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Recent advancements in information technology and ship equipment have led to
massive data collection on maritime traffic, particularly through automatic identification
systems (AIS). Such ship navigation data offer vital insights into the current and historical
statuses of vessels, thereby becoming an indispensable asset in the investigation of ship
behaviors. The combination of human expertise-based tools including navigation protocols,
collision regulations, and artificial intelligence techniques such as optimization theory,
machine learning, and deep learning, has provided a fresh perspective on understanding
ship behavior and detecting anomalies. This integrative suite of tools has empowered
scholars to undertake comprehensive studies and devise methodologies for risk evaluations
in maritime traffic and the effective oversight of navigation safety.

AIS were developed to monitor ship behavior to avert atypical maritime casual-
ties. They can provide informative parameters relating to vessels, including static and
dynamic attributes, such as ship type, dimensions (length, width, draft), spatial coor-
dinates (longitude and latitude), heading, course over ground, and speed over ground.
Notably, AIS facilitate real-time, high-frequency data transmission, delivering a continuous
stream of information, thereby enabling seamless, online ship-to-ship and ship-to-shore
communication channels.

The analysis of AIS data has catalyzed a heightened emphasis on technological do-
mains like the detection of anomalies in ship behavior, and trajectory predictions, with
particular significance attributed to confined and constrained maritime areas, including
ports, channels, and straits. These advancements hold pivotal importance in the realm
of averting collisions and mitigating potential hazards, making it essential to systemati-
cally conduct analyses and studies to enhance maritime safety in diverse scenarios. Such
scholarly pursuits are indispensable in advancing the cause of maritime safety. AIS data
afford stakeholders the capacity to track ship trajectories and conduct quantitative analyses
concerning statistical analysis of traffic and cargo flow. The application of artificial intelli-
gence methodologies, including machine learning and deep learning, to AIS data facilitates
the discernment of patterns in ship behavior, which, in turn, supports the advancement
of key maritime technologies including ship categorization, trajectory grouping, anomaly
detection, collision avoidance, and the optimization of maneuvering strategies, etc. This
research is crucial for guiding ship operations, maritime supervision, and the shipping
trade, rendering it a prominent subject of investigation and challenge within the maritime
research domain (Yang et al., 2019) [1]. Notably, this research area has been prominently fea-
tured in works by Tu et al., 2017 [2], Le Tixerant et al., 2018 [3], and Svanberg et al., 2019 [4].
The following review is dedicated to an exploration of ship behavior characteristics and
investigations related to anomaly detection.

The exploration of AIS data has attracted great interest, given its capacity to unveil
the intricate behavioral patterns exhibited by vessels. This, in turn, serves as robust foun-
dational support for further research on anomaly detection, trajectory prediction, and
route planning. An anomalous ship is discerned through the manifestation of behavior
patterns markedly deviating from conventional navigational practices, identified based on
alterations in vessel position and movement characteristics. Davenport, 2008 [5], delineated
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16 categories of abnormal ship behaviors, covering positional and kinematic irregularities,
encompassing all general abnormal behaviors. In a recent study concentrating on the
analysis of ship behavior, Dogancay et al., 2021 [6], implemented Davenport’s classification
methodology in their examination of ship behavior, including aspects such as deviations
in speed and course, ingress into restricted zones, peculiar ship maneuvering, and the
intentional or unintentional hiding of messages or sending of incorrect messages, etc.
Mazzarella et al., 2014 [7], used machine learning techniques and AIS data for the identifi-
cation of fishing zones. In recent years, scholarly investigations have prominently centered
around the domains of information processing, feature extraction, and the practical utiliza-
tion of acquired knowledge. Wei et al., 2020 [8], developed an AIS trajectory compression
algorithm that takes into account ship behavior by integrating the Douglas–Peucker (DP)
and sliding window algorithms. Their algorithm achieves the compression of AIS trajecto-
ries in accordance with the distinctive behavioral attributes of the ships under consideration.
However, it is afflicted by certain limitations, namely, the absence of adaptive threshold
determination and long runtime durations. Chen et al., 2020 [9], introduced a ship behavior
classification algorithm based on convolutional neural networks (CNNs) and AIS data.
This algorithm exhibits competence in effectively extracting intricate behavioral details but
has limitations in parameter configuration and stringent quality requirements for sample
data. Li et al., 2022 [10], introduced an innovative visual analysis approach that integrates
multiple views to explore ship behavior patterns. This methodology incorporates the fast
dynamic time-warping similarity measurement algorithm by Salvador et al., 2007 [11], and
an ordering points-based density clustering algorithm as proposed by Lei et al., 2021 [12].
The method clusters ship trajectories to show the differences and similarities between ship
traffic flows. Additionally, it integrates the Electronic Chart System (ECS) to visualize and
replay ship trajectories, thereby facilitating the depiction of evolving ship density trends.
Zhou et al., 2023 [13], conducted a comprehensive analysis of ship behavior within spa-
tiotemporal contexts, aiming to automatically identify ship behaviors during encounters,
obviating the reliance on distance or risk level assumptions.

Due to the real-time characteristics inherent in AIS data, their application in collision
avoidance has become widespread. Ozoga et al., 2018 [14], Nguyen et al., 2018 [15], and
Rong et al., 2022 [16], utilized AIS data to integrate the temporal parameters of the Time to
Closest Point of Approach (TCPA) and the spatial aspects encapsulated by the Distance
to Closest Point of Approach (DCPA) for the purpose of formulating collision risk indices.
This approach enables the precise identification and analysis of vessel collision behaviors,
and the determination of safe temporal intervals for vessel maneuvering, consequently
mitigating collision risks in ship encounters. Rong et al., 2022 [15], have notably introduced
an innovative methodology for the automated identification of ship behaviors under the
collision avoidance process from vessel trajectories. These behaviors can be accurately
discerned based on the trajectory data. In a related vein, Tritsarolis et al., 2022 [17], have
devised a framework rooted in a multi-layer perceptron (MLP) model and AIS data to
investigate the vessel collision risk assessment (VCRA) problem from the perspective of
machine learning. In comparison to alternative methods, such as support vector machines
(Gang et al., 2016) [18], adaptive fuzzy neural networks (Li et al., 2018) [19], and relevance
vector machines (Park & Jeong, 2021) [20], their approach not only reduces processing time
but also affords researchers the exploration of more intricate machine learning architectures,
thereby yielding higher accuracy while sustaining framework responsiveness. Furthermore,
Yu et al., 2023 [21], undertook an exhaustive review of scholarly publications spanning
the past decade in three principal research domains: vessel collision risk assessment, the
detection and prediction of vessel traffic hotspots, and collision-avoidance-based vessel
path optimization. This comprehensive review not only serves to explicate the focus of
research within the field but also illuminates its connections to interdisciplinary studies.
Moreover, it aids in the identification of shortcomings and charts the course for future
research endeavors. These findings are poised to offer invaluable insights to scholars and
the shipping industry.
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AIS data are categorized as spatiotemporal information, and this has garnered exten-
sive attention in the field of ship trajectory clustering. Zhen et al., 2017 [22], Wang et al.,
2021 [23], Zhao et al., 2019 [24], and Wang et al., 2023 [25], have adopted machine learn-
ing methodologies to propose novel techniques for quantifying spatiotemporal trajectory
distances and assessing trajectory similarities. These methodologies incorporate the in-
tegration of dynamic time warping (DTW) and the Douglas–Peucker algorithm (DP),
strategically employed to address issues associated with the direction of spatiotemporal tra-
jectories and the elimination of superfluous data, thereby facilitating the efficient clustering
of trajectories. In a congruent vein, Wang et al., 2023 [24], have integrated the DP algorithm,
DTW, and spatial clustering based on hierarchical density to effectuate the clustering of
ship trajectories while considering the behavioral disparities across various ship categories.
The resultant clustered routes offer the capability to forecast the routes most likely to be
traversed by a given vessel. Deep learning, involving the construction of a nonlinear net-
work to approximate the desired function, negates the necessity for intricate mathematical
models, thereby enabling the near-optimal approximation of functions and the facilitation
of feature acquisition from data. Li et al., 2023 [26], have undertaken a comparative analysis
of the latest ship trajectory prediction algorithms predicated on both machine learning and
deep learning techniques. This analysis reveals the distinctive attributes characterizing vari-
ous prediction strategies, affording invaluable insights to diverse stakeholders, and guiding
their selection of the most appropriate methodologies as tailored solutions under specific
contextual conditions. In a related study, Yu et al., 2022 [27], conducted a comprehensive
examination of ship trajectories predicated on dynamic AIS data, encompassing geospatial
parameters such as longitude, latitude, course over ground (COG), and speed over ground
(SOG). Harnessing the advantages conferred by long short-term memory (LSTM), they
proceeded to conduct predictive modeling of ship trajectories. The outcomes demonstrate
the superior performance of the LSTM algorithm, both in an overarching context and with
regard to detailed performance aspects.

In addition to their applications in collision risk assessment and the prediction of ship
routes or trajectories, ship classification methods based on AIS data serve the purpose of
identifying specific vessel types, thereby making valuable contributions to the realm of
maritime navigation safety and regulations. One approach to feature extraction in ship
classification involves directly extracting geometric characteristics of ship shapes and the
kinematic of vessel behavior from AIS static and dynamic data, all without the need for
conversion into graphical representations. These features are subsequently employed as
the training data for ship classification models. Sánchez et al., 2020 [28], extracted ship
trajectory features from AIS spatiotemporal data, including trajectory statistics such as
ship speed, heading, and voyage distance. They applied support vector machines (SVM)
and decision trees to delineate the categorization of sailboats into fishing vessels and
non-fishing vessels. While the test results demonstrated the utility of the classification
outcomes, the effectiveness of the feature extraction process remains an area warranting
further refinement. In a related vein, Wang et al., 2021 [29], utilized the random forest
methodology to discriminate among five distinct categories of vessels, including passenger
ships, tugboats, oil tankers, fishing vessels, and cargo ships, yielding an accuracy rate
of 86.14%. The outcomes underscored that certain vessel types, such as cargo ships and
cruise liners, may exhibit resemblances in their static trajectories and vessel configurations.
The mere extraction of static attributes may prove insufficient for the construction of a
classification model with the capacity to effectively differentiate among these five vessel
types. The combination of static data derived from AIS records with the dynamic behaviors
of vessels stands as a pivotal step to enhance ship type classification performance. Yan et al.,
2022 [30], harnessed the advantages associated with satellite-based AIS data, including
broad geographic coverage, extended data acquisition intervals, and the representation
of a diverse spectrum of vessel types. The researchers extracted both static and dynamic
attributes pertaining to ship behavior, with dynamic behaviors including attributes such
as ship positions, voyage distances, and vessel speeds, among others. Using a machine
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learning random forest algorithm and integrating these two distinct categories of features,
a ship classification model was trained to categorize cargo ships, oil tankers, fishing vessels,
passenger ships, and tugboats, achieving an impressive accuracy rate of 92.7%. The model
test results demonstrated a significant improvement in accuracy through the integration of
geometric and dynamic behavior features.

To demonstrate the application of risk assessment and ship behavior anomaly de-
tection, we have launched a Special Issue that showcases six papers on this topic. A
brief overview of all the contributions, emphasizing the main investigation topics and the
outcomes of the analyses, follows below.

First, the research on abnormal ship behavior detection is based on maritime automatic
identification system (AIS) data. AIS messages are broadcast to nearby vessels and contain
information about the sending ship’s identification, position, speed, and course. An AIS
serves as a tool for collision avoidance and enhancing onboard situational awareness.
Recently, there has been significant growth in the number and range of applications of AIS
toward enhancing maritime traffic safety. Wolsing et al. highlighted the significance of AIS-
based ship behavior anomaly detection. AIS can monitor almost any large ship globally and
has the potential to greatly support ship traffic services and collision risk assessment. Ship
behavior anomaly detection also assists in spotting potential risks and unusual maritime
activities, such as illegal fishing or potential security threats. The authors review various
methods and techniques recently developed used for anomaly detection in AIS data. This
encompasses conventional statistics, machine learning methods, and deep learning models,
among others. The paper examines the advantages and limitations of these methods by
reviewing 44 research articles on AIS-based ship behavior anomaly detection. It identifies
the tackled AIS anomaly types, assesses their potential use cases, and closely examines
the landscape of recent AIS anomaly research as well as their limitations. The authors
specifically address challenges in processing AIS data, like data quality, missing data,
scalability issues, and how researchers can tackle these challenges. They also emphasize
the crucial role of feature engineering in AIS data analysis, as selecting appropriate features
can enhance the performance of anomaly detection algorithms. Lastly, the paper explores
potential future directions in AIS anomaly detection research, encompassing real-time data
integration, enhancing model interpretability, and resolving privacy concerns.

Regarding risk assessment, there are two papers on this topic. One of them focuses
on ship grounding. Ship grounding accounts for approximately one third of commercial
groundings in the global maritime industry. Grounding is an accident in which the ship’s
hull strikes the seabed resulting in hull damage, water ingress, and the potential pollution
of the marine environment through fuel or cargo leakage. Galić et al. conducted a chrono-
logical examination of models used to estimate ship grounding frequency, encompassing
both early methodologies and recent developments.

In essence, most research on grounding risk assessment builds upon Macduff and
Fuji’s original concepts. Mcduff’s model provides grounding probability, while Fuji’s
model estimates the number of grounded ships. Ship grounding probability is typically
calculated by multiplying geometric probability (the likelihood of a ship being a grounding
candidate, i.e., sailing in a grounding-prone area) and causing probability (the likelihood
of a ship failing to avoid grounding due to internal or external factors). Following the
Macduff and Fuji models, Pedersen and Simonsen introduced their own grounding models.
The Pedersen/Simonsen models offer a notable advantage by utilizing traffic distribution
instead of traffic volume and density. To ensure accuracy, a comprehensive AIS traffic
database is essential. Without complete ship distribution data for a specific area, the
method tends to provide estimations rather than precise results. Recent scientific articles
on grounding frequency models indicate a growing preference for simulation models like
Bayesian networks. These models are gaining popularity due to their capacity to represent
complex and uncertain relationships when modeling grounding probability. When data
are insufficient for a given area, these models shine in their ability to blend existing data
with expert knowledge, allowing for updates as more evidence becomes available, thus
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enhancing the model’s practicality. Nevertheless, with increased model complexity comes
a greater challenge in determining numerous probability parameters. Different approaches
can be used to build models like statistical techniques, probabilistic models, machine
learning, and more. Finally, the paper discusses the directions for future research. All these
approaches aim to provide guidance for future research on the frequency of grounding.
This research will contribute to the development of new models that will enhance safety
at sea.

Another study in risk assessment examines the hazards linked to the unloading of oil
tankers, which is a high-risk, labor-intensive activity. Minor operational mistakes can lead
to severe incidents like fires and explosions. Given that over 70% of industrial accidents
stem from human error, accident prevention is paramount. Given that human error is
influenced by various performance shaping factors (PSFs), identifying critical PSFs is crucial
for ensuring safe oil tanker unloading operations.

The objective of Zhang et al., 2022 [31], is straightforward: to mitigate human errors by
investigating crucial performance-shaping factors during oil tanker unloading operations.
This is of significant practical importance due to the high-risk nature of tanker offloading,
necessitating a strong focus on safety and reliability. The study employs gray relational
analysis (GRA) to handle incomplete data, defines “risk” as a rational basis for ranking
PSFs, and utilizes hierarchical task analysis (HTA) to account for PSF variations across
task stages. The proposed method underwent testing in a real-world case involving
an oil tanker unloading at an offshore terminal, identifying key performance-shaping
factors such as work environment, personnel training, communication processes, and
equipment reliability. The results demonstrate the method’s capability to pinpoint critical
PSFs, offering recommendations for averting human errors and enhancing safety both on
ships and at docks.

Lastly, there are three papers that focus on optimizing methods in maritime. One per-
tains to maritime search and rescue (SAR), which is crucial in emergencies stemming from
maritime accidents with severe potential for casualties and property damage. Sun et al.,
2022 [32] holds substantial practical value. It employs an enhanced particle swarm optimiza-
tion approach to investigate the most effective resource allocation strategy for deploying
limited SAR resources at navigation-constrained coastal islands. The paper transforms the
SAR resource allocation challenge in coastal regions into a nonlinear optimization model.
Using the enhanced particle swarm optimization (EPSO) model, incorporating parameter
adjustments and novel heuristic strategies, the study explores optimal solutions for SAR re-
source allocation under varying ship and aircraft base station configurations. Experimental
results demonstrate that the proposed EPSO model can efficiently allocate maritime rescue
resources, offering extensive coverage with minimal time requirements. This method has
the potential to enhance search and rescue mission effectiveness and positively impact
the maritime rescue field. The research outcomes can guide maritime traffic regulatory
authorities in making informed decisions regarding SAR base station construction.

The Container Ship Stowage Planning Problem (CSPP) is a complex logistical challenge
aimed at optimizing transportation efficiency and cost reduction, significantly impacting
shipping companies and ports. Typically, CSPP involves multi-objective optimization,
considering conflicting goals such as maximizing profit, minimizing transportation time,
and ensuring cargo safety. Wang et al. devised a multi-objective CSPP solution that en-
hances ship stability and reduces the number of shifts over the whole route while adhering
to real-world constraints like ship structure and container yard layout. Ship stability is
assessed using initial metacentric height (GM), heel, and trim. Meanwhile, it uses the total
amount of relocation in the container terminal yard, the voluntary shift in the container
ship’s bay, and the necessary shift in the future unloading port to measure the number of
shifts on the whole route. The proposed approach incorporates a modified version of the
nondominated sorting genetic algorithm III (NSGA-III) with a local search component to
tackle this problem. The algorithm yields a set of non-dominated solutions, offering flexibil-
ity for decision makers to choose the most practical implementation based on their expertise
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and preferences. Extensive experimentation with 48 examples confirmed the algorithm’s
effectiveness, particularly in solving multi-objective CSPP scenarios. Navigating ships in
ice-covered waters is a complex task due to the increased risks involved, and planning
routes requires balancing the trade-off between time or fuel expenditure and navigation
risk. In a recent study conducted by Zvyagina et al., 2022 [33], they examined the process
of identifying Pareto-optimal routes that minimize both risk and cost in ice-covered waters.

Routing ships in ice-covered waters poses a formidable challenge due to increased nav-
igation risks and the need to balance time or fuel costs with safety concerns. Zvyagina et al.,
2022 [33], investigated the characteristics of identifying Pareto-optimal routes considering
both risk and cost in ice-covered waters. The paper introduces a multi-objective model
for optimizing ship routes using ice charts and vessel specifications. Ship risk is linked to
ice thickness and concentration values from ice charts in the navigation area. The model
employs an extended wave algorithm to generate a set of potential paths, from which a
Pareto-optimal solution can be selected based on objective functions such as route length,
maximum ice thickness, and maximum ice concentration. The paper holds practical sig-
nificance as it addresses the challenge of finding routes that strike a balance between risk
and cost in ice-covered waters. It draws from various disciplines, including multi-objective
optimization, ice intelligence, and route planning, offering the potential for safer and more
cost-efficient navigation solutions in polar and ice-covered regions. The computational
example in the paper focuses on the Gulf of Finland’s ice chart, and the developed method
can be readily applied to assist specific ships in independent ice navigation when a relevant
ice chart is available.
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