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Abstract: One of the biggest problems the maritime industry is currently experiencing is corrosion,
resulting in short and long-term damages. Early prediction and proper corrosion monitoring can
reduce economic losses. Traditional approaches used in corrosion prediction and detection are time-
consuming and challenging to execute in inaccessible areas. Due to these reasons, artificial intelligence-
based algorithms have become the most popular tools for researchers. This study discusses state-
of-the-art artificial intelligence (AI) methods for marine-related corrosion prediction and detection:
(1) predictive maintenance approaches and (2) computer vision and image processing approaches.
Furthermore, a brief description of AI is described. The outcomes of this review will bring forward
new knowledge about AI and the development of prediction models which can avoid unexpected
failures during corrosion detection and maintenance. Moreover, it will expand the understanding
of computer vision and image processing approaches for accurately detecting corrosion in images
and videos.

Keywords: corrosion prediction; corrosion detection; predictive maintenance; computer vision;
image processing

1. Introduction

Corrosion is the chemical decomposition of the metal into its components by inter-
acting chemically or electrochemically; corrosion degrades metals into their oxides and
sulfides [1]. Because of its interdisciplinary approach, corrosion has become one of the
most challenging parts of science and engineering [2]. Moreover, corrosion poses signif-
icant short-term and long-term threats that cost billions of dollars [3]. According to the
NACE, corrosion cost approximately 2.5 trillion US dollars, or 3.4% of the global GDP in
2013 [4]: (1) the direct costs include the price of supplies, labor, upkeep, and the expense of
replacing corroded equipment, (2) the indirect costs of corrosion include production losses,
environmental effects, transportation delays, injuries, and fatalities [5,6]. Of the 3–4% of
GDP [7], 15–35% of this sum is believed to be preventable, with a significant portion linked
to inspection costs [8].

In the shipping industry, marine structures are significantly damaged by corrosion,
which will reduce the efficiency of mechanical properties and the different structural
parts [9], such as hull structural failure [10]. Statistical data [11] shows that corrosion
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is responsible for approximately 90% of ship structural failure costs. Therefore, long-
term corrosion detection is an excellent method to prevent catastrophic marine structure
accidents. In addition to financial advantages, early detection of structural deterioration
before failure can also minimize hazardous situations for both people and the environment
and prevent catastrophic failures of structures [12,13]. The approximate cost can be reduced
by 18–35% using proper strategy [4]. Furthermore, using the current artificial technologies,
20–25% of the yearly direct cost could be reduced [14,15].

In 1997, Sharon and Itzhak [16] employed image processing to explore how corrosion
affected stainless steel. The most significant advantage of that method is that it can identify
nearly entirely superficial defects (cracks and corrosion). However, it requires substantial
human resources, workload, and financial resources. Feature extraction methods are of-
ten used in corrosion detection [17]. Therefore, developing other methods for corrosion
prediction and detection is essential. Consequently, new ways of artificial intelligence
have been able to attract researchers because of enormous advantages over human intel-
ligence [18,19], advanced technology to solve complex problems [20–22], faster decision
making [23] such as big data, machine learning (ML), deep learning (DL), neural networks
(NN), face recognition, pattern recognition, image classification, and recognition, character
recognition [24–28]. Cost reductions and risk reductions have been the driving forces for
research into automated corrosion detection over the past ten years [29–34].

This paper aims to deliver a state-of-the-art review of artificial intelligence methods
in corrosion prediction and detection from 2017 to 2022. Table 1 represents the review
corresponding to the review protocol. A search of the chosen databases followed by
curating a list of literature has resulted in 379 notable works on this topic. These studies
were analyzed within the research scopes, where 151 studies were chosen to be explored in
this work.

Table 1. Description of scope of bodies within the body of literature.

Subject Description

Database Web of Science, Scopus, Science Direct, IEEE

Keywords

‘’Artificial intelligence + corrosion+ detection,”
“Predictive + maintenance + corrosion,”

“Artificial + intelligence” and “current + trends,”
“Computer vision + corrosion + monitoring,”
“Image processing + corrosion + monitoring.”

Publication type Journal and conference paper
Language English

Time interval 2017–2022

The discussion in this paper is divided into two sections. First, a description of artificial
intelligence and its branches, such as; pattern recognition, machine learning, and deep
learning, is elaborated. Additionally, three subdivision of machine learning (reinforcement
learning, supervised education, and unsupervised learning) is discussed. Second, the
artificial intelligence approaches in corrosion detection and prediction are elaborated.
Two primary corrosion detection and monitoring methods are discussed: (1) predictive
maintenance approaches and (2) computer vision and image processing approaches.

2. Artificial Intelligence

Artificial intelligence (AI) is a machine’s capability to impersonate human behavior,
respond perceptively, solve problems and make decisions automatically without human
interference or with less human interference. The main objective of AI research involves gen-
eral intelligence, automated planning, perception, natural language processing, knowledge
representation, and robotics [35–39]. AI applications, for example, machine learning (ML),
deep learning (DL), pattern recognition (PR), evolutionary computation, neural networks,
expert systems, discriminant analysis, metaheuristic optimization, swarm optimization,
image processing, and computer vision, have been used in marine research. Among those
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technologies, pattern recognition, deep learning, and machine learning are the most consis-
tent and effective methods in corrosion engineering [23]. In this section, we have illustrated
the technical background of the main artificial intelligence branches (machine learning,
pattern recognition, and deep learning). The artificial intelligence techniques are shown
in Figure 1, along with their correlation.
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2.1. Pattern Recognition

The main objective of pattern recognition is to classify objects into several classes. The
objects could be signals, speech, images, or handwriting, depending on the application [40,41].
Several elements collectively serve to represent a pattern; the statistical theory is used to define
decision boundaries across pattern classes. The pattern recognition system is divided into two
modes: learning and classification (Figure 2). Learning and classification are called training
and testing; in the learning mode, the selection module and feature extraction disclose the
relevant features for describing the input patterns, and the classifier is taught to partition the
feature space. The input patterns are assigned to a particular class by using the trained classi-
fier, whereas the performance of the designed classifier, such as the system evaluation module,
evaluates the classification error rate. Generally, pattern recognition can be categorized into
two groups: supervised PR and unsupervised PR. Unsupervised pattern recognition uses
training data that are not leveled, whereas supervised pattern recognition uses a collection of
labeled training samples. Additionally, there is no preceding information concerning class
level. Unsupervised PR is also called clustering. The generative and discriminative pattern
recognition models and their algorithms are shown in Figure 3.

As there are few applications of pattern recognition in corrosion, researchers [42]
used a PRS (pattern recognition system) based on electrochemical noise (EN) to detect the
uniform and pitting corrosion and passivation of 304 steel (EN). They discovered that the
PRS-EN parameters’ accuracy of 99.7% was higher than those created using only statistical
parameters (92.4%) and principal component analysis-selected parameters (97.8%). The
same approach was used by [43,44] to identify the type and rate of corrosion in metal
coatings and onshore pipelines using inline inspection (ILI) [45].
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2.2. Machine Learning (ML)

ML is a subdivision of artificial intelligence. Building and developing mathemati-
cal models that can be trained to process extensive information is the goal of machine
learning [46]. The primary objective of ML is to create and improve mathematical models
that can be taught without having complete knowledge of all the external factors that
influence decisions [47–50]. Additionally, these methods are trained by given data and
capable of solving problems without or with minimum human intervention. Furthermore,
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it can predict future actions utilizing complex learning and indicating algorithms [46,51–55].
These models can either be predictive to perform decisions, acquire knowledge from data
or both [56,57]. ML models have been successfully utilized in numerous fields of research,
such as computational finance [58,59], image and speech processing [60,61], energy produc-
tion [62,63], hydrology [64,65], and computational biology [66,67]. Over a few decades, it
has brought substantial advancement in science and engineering along with developments
in the eminence of our daily life.

Pattern recognition (PR) and deep learning (DL) are AI subsets that generally differ.
Since PR and ML are thoroughly linked fields, their application areas primarily overlap [23].
However, ML focuses on learning algorithms, while PR concentrates on approaches for
classification tasks [68]. The primary responsibility of pattern recognition is to identify
patterns in data. Besides, learning is not required to categorize them. However, ML systems
are built with the ability to learn on their own. Alternatively, Machine learning systems are
created to learn independently [23].

A subset of machine learning is called deep learning. In reality, data representation
can be learned using DL, and ML problems can be solved once the representation is
created. Without a doubt, a high-dimensional challenge has its dimensions reduced via deep
learning. The three primary subcategories of ML algorithms are reinforcement learning,
supervised learning, and unsupervised learning. Figure 4 shows different machine learning
categories. An overview of these groups is provided in the following chapters.
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2.2.1. Supervised Learning

In supervised learning, one or more output variables are predicted based on the input
variables’ values. The training data set with n samples and accompanying output values
might serve as an example of an input variable (labels). The output variable could be a
continuous variable (regression problem) or a discrete variable (classification problem) [68].
In contrast to classification, regression is used whenever an ML model aims to predict
continuous target variables [23]. Applications for supervised learning include software
engineering [69–72], natural language processing [73], computer architecture [74], and
seafaring. The two main supervised learning techniques categories are parametric and non-
parametric models. The parameters are fixed in parametric and non-parametric models,
and the number of parameters depends on the training set [68]. Figure 5 depicts a common
generic model of supervised learning.
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2.2.2. Unsupervised Learning

Unsupervised learning uses a machine learning algorithm to cluster and analyze unla-
beled datasets [75]. These algorithms can group data and discover hidden patterns without
human intervention. Algorithms used in ML approaches are accustomed to concluding
datasets with input data but no labeled responses. To develop the prediction model, the
data is explored to detect hidden patterns or structures. Beforehand the algorithm is not
instructed on what to do; henceforth, the algorithm must discover what is in the data.
Clustering is the most common unsupervised learning used to find the possible grouping
or inherent pattern in the given data. The Gaussian mixture model and k-means are types
of clustering approaches [76]. A typical general unsupervised learning model is shown
in Figure 6 and Table 2.
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Table 2. Basic differentiation between supervised and unsupervised learning.

Element Supervised Learning Unsupervised Learning

Input data Labeled Unlabeled
Feedback mechanism Have Don’t have

Data classified Based on the training dataset Assigns properties of given data to classify it.
Division Regression and classification Clustering and association

Application For prediction For analysis

Algorithm Logistic regressions, decision trees, support vector
machine

Hierarchical clustering, K-means clustering,
apriori algorithm.

Class number Known Unknown

2.2.3. Reinforcement Learning

Reinforcement Learning is a machine learning algorithm that allows the machine or soft-
ware agents to intelligently regulate the best behavior within a definite context and exploit the
performance. RL models are enforced to learn optimum objectives through the trial-and-error
method [77]. As shown in Figure 7, the RL paradigm enables an agent to remember by investigat-
ing the potential actions and modifying its behaviors in response to the reward. Exploiting the
long-term performance is the main focus of the agent. Therefore, the agent can consider future
outcomes and the present reward for individual activities. RL is predominantly more efficient in
dynamic and not completely deterministic environment RL [68]. Recent research discloses that RL
has been applied in many different fields, such as speech recognition [60,61,78–81], computational
biology [82–84], computational finance [85–87], computer vision, and image processing [88–93],
energy production [94,95]. Various field methods have been adopted for this purpose [96,97].
Figure 8 displays some of the most popular algorithms used in machine learning.
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2.3. Deep Learning (DL)

Deep learning is a subset of machine learning and is essentially a three-or-more-
layer neural network. A single layer can make predictions, but an additional hidden
layer enhances and improves the correctness. These neural networks can learn from big
data and act as the human brain [23]. Deep learning techniques are applied in many
areas: law enforcement, finance, customer service, engineering technology application [98],
turbines [99], aero engines [100], bearings [101], etc. Although deep learning models can
significantly improve integrity estimation, a recent assessment found that they have not
been used in corrosion [102]. Deep learning models can be crucial in corrosion prediction
integrity estimates [103]. A notable result was obtained by [104] utilizing a deep learning
method to measure the corrosion rate in a natural gas pipeline using a back-propagation
artificial neural network (BP ANN). Artificial neural networks operated by [105] predicted
the CO2 corrosion rate. The same method was used by [106] to indicate the internal
corrosion rate. In the following chapter, corrosion detection approaches are discussed.

3. Corrosion Detection Approaches

This section is divided into two subsections: (1) predictive maintenance approaches
for corrosion detection and (2) computed vision and image processing techniques. A short
introduction about corrosion is present at the beginning of this section.

Corrosion is a natural phenomenon [107] that happens when metallic materials gradu-
ally convert into undesirable substances, such as hydrogen, oxygen, bacteria, and electrical
current, due to the chemical and electrochemical response to the encompassing environ-
ment. Moreover, corrosion is inevitable and susceptible to the degradation of metallic
materials [108]. The anodic and cathodic electrochemical reactions are involved in the
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corrosion process [109]. Corrosion is categorized according to environmental exposure and
attack morphology. General or uniform attack, galvanic or two-metal corrosion, pitting,
intergranular corrosion, selective leaching, erosion corrosion, and stress-corrosion cracking
are the eight types of corrosion [110]. A general attack is a uniform electrochemical reaction
that happens on the entire surface of a material. This kind of corrosion is predictable and
can be contained. Galvanic or two-metal corrosion occurs between two metals due to the
potential difference when both metals are submerged in a corrosive solution [111]. The
resistant metal becomes a cathode, while the less resistant metal becomes the anode. The
cathode metal will corrode less than the anode metal. Localized corrosion, called crevice
corrosion, occurs when there are limited volumes of stagnant solution. It always attacks
the lap joints, gaskets, and holes; pitting is the most intense corrosion form. It is a localized
attack and can create holes in the metal.

Moreover, it is hard to locate them as they are covered with corrosion products.
Intergranular corrosion is a localized attack on the grain boundaries. This type of corrosion
creates a small, corroded area. Selective leaching happens when one element of an alloy is
removed from it [112]. This phenomenon occurs in chromium, cobalt, iron, aluminum, and
zinc. Erosion corrosion happens because of the rapid movement between a metal surface
and a corrosive fluid, which accelerates the corrosion process. Abrasion and mechanical
wear are also involved. Tensile stress and the corrosive media contribute to stress-corrosion
crack propagation. A crack is produced from the steel caustic embrittlement and brass
season cracking. These eight forms of corrosion can occur in the pipeline, ship hulls, bronze
statues, copper roofs, steel bridges, metallic equipment, and many more. In terms of ship
structures, fatigue and corrosion can reduce the strength of ships and vessels, which can
cause structural failures [113]. The primary corrosion elements of the ship structures are
the single metal element (ship hull).

Meanwhile, ship structures are categorized into the atmospheric and immersed zones
of stiffeners and plates. The factors influencing corrosion in the atmospheric zone are
temperature, humidity, steel type, ventilation, pressure, carbon dioxide, sulphuric acid,
oxygen, sulfur dioxide, and chloride concentrations. Meanwhile, the immersed zone’s main
influencing factors are the seawater pressure, pH value, seawater velocity, temperature,
salinity, carbon dioxide, sulphuric acid, and hydrogen sulfide concentrations. Because of
that, a good maintenance strategy must be adopted for corrosion detection and maintenance
activities. The cost of corrosion is high and estimated to be billions of dollars, which burdens
the related industry if it is not detected in the early stage [20]. Due to that, numerous
approaches have been established to reduce and minimize the impact of corrosion on the
industry [114]. In the following subsection, we present predictive maintenance approaches
for corrosion detection.

3.1. Predictive Maintenance Approaches for Corrosion Detection

Predictive maintenance (PdM) is a strategy involving detecting the early signs and
acts of breakdown by doing proactive maintenance work [115]. A smooth operation can
be ensured by attending to and acting on any failure, even if there is no major breakdown
of the materials. PdM contains a set of mathematical models that will detect when the
error happens and when to do maintenance [1]. The main objectives of PdM are to reduce
maintenance time, production downtime, and the cost of component supplies. Due to that,
PdM has been used in various industries to ensure the quality, efficiency, reliability, and
safety of equipment and materials. Recently, PdM has been gaining attention in corrosion
detection and maintenance due to its efficiency in predicting and determining an affected
material’s corrosion level. It can be categorized into knowledge-based, physic-based, data-
based, and hybrid models [116]. In the following subsection, a brief description of those
approaches is provided.
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3.1.1. PdM with Knowledge-Based Model

The PdM knowledge-based model is a model that uses cases, facts, rules and experi-
ences in developing its prediction model [117]. The data on maintenance and operation
are gathered over many years. Recently, IR4.0 allowed this model to be integrated and
automated with machine learning, statistical and artificial intelligence.

A framework of impressed current cathodic protection (ICCP) system was introduced
in [118], where the machine learning and historical data were used to predict the down-
stream test post. This knowledge-based model was evaluated with survival, regression and
classification analysis. The knowledge in the test post potential was used to estimate and
detect the corrosion progress and maintenance time. According to the results, the proposed
method managed to create an external corrosion prevention mechanism for effective corro-
sion control. Despite that, this model used many AI approaches, which can increase the
complexity of the developed prediction model.

The vast knowledge of sulfur was used by [119] to investigate the existing mainte-
nance strategy in the maritime industry. The new marine fuel caused a big challenge
due to the consistent changes in physical and chemical properties, which can contribute
to the corrosion progression. Thus, the planned maintenance work will be inadequate,
which can endanger ships’ operations. The very low sulfur fuel oil (VLSFO) characteristic
was monitored with PdM to reduce the critical risk potential. Based on the results, the
proposed method managed to provide corrective action and detection for corrosion from
sulfur emissions. Nevertheless, this prediction model was determined to evaluate the
Sulphur 2020 amendment.

The rules of hull girder [120] were used to assess the corrosion effect on the bulk car-
rier. The web section and flange section on the cross-section property and vertical bending
moment were investigated to determine the residual strength of the ship hull. Then, a
prediction model was developed from the incremental-iterative method and probabilistic
corrosion rate estimation model. The parameters of cross-section property, neutral axis po-
sition and vertical bending moment were measured to determine the accurate maintenance
activities. The results showed that the proposed method could detect and reduce the corro-
sion effect on the ship hull. However, the lack of historical data can affect the sensitivity of
the prediction model for maintenance planning. The unplanned and unexpected corrosion
behavior can still occur even with an accurate prediction model.

The reliability, availability and maintainability (RAM) analysis [121] was developed
to predict the future trends of maintenance planning. The real-time data from the fuel
injection valve case were measured from the container ship. The valve itself can be affected
by corrosion which can reduce the efficiency of ship engines. According to the result,
the developed prediction model can enhance the routine and non-routine maintenance
activities on the ship engine. Nevertheless, the optimization of the prediction model can be
done to further increase the reliability of maintenance planning.

The other PdM knowledge-based corrosion prediction models include the marine
steel structures based on the climatic condition cases [122], the facts of ferrography lubri-
cants [123], the rules of double hull girder tanker [124] and the experiences of random
field approach [125].

3.1.2. PdM with Physic-Based Model

The PdM physic-based model is a prediction model that uses physics laws, real
conditions, original equipment and the behavior of the tool or material. Recently, a digital
twin was developed from the subject itself and then compared with the behavior of the
physical tool or material. Due to that, the digital twin can be fine-tuned to operate and
match the function of the actual subject.

The under-deposit corrosion (UDC) on the firetube boiler [126] was investigated to
improve the predictive maintenance of the system. The three-pass seawater steam boiler
was monitored for six years to obtain the necessary data. According to the result, the
corrosion on the firetube boiler was formed from the hematite minerals and carbonates.



J. Mar. Sci. Eng. 2023, 11, 256 11 of 25

Nevertheless, the usage of UDC propagation and phosphate congruent control (PCC)
managed to improve the prediction model of predictive maintenance. Despite that, the
prediction model itself might not be suitable for the other boilers because of the different
parameters and external environment in the workplace.

Wear debris analysis (WDA) [127] was proposed to analyze the wear conditions of the
industrial gearbox with the different types of wear failure and gear pitting modes. The
moisture corrosion-attacked wear, contaminant-induced abrasive wear and acid attack
were simulated on the industrial gearbox in order to monitor and create a prediction model
for predictive maintenance. Based on the results, the wear debris morphological analysis
managed to detect and anticipate wear and its mechanism. The studied parameters were
typical for the industrial gearbox. However, the size, brand and configuration might reduce
the accuracy of the developed prediction model since most of the industrial gearboxes
were custom-made.

Furthermore, the UHF RFID (Ultra High-Frequency Radio Frequency Identification)
sensor [128] was developed to detect corrosion steel in the marine environment. The steel
deterioration happened due to the broken thin oxide film layer because of the presence
of chloride. Hence, the UHF RFID sensor detected the corrosion area by calculating the
difference between the steel layer and the concrete moisture degree. It can measure up to
a few micrometers thickness of the metallic film. According to the result, the proposed
method managed to monitor and control the mass loss of steel. However, this method did
not use PdM in its process. The developed sensor network could be suitable and accurate
for developing a PdM physic-based prediction model.

The study on the effect of long-term corrosion in physical infrastructure [129] was
proposed to determine the most suitable mathematical model, especially for the marine
corrosion of ships. The effect of marine corrosion, such as crevice severity and pit depth,
was investigated to create efficient maintenance decision-making. The empiricism degree
of corrosion was compared with the available prediction model. However, the historical
data on corrosion progression under oxygenated conditions might require several decades
to collect. This can increase the complexity of the prediction model.

The Weibull distribution [130] was introduced as the prediction model for the aging
ship structural corrosion. The prediction models were developed from the degradation
process of stiffener and plate. The ship structures were grouped into the zone, compartment,
and structural types, such as longitudinal deck girder, stringer deck, top wing plating,
inner side wall, inner bottom, side shell, bilge keel, deck, hopper plating, hatch coaming,
bottom plating, machinery space, void space, ballast water tank, fuel oil tank, freshwater
tank, cargo hold, atmospheric zone, splash zone and immersed zone. The developed
prediction models can be individually adjusted for each ship’s structural elements from
the real-time data and historical data. This prediction model can also be fine-tuned by
calculating the means of influencing factors. Based on the result, the proposed method
can predict corrosion at the aging ship structures. Despite that, this model required large
data for each fine-tuning of the ship’s structural elements. The data can be analyzed at the
edges or sensor nodes and stored in the cloud in order to reduce transmission costs and
data transmission errors.

The other PdM physic-based corrosion prediction models include the prognostic of
physics-of-failure [131,132], RUL of ship hull structure profile [133] and ship hull tanker pro-
file [134]. These physics models were validated and compared with the respective simulations.

3.1.3. PdM with Data-Based Model

The PdM data-based model is a prediction model that uses a data-driven approach in
its implementation, such as stochastic, statistical, and machine learning. This prediction
model is heavily dependent on real-time and historical data. Due to that, the presence of
noise and uncertainty in data could affect its behavior. Validation with the knowledge-based
and physic-based models is required to verify its result. Despite that, not all prediction
models with machine learning, statistical and artificial intelligence are considered data-
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based models. The core or fundamental of the developed prediction model will determine
its own category.

The data-based model was proposed for corrosion failure prediction with extreme
value analysis (EVA) [135]. EVA was used to make predictions of the depth of pits that
required immediate maintenance. The real-time data of the degradation process from the
inspection reports were used to develop a prediction model by considering the peaks
over threshold (POT). The developed prediction model was validated with the block
maxima (BM) approach to assess corrosion failure. This prediction model achieved high
performance in detecting and assessing corrosion failures. However, this prediction model
was not implemented in the multiple sections in the same workflow. The prediction
model might require fine-tuning and parameterization for assessing multiple sections of
corrosion failure.

The framework of Bayesian inference [136] was constructed to predict corrosion defects.
The prediction model used both real-time data and historical data for the employment
of generalized extreme value distribution (GEVD). The real-time data were frequently
updating the model, while the historical data were indirectly assisting the corrosion defect
distribution. This prediction model achieved the highest reliability and can adapt to
the defect depth distribution. Nevertheless, the real-time data were quite sensitive for
parameter estimation, even with guidance from historical data. This could reduce the
accuracy of the developed prediction model if the historical data were unavailable.

The combination of the expected behavior (EB) model and the exponentially weighted
moving average (EWMA) was introduced in [137] for the shipboard corrosion system. The
learning potential was explored from the recorded voyage data. This prediction model
can detect certain fault parameters, such as air pressure and gas temperature, that could
be useful for developing a corrosion model. Despite that, the well-maintained ship was
inevitable due to the occurrence of failures which can exhibit energy efficiency, safety and
reliability. Such conditions can contribute to corrosion and fouling in the turbocharger and
nozzle ring of the vessel.

The new innovative prediction model [138] was developed with time-series anomaly
detection and machine learning. The maintenance decision-making was provided by the
board sensors on the engine and ship hull. The lifetime of the hull managed to be extended
with reduced maintenance costs. A huge amount of data was available through the data
sources’ exploitation and deployment. The results showed that the proposed method could
predict corrosion on specific parts of the ship’s engine. Nevertheless, the sensors’ placement
was on the specific parts of the vessel, which can reduce the accuracy of the prediction
model. The model itself might need fine-tuning and parameterization for the different
parts of the vessel.

The mathematical model was adopted from the real-time data of the ship’s ballast
tank [139] to predict corrosion damages on the ship structure. The nonlinear time-dependent
formulation was derived from the probability density function (PDF) method by selecting
the best fit of the real-time corrosion data. Then, the curve fitting method was selected
for sub-parameters. According to the results, the adopted prediction model was accurate
for determining RUL and corrosion damage over time. Despite that, the prediction model
might require fine-tuning for each nearshore, offshore, onshore, and ship structures.

The other PdM data-based corrosion prediction models include the 25 years of monitoring
of historical data of ship hulls [140], the condition-based predictive maintenance of customized
self-healing systems [141], the spatial dependence of material, geometric and corrosion growth
properties [142], and the synthesized life-cycle risk analysis framework [143].

3.1.4. PdM with Hybrid Model

The PdM hybrid model is a combination of at least two PdM prediction models from
the knowledge-based, physic-based or data-based models. This prediction model has
different configurations than the multi-model PdM. Due to that, not all multi-model PdM
can be considered as a hybrid model.
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Big data and machine learning were used in [144] to initiate solutions for the shipping
industry, such as for hull corrosion. This hybrid method used the sensor network to collect
both real-time data and historical data to reduce disruption during operations. The results
showed that the number of breakdowns and failures could be reduced with PdM. The key
parameters demonstrated the strong correlation and influence between equipment. The
maintenance decision-making was improved in terms of accuracy and speed. Even though
this method can create an efficient prediction model, it probably can create disruption
within the shipping industry due to its implementation complexity. Furthermore, the
potential failure mode and failure identification mode must be defined prior to developing
the prediction model.

The strain sensing method [145] was developed for the detection of thickness loss in
the ship hull. The hybrid model of structural health monitoring and classical detection
tool was investigated for hull structure maintenance and corrosion detection. The real-time
data and historical data were collected from the in-situ sensors. The damaged ship hull
conditions were estimated with a Monte Carlo simulation. Then, the Gaussian and mean-
shifted methods were considered to measure the deterministic signals from the static strain.
The results showed that the strain measurement could be used for the detection of thickness
loss in the ship hull. Nevertheless, this method did not consider the effect of noise in the
historical data, which can challenge the dynamic of the signal.

The risk-based maintenance scheduling [146] was reviewed and applied for ships and
vessels. Previously, this method was implemented in other industries. The decision analysis
and probabilistic modeling were suggested for the decision-making of the prediction model.
The fatigue crack propagation and corrosion scenario were used for the optimization of the
prediction model. The reliability-centered maintenance (RCM) was also combined with
the current framework for the evaluation of the prediction model in terms of maintenance
cost and availability. The proposed prediction model achieved a reduced maintenance cost.
It also managed to detect corrosion from risk-based scheduling. However, the prediction
model was still in development and not integrated with the sensor network.

The computerized maintenance management system (CMMS) [147] was used as a
framework for the prediction model of all maintenance activities on board the ship. This
prediction model covered all related activities for the maintenance of equipment and ship
structure corrosion. The constructive features, mission, equipment, and ship structure
corrosion were integrated as a parameter to determine the decision-making for maintenance
activities. The CMMS managed to create the planning for all equipment and ship structure,
resulting in better maintenance resources, recording data of maintenance activities, and
optimizing maintenance planning. Nevertheless, this prediction model was implemented
for a special or custom-made ship. Fine-tuning and parameterization could be a challenge
to implementing a similar prediction model on other ships.

The digital twin and artificial intelligence were proposed in [148] for the ship hull
structures. The optimization method of finite element (FE) was implemented to create a
prediction model. After that, the artificial neural network (ANN) was used for fitting and
classification. The results showed that the specific location could be determined with this
prediction model; thus, the sensitive area on the ship’s hull can be monitored closely for
any damage or corrosion. The physic-based model of the digital twin and the data-based
models of FE and ANN have been proven for the ship hull structure analysis.

3.2. Computer Vision and Image Processing Approaches for Corrosion Detection

Computer vision is an artificial intelligence field where the computer or machine
is required to imitate or emulate the human visual system via machine learning. The
computer or device can see and interpret patterns from optical inputs. Computer vision and
image processing are promising approaches because of their nondestructive testing, high
accuracy, and fast detection of corrosion boundaries. It replicates the human visual system
complexity and interprets inputs from their color, size, texture, etc. Meanwhile, image
processing is a method to enhance, improve and transform images by tuning the features
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and parameters of the given images. The images can be changed with many techniques.
These digital images have particular values and location elements such as pixels, picture
elements, and visual elements. Therefore, image processing is used for corrosion detection
since its techniques can enhance, sharpen, filter, and segment the corroded area in images.
Many computer vision and image processing algorithms have recently been established
for corrosion detection, assessment, and prediction. These approaches are based on color,
texture, filtering, pixilation, clustering, classification, segmentation, wavelet transformation,
and image enhancement. The computer vision and image processing processes for corrosion
detection can be divided into five main processes or elements: image acquisition, image
pre-processing, image segmentation, feature extraction, and image classification shown in
Figure 9. Additionally, the researcher introduced corrosion detection methods and their
application, shown in Table 3.
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Table 3. Short description of different corrosion detection approaches and their applications.

Models Descriptions Applications

Knowledge-Based Model Used artificial intelligence to predict the progress
of corrosion from images and videos.

-Automated sewer inspection [149,150].
-Combination of CCTV and
machine learning [151–153].

Probabilistic Model

Used for corrosion detection when the real-time
data and historical data are insufficient. Require
in-depth knowledge and expertise in physic and

mathematics to develop a sophisticated
mathematical model. Quite difficult to develop.

-Gamma distribution [154].
-Gamma process and copulas of

Spatio-temporal [155].
-Probabilistic model and finite element [156].

-Monte Carlo finite element [157,158].

Statistical Model

Used statistical analysis to predict and detect the
corrosion progress based on historical data. The
historical data can be collected from the installed
CCTV in the gas pipeline, sewer, and many more.

-Markov chain with gray level
co-occurrence method [159,160].

-Polynomial regression [161] and
linear regression [162,163].

Deterministic Model

The relationships between variables or parameters
of corroded material are studied from the field
experiments via images and videos. Easier to
develop and could be inaccurate in terms of

extrapolation results [164].

-Structural health monitoring (SHM)
and digital twin [165]].

-Texture descriptors with
cellular automata [166].

-Others [167,168].
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3.2.1. Infrared Thermography

For the purpose of detecting corrosion, infrared thermography is frequently used
in computer vision and image processing methods [129,169–171]. Due to the recently
created infrared detector, these methods produce better corrosion detection accuracy and
resolution. The cost of monitoring and development is reduced, but noise and weak signal
strength can cause thermal images to be interrupted. The electromagnetic energy that
metallic materials emit is captured using this method. Then, using the thermal images,
corrosion patterns can be found. Application of thermography-based techniques applied to
optical [172], laser [173], induction [174], microwave [175], photovoltaic (PV) electrolumi-
nescence module [176] and other systems for crack and corrosion detections on pipelines
energy, surface inspection, practically, source, etc. However, each of these methods has
limitations regarding their energy, surface inspection, practically, source, etc.

3.2.2. Texture Analysis

Texture analysis has been used in [177–180]; image processing techniques and object
classification computer vision are used. Texture analysis improves classification results
by reducing errors for isolated data detection. It can accurately detect, recognize and
classify corroded regions in the images. Additionally, texture analysis can identify the
corrosion and non-corrosion regions [181,182]. Application of SVM; water pipelines [183],
underwater pipelines [184], steel bars [185], bridge cables [186], equipment [187], aircraft
structures [188], wind turbine blades [189], and many more.

3.2.3. Non-Destructive Methods

Nondestructive testing for corrosion detection (Table 4) is used to check and assess
materials without compromising their usability. Standard nondestructive techniques in-
clude acoustic emission utilized for real large-scale structures [190–192], fracture propa-
gation [193–195], monitored pitting corrosion of stainless steel [196,197] and accelerated
corrosion testing [198–201]. Under insulation, guided waves were employed to detect cor-
rosion. The presence of flaws and their axial location is revealed by guided wave reflections
and their arrival time. Magnetic flux leakage and magnetic perturbation techniques are
used to detect corrosion in pipes. Eddy currents are used to find stress corrosion in gas
transmission pipes, whereas long-distance pipeline inspection uses long-range ultrasonic
testing (LRUT) [202]. Meanwhile, Table 5 shows the other corrosion detection methods in
the literature.

Table 4. Non-destructive testing techniques comparison for corrosion monitoring.

Methods Advantages Limitations

Vision-Based Inspection (VSI) Inexpensive and consistent monitoring.
Off-line processing.

Costly in terms of computation. Concerns with
minimal access.

Magnetic Flux Leakage (MFK) Inexpensive, rapid inspection of the surface
and subsurface. Active type.

Restricted to ferromagnetic substances.
It is required to align the magnetic

flux and flaws.

Guided waves-based inspection On-line monitoring and active type. Ultrasonics with a high frequency. Waves are
necessary. Crosstalk problems. Expensive.

Radiographic inspection Not constrained by material kind, precise,
trustworthy, active type.

Safety risks are pricey.
Required results interpretation.

Acoustic emission Inexpensive. On-line monitoring,
passive type. It’s crucial to interpret AE.



J. Mar. Sci. Eng. 2023, 11, 256 16 of 25

Table 5. Other corrosion detection methods.

References Methods Descriptions

[203–206] Artificial neural network Concrete corrosion monitoring in the sewage system.
Investigate pitting corrosion in steel-reinforced concrete.

[207] Hybrid machine learning Algorithms Find the corrosion rate in a gas pipeline.

[92] ANN and image processing Detect the corrosion level of the concrete structure of
reinforced steel.

[95] Tomographic acoustic micro imaging (TAMI) Evaluate the pitted region and corrosion depth in the
scanning acoustic microscopy (SAM) images.

[208] Electrochemical noise (EN) Find pitting, uniform, and passivation corrosion rates.

[97,209] Magnetic resonance imaging (MRI) For corrosion analysis.

[210] Fitting neural network (FNN) Investigate the corrosion rate in the pipelines.

[94] Thermal spraying method Assess the corrosion mechanism and coatings.

[211] A Wasserstein distance-based analogous method Predict the non-uniform deterioration of
reinforcing materials.

[93] Fourier transform and Gaussian filter Monitor and predict the corrosion degree.

[83] Synchrotron radiation computed tomography (SRCT) Tested for corrosion rate measurement, composite failure
analysis, and electrochemical reaction visualization.

[33] A python-based deep learning approach Automatic metal corrosion (rust) detection.

[30,212] Two weak classifiers Automatically detecting corrosion on pipelines, storage tanks,
and other containers.

[46] HSI (Hue, Saturation, and Intensity) Applied for corrosion detection.

[45] The hybrid wavelet packet transforms Carbon-steel pipeline corrosion detection.

[213] Wavelet image coefficient Determine the atmospheric corrosion characteristics.

[66] HSV color space Locate the corroded and non-corroded regions.

[214] 2D-wavelet filtering Identify structural damage.

[47] Backpropagation method, radial basis function, and extreme
learning machine Predict stress corrosion cracking.

[215] SOM (Self Organizing Map) Investigate the deterioration of corrosion-induced crack and
rebar corrosion.

[216] SOM-based neural network Analysis of the progression of corrosion in prestressed steel
and identification of the process.

[217] The hybrid intelligent algorithm method Predicts the corrosion rate of the multiphase flow pipeline.

[218] CNN Hull structural plate corrosion damage detection.

[219] Tree-based ensemble,
kernel-based technique

85% accuracy with the kernel-based technique and 81%
accuracy using ensemble techniques for predicting corrosion

and stress corrosion cracking.

[220] Principal component analysis-gradient boosting machine,
feed-forward ANN Predict corrosion in offshore pipelines.

[221] CorrDetector Structural corrosion detection from drone
images.

[1] Machine learning algorithm Prevent pipeline corrosion.

[222] Wavelet analysis Determine the effect of nitrogen on pitting corrosion.

[223] Hybrid metaheuristic
regression model Monitoring corrosion in steel rebar in real-time.

[224] Automated method Determine the cause of corrosion by collecting a set of
historical data.

[225] Single support vectors regression (SVR) Estimate the 3C steel corrosion rate in five distinct
marine conditions.

[30] Phenomenological model Determine pitting corrosion of steel in concrete.
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4. Conclusions

Corrosion endures become one of the biggest concerns in the maritime industry. In
our paper, we have summarized the state-of-the-art artificial intelligence approach in
marine-related corrosion monitoring. These methods’ working fundamentals, advantages,
and limitations have also been discussed. Most of the reviewed methods have provided
significant quantitative and qualitative information regarding corrosion detection. Due
to that, the present corrosion condition can be assessed, and the future corrosion condi-
tion can be predicted accordingly. The outcomes of this review can bring forward new,
and additional knowledge of AI approaches for corrosion detection, assessment, and pre-
diction. However, more study is needed to take advantage and fully exploit the recent
advancements of IR4.0 technology in terms of advanced sensors and artificial intelligence
to achieve impressive and better future performances for corrosion detection, assessment,
and prediction.
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