. J. Greenh. Gas Control 2007, 1, 198–214. [Google Scholar] [CrossRef]
- Arts, R.; Eiken, O.; Chadwick, A.; Zweigel, P.; Van Der Meer, B.; Kirby, G. Seismic monitoring at the Sleipner underground CO2 storage site (North Sea). Geol. Soc. Lond. Spec. Publ. 2004, 233, 181–191. [Google Scholar] [CrossRef]
- Sasagawa, G.S.; Crawford, W.; Eiken, O.; Nooner, S.; Stenvold, T.; Zumberge, M.A. A new sea-floor gravimeter. Geophysics 2003, 68, 544–553. [Google Scholar] [CrossRef]
- Nwafor, B.O.; Hermana, M.; Elsaadany, M. Geostatistical Inversion of Spectrally Broadened Seismic Data for Re-Evaluation of Oil Reservoir Continuity in Inas Field, Offshore Malay Basin. J. Mar. Sci. Eng. 2022, 10, 727. [Google Scholar] [CrossRef]
- Nwafor, B.O.; Hermana, M. Harmonic Extrapolation of Seismic Reflectivity Spectrum for Resolution Enhancement: An Insight from Inas Field, Offshore Malay Basin. Appl. Sci. 2022, 12, 5453. [Google Scholar] [CrossRef]
Year | CO2 Accumulation (Million Tons) |
---|---|
1996 | 1 |
2005 | 8 |
2010 | 12 |
2015 | 16 |
Fluid | Density (Kg/m3) | Bulk Modulus (Gpa) |
---|---|---|
Brine | 1030 | 2.3 |
CO2 | 0.7 | 0.075 |
Calculated Volume (m3) | Actual Volume (m3) | C/A Ratio | |
---|---|---|---|
1 | 3.78 × 107 | 3.40 × 107 | 1.1128 |
2 | 3.49 × 107 | 3.40 × 107 | 1.0282 |
3 | 3.88 × 107 | 3.40 × 107 | 1.1414 |
4 | 3.57 × 107 | 3.40 × 107 | 1.0512 |
5 | 3.35 × 107 | 3.40 × 107 | 0.9850 |
6 | 4.11 × 107 | 3.40 × 107 | 1.2100 |
7 | 3.88 × 107 | 3.40 × 107 | 1.1410 |
8 | 3.37 × 107 | 3.40 × 107 | 0.9930 |
9 | 3.54 × 107 | 3.40 × 107 | 1.0420 |
10 | 3.44 × 107 | 3.40 × 107 | 1.0110 |
11 | 3.37 × 107 | 3.40 × 107 | 0.9910 |
12 | 3.81 × 107 | 3.40 × 107 | 1.1210 |
13 | 3.48 × 107 | 3.40 × 107 | 1.0230 |
14 | 3.06 × 107 | 3.40 × 107 | 0.9000 |
15 | 3.53 × 107 | 3.40 × 107 | 1.0400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelemo-Daniels, D.; Nwafor, B.O.; Stewart, R.R. CO2 Injection Monitoring: Enhancing Time-Lapse Seismic Inversion for Injected Volume Estimation in the Utsira Formation, Sleipner Field, North Sea. J. Mar. Sci. Eng. 2023, 11, 2275. https://doi.org/10.3390/jmse11122275
Pelemo-Daniels D, Nwafor BO, Stewart RR. CO2 Injection Monitoring: Enhancing Time-Lapse Seismic Inversion for Injected Volume Estimation in the Utsira Formation, Sleipner Field, North Sea. Journal of Marine Science and Engineering. 2023; 11(12):2275. https://doi.org/10.3390/jmse11122275
Chicago/Turabian StylePelemo-Daniels, Doyin, Basil O. Nwafor, and Robert R. Stewart. 2023. "CO2 Injection Monitoring: Enhancing Time-Lapse Seismic Inversion for Injected Volume Estimation in the Utsira Formation, Sleipner Field, North Sea" Journal of Marine Science and Engineering 11, no. 12: 2275. https://doi.org/10.3390/jmse11122275
APA StylePelemo-Daniels, D., Nwafor, B. O., & Stewart, R. R. (2023). CO2 Injection Monitoring: Enhancing Time-Lapse Seismic Inversion for Injected Volume Estimation in the Utsira Formation, Sleipner Field, North Sea. Journal of Marine Science and Engineering, 11(12), 2275. https://doi.org/10.3390/jmse11122275