Least Mean p-Power-Based Sparsity-Driven Adaptive Line Enhancer for Passive Sonars Amid Under-Ice Noise
Abstract
:1. Introduction
2. Methods and Materials
2.1. Principle of Conventional ALE
2.2. Proposed PSALE
2.2.1. LMP Error Criterion
2.2.2. Principle of PSALE
3. Simulation Performance
3.1. The α Stable Distribution
3.2. Simulation
4. Data Analysis
4.1. Environmental Noise Characteristics
4.2. Experimental Data Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Ma, S.; Fan, Z.; Liang, G.; Li, Q. Robust DFT-based generalised likelihood ratio test for underwater tone detection. IET Radar Sonar Navig. 2017, 11, 1845–1853. [Google Scholar] [CrossRef]
- Lourens, J.G. Passive Sonar Detection of Ships with Spectrograms. In Proceedings of the IEEE Symposium on Communications and Signal Processing, Johannesburg, South Africa, 29 June 1990. [Google Scholar] [CrossRef]
- Baggeroer, A.B.; Scheer, E.K.; Colosi, J.A.; Cornuelle, B.D.; Dushaw, B.D.; Dzieciuch, M.A.; Howe, J.A.; Mercer, W.H.; Munk, W.H.; Spindel, R.C.; et al. Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site. J. Acoust. Soc. Am. 1985, 117, 1643–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Niezrecki, C.; Cattafesta, L.N.; Beusse, D.O. Background noise cancellation of manatee vocalizations using an adaptive line enhancer. J. Acoust. Soc. Am. 2006, 120, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, J.; Chen, H. A novel algorithm for underwater moving-target dynamic line enhancement. Appl. Acoust. 2003, 64, 1159–1169. [Google Scholar] [CrossRef]
- Hao, Y.; Qiu, L.; Chi, C.; Liang, G. Sparsity-inducing frequency-domain adaptive line enhancer for unmanned underwater vehicle sonar. Appl. Acoust. 2021, 173, 107689. [Google Scholar] [CrossRef]
- Sanei, S.; Lee, T.K.M.; Abolghasemi, V. A New Adaptive Line Enhancer Based on Singular Spectrum Analysis. IEEE Trans. Biomed. Eng. 2012, 59, 428–434. [Google Scholar] [CrossRef]
- Perez-Neira, A.; Anton-Haro, C.; Lagunas, M.A. An adaptive fuzzy logic enhancer for rejection of narrowband interference in DS-Spread Spectrum. In Proceedings of the 48th IEEE Vehicular Technology Conference, Ottawa, ON, Canada, 18–21 May 1998. [Google Scholar] [CrossRef]
- Zhang, X.; Hui, J.; Li, J.; Li, H.; Bu, X. Application of adaptive line spectrum enhancer in adaptive matched filter. J. Acoust. Soc. Am. 2019, 145, 1732–1733. [Google Scholar] [CrossRef]
- Koford, J.S.; Groner, G.F. The use of an adaptive threshold element to design a linear optimal pattern classifier. IEEE Trans. Inf. Theory. 1966, 12, 42–50. [Google Scholar] [CrossRef]
- Widrow, B.; Glover, J.R.; McCool, J.M.; Kaunitz, J.; Williams, C.S.; Hearn, R.H.; Zeidler, J.R.; Eugene Dong, J.; Goo-dlin, R.C. Adaptive noise cancelling: Principles and applications. Proc. IEEE 1975, 63, 1692–1716. [Google Scholar] [CrossRef]
- Gharieb, R.; Horita, Y.; Murai, T.; Cichocki, A. Unity-gain cumulant-based adaptive line enhancer. In Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, USA, 14–16 August 2000. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Gharieb, R.R.; Hassan, M.M. A higher-order statistics-based adaptive algorithm for line enhancement. IEEE Trans. Signal Process. 1999, 47, 527–532. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Gharieb, R.R. Two-dimensional cumulant-based adaptive enhancer. IEEE Trans. Signal Process. 1999, 47, 593–596. [Google Scholar] [CrossRef]
- Hao, Y.; Chi, C.; Qiu, L.; Liang, G. Sparsity-based adaptive line enhancer for passive sonars. IET Radar Sonar Navig. 2019, 13, 1796–1804. [Google Scholar] [CrossRef]
- Hao, Y.; Chi, C.; Liang, G. Sparsity-driven adaptive enhancement of underwater acoustic tonals for passive sonars. J. Acoust. Soc. Am. 2020, 147, 2192–2204. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Bradley, P.S.; Mangasarian, O.L. Feature selection via concave minimization and support vector machines. In Proceedings of the 15th International Conference on Machine Learning, Madison, WI, USA, 24–27 July 1998. [Google Scholar]
- Veitch, J.G.; Wilks, A.R. A characterization of Arctic undersea noise. J. Acoust. Soc. Am. 1985, 77, 989–999. [Google Scholar] [CrossRef]
- Chitre, M.A.; Potter, J.R.; Ong, S. Optimal and Near-Optimal Signal Detection in Snapping Shrimp Dominated Ambient Noise. IEEE J. Oceanic Eng. 2006, 31, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Nikias, C.L. Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE 1993, 81, 986–1010. [Google Scholar] [CrossRef]
- Pei, S.; Tseng, C. Least mean p-power error criterion for adaptive FIR filter. IEEE J. Sel. Areas Commun. 1994, 12, 1540–1547. [Google Scholar] [CrossRef]
- Ma, W.; Chen, B.; Qu, H.; Zhao, J. Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise. Signal Image Video Process. 2016, 10, 503–510. [Google Scholar] [CrossRef]
- Rai, A.; Kohli, A.K. Adaptive Polynomial Filtering using Generalized Variable Step-Size Least Mean pth Power (LMP) Algorithm. Circuits Syst. Signal Process. 2014, 33, 3931–3947. [Google Scholar] [CrossRef]
- Huang, X.; Xiong, K.; Wang, L.; Wang, S. The Robust Kernel Conjugate Gradient Least Mean p-Power Algorithm. In Proceedings of the 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence, Xi’an, China, 21–22 September 2019. [Google Scholar] [CrossRef]
- Peng, S.; Wu, Z.; Chen, B. Constrained least mean p-power error algorithm. In Proceedings of the 2016 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016. [Google Scholar] [CrossRef]
- Arikan, O.; Enis Cetin, A.; Erzin, E. Adaptive filtering for non-Gaussian stable processes. IEEE Signal Process. Lett. 1994, 1, 163–165. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Wang, G.; Huang, F. Least mean p -power algorithms with generalized correntropy. Signal Process. 2021, 185, 108058. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, X.; Xu, F.; Zhang, H. $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver. IEEE Trans. Neural Networks Learn.Syst. 2012, 23, 1013–1027. [Google Scholar] [CrossRef]
GSNR (dB) | PALE (dB) | SALE (dB) | PSALE (dB) |
---|---|---|---|
−12 | 16.3 | 9.6 | 18.9 |
−9 | 12.0 | 10.6 | 12.4 |
−6 | 10.5 | 7.7 | 10.6 |
−3 | 7.9 | 7.0 | 8.0 |
0 | 3.5 | 2.9 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Chi, C.; Huang, H.; Jin, S. Least Mean p-Power-Based Sparsity-Driven Adaptive Line Enhancer for Passive Sonars Amid Under-Ice Noise. J. Mar. Sci. Eng. 2023, 11, 269. https://doi.org/10.3390/jmse11020269
Lv Y, Chi C, Huang H, Jin S. Least Mean p-Power-Based Sparsity-Driven Adaptive Line Enhancer for Passive Sonars Amid Under-Ice Noise. Journal of Marine Science and Engineering. 2023; 11(2):269. https://doi.org/10.3390/jmse11020269
Chicago/Turabian StyleLv, Yujiao, Cheng Chi, Haining Huang, and Shenglong Jin. 2023. "Least Mean p-Power-Based Sparsity-Driven Adaptive Line Enhancer for Passive Sonars Amid Under-Ice Noise" Journal of Marine Science and Engineering 11, no. 2: 269. https://doi.org/10.3390/jmse11020269
APA StyleLv, Y., Chi, C., Huang, H., & Jin, S. (2023). Least Mean p-Power-Based Sparsity-Driven Adaptive Line Enhancer for Passive Sonars Amid Under-Ice Noise. Journal of Marine Science and Engineering, 11(2), 269. https://doi.org/10.3390/jmse11020269