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Abstract: In order to detect weak underwater tonals, adaptive line enhancers (ALEs) have been
widely applied in passive sonars. Unfortunately, conventional ALEs cannot perform well amid
impulse noise generated by ice cracking, snapping shrimp or other factors. This kind of noise has
a different noise model compared to Gaussian noise and leads to noise model mismatch problems
in conventional ALEs. To mitigate the performance degradation of conventional ALEs in under-ice
impulse noise, in this study, a modified ALE is proposed for passive sonars. The proposed ALE is
based on the least mean p-power (LMP) error criterion and the prior information of the frequency
domain sparsity to improve the enhancement performance under impulse noise. The signal-to-noise
ratio (SNR) gain is chosen as the metric for evaluating the proposed ALE. The simulation results
show that the output SNR gain of the proposed ALE was, respectively, 9.3 and 2.6 dB higher than that
of the sparsity-based ALE (SALE) and the least mean p-power ALE (PALE) when the input GSNR
was −12 dB. The results of processing the under-ice noise data also demonstrate that the proposed
ALE is distinguished among the four ALEs.

Keywords: line spectrum enhancement; non-Gaussian noise; sparsity; least mean p-power error;
under-ice noise

1. Introduction

Noise radiated from underwater sources such as ship propellers consists of both
broadband continuous and narrowband components [1,2]. The narrowband components
are typically referred to as tonals and serve as important information for passive sonars.
Enhancing the tonals is a crucial step in the target detection of passive sonars. Conven-
tional methods are based on the hypothesis of Gaussian noise. However, the under-ice
noise shows non-Gaussian characteristics [3]. The mismatch of noise model leads to the
performance degradation of conventional ALE methods, because there is no second-order
or higher-order statistics in non-Gaussian noise. Detecting under-ice targets needs more
effective approaches.

Due to the fact of their strong performance in enhancing tonals, ALEs have been
applied in underwater acoustic signal processing. ALEs are typically employed as proper
preprocessing steps to improve the signal-to-noise ratio (SNR) to achieve a superior detect-
ing performance in passive sonars [4–6]. In fact, ALEs have also been applied in speech
enhancement, biomedical signal processing, and other fields [7–9].

An ALE based on the least mean square (LMS) algorithm was first proposed, and it is
often referred to as conventional ALE (CALE) in studies regarding passive sonars [4,10].
Later, CALE based on the statistical mean square error (MSE) criterion was proposed
by Widrow et al. in 1975 [11]. The filter of CALE uses the irrelevance of noise and
the correlation of single-frequency components to suppress the noise, yet there remains
much room for improvement in its enhancement performance [12–14]. Considering the
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sparsity of narrowband signals in the frequency domain, a sparsity-based ALE (SALE) and
fast implementation of SALE (FSALE) based on prior sparse information were proposed
to improve the line spectrum enhancement performance [15]. On the basis of SALE,
more sparsity-driven ALEs applying different sparse penalties have been proposed [16].
Sparsity-driven ALEs perform better than CALEs in passive detectability with higher SNR
gain amid Gaussian noise [17,18]. Compared to Gaussian environmental noise, under-ice
noise includes many sharp impulse bursts with strong power. Strong impulse noises are
generated during the process of ice formation, rupture collision and friction which, in
turn, results in a heavier tail in the probability density function and makes the under-
ice environmental noise non-Gaussian and nonstationary [19]. Impulse noises are also
common in tropical waters and caused by snapping from shrimps and other aquatic
animals [20]. However, CALE and the sparsity-driven ALE methods cannot perform well
in non-Gaussian noise, because random processes according to non-Gaussian distribution
do not have second-order and higher-order statistics [21]. To improve performance for
impulse noises, the LMP algorithm is applied on adaptive filters [22,23]. Based on the
CALE and LMP algorithms, the least mean p-power ALE (PALE) is helpful for suppressing
impulse non-Gaussian noise. Instead of the square operation in the cost function of CALE,
PALE uses p-power to construct the cost function [22]. Time-varying step-size methods are
feasible solutions to accelerate the convergence process using the LMP algorithm. The time-
varying step-size GVSS-LMP algorithm is proven to be robust when applied in adaptive
filters [24]. In the KCGLMP algorithm, the LMP error criterion and kernel adaptive filters
are combined to improve the filtering accuracy and computational efficiency [25]. In
constrained-type adaptive filters, the constrained least mean p-power (CLMP) method is
proposed to deal with non-Gaussian signals [26]. Additionally, the researchers also propose
NLMP and NLMAD (p = 1) to obtain better filtering results [27]. Adaptive processing on the
basis of the LMP error criterion has been applied in the noise reduction of electrocardiogram
(ECG) signals, speech signals and other fields [21,22,28].

To improve the enhancement performance amid under-ice noise, in this paper a least
mean p-power-based sparsity-driven ALE (PSALE) method was proposed. The LMP error
criterion was applied on the PSALE to reduce the effect of non-Gaussian noise on the
enhancement. To use the prior sparse information of narrowband tonals from targets, the
PSALE was achieved in the frequency domain and imposed a sparse constraint on the
cost function. Meanwhile, to improve the effect of the sparse constraint, the p-norm was
applied on the constraint. The PSALE is based on the LMP error criterion. In addition,
the frequency domain sparsity penalty was also used in the PSALE. In the simulation, the
output SNR gain of the proposed PSALE was, respectively, 9.3 and 2.6 dB higher than that
of the SALE and PALE when the input GSNR was −12 dB. The results of processing the
real data also show that the PSALE performed better than the three other ALEs.

The remainder of this paper is organized as follows. In Section 2, the principle of
conventional ALE is introduced, and the proposed PSALE is presented. In Section 3, the
performance of the PSALE is evaluated through simulation. In Section 4, the results of
processing the experimental data are shown. In Section 5, a discussion is provided. Finally,
Section 6 concludes the paper.

2. Methods and Materials
2.1. Principle of Conventional ALE

Line spectrum enhancement is a method that is widely used to enhance weak tonals
through the adaptive filtering technique. The ALE is based on the principle that narrowband
signals and noise have different correlation lengths. As shown in Figure 1, the block
diagram shows that an adaptive filter is employed in the CALE. The original input signal
x(n) of the CALE is the sum of some narrowband signals contaminated by the broadband
noise. The input y(n) of the adaptive filter is the original CALE input delayed by a delay
parameter, and the reference of the adaptive filter is the original CALE input.
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Figure 1. Block diagram of the CALE.

The decorrelation delay measured by the sampling period is the predicted depth
of the CALE. In order to keep the noise in the reference and input of the adaptive filter
uncorrelated while also keeping the signal correlated, the value of the delay should be
greater than the correlation length of the broadband noise and smaller than the correlation
length of the narrowband signals. The cost function of the LMS algorithm is based on the
MSE criterion. In addition, the filter coefficients are adjusted according to the cost function.
The CALE has low algorithmic complexity and is easy to implement, but the SNR gain
after processing can be further improved.

The original signal in the discrete time domain is expressed by x(n) = s(n) + u(n),
where n is the time index, and s(n) is the sum of the underwater acoustic tonals expressed by

s(n) =
M

∑
m=1

Amsin(2π fmn+ϕm), (1)

where M is the number of narrowband signals, Am is the amplitude of the tonal, fm is
the frequency of the tonal, ϕm represents the original phase and u(n) is the additional
broadband noise. x(n− n0) = [x(n− n0), x(n− n0 − 1), . . . , x(n− n0 − L + 1)]T is the
delay vector of x(n), and n0 is the delay parameter.

The coefficient of the adaptive filter is w(n), which is a weight vector expressed by
w(n) = [w0(n), w1(n), . . . , wL−1(n)]

T , where L is the length of the weight coefficients. The
output of the adaptive filter is computed by

z(n) = w(n)Tx(n− n0), (2)

and the estimation error ε(n) of the adaptive filter is given by

ε(n) = x(n)− z(n). (3)

The cost function J(n) of the LMS algorithm can be expressed by the following formula

J(n) = E
(
|ε(n)|2

)
. (4)

The filter coefficients can be computed by applying the steepest descent method
expressed by

w(n + 1) = w(n) + 2µε(n)x(n− n0), (5)

where the positive value µ is the iterative step-size parameter. The LMS adaptive weight
vector converges to the optimal adaptive weight vector, and the filter coefficients will maintain
a steady-state error. Meanwhile, the performance of the CALE will be limited by this steady-
state error. The optimal weight vector is also called the Wiener weight vector, which is given
by wopt = R−1p. Here, R is the covariance matrix of x(n− n0), and p is the correlation vector
between x(n− n0) and x(n) denoted by Formulas (6) and (7), respectively.

R = E
[
x(n− n0)xT(n− n0)

]
. (6)
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p = E[x(n)x(n− n0)]. (7)

2.2. Proposed PSALE

In this section, a PSALE method is proposed by applying the LMP error criterion
and sparse constraint on the ALE to improve the enhancement performance amid non-
Gaussian noise.

2.2.1. LMP Error Criterion

The LMP algorithm is applied on the adaptive filter to improve the SNR gain amid
non-Gaussian noise [22]. The filter coefficients in the CALE are updated by Formula
(5). When the noise model satisfies the Gaussian distribution, the adaptive filter in the
CALE based on the LMS algorithm can easily narrow the estimated error. However, some
sharp spikes with higher amplitude appear in the environment, and the update process
of the filter coefficients will be disturbed by the suddenly large error ε(n). Under this
circumstance, the cost function can be constructed using the p-order distance of the error
ε(n) expressed by

J(n) = E
(
|ε(n)|p

)
, (8)

where sgn(·) takes a sign operation, and p is a positive norm parameter satisfying 1 < p < 2.
The filter coefficients are updated by

w(n + 1) = w(n) + µ|ε(n)|p−1sgn(ε(n))x(n− n0), (9)

where µ is the positive learning parameter. When p = 2, the LMP algorithm degenerates to
the LMS algorithm. When p = 1, the LMP algorithm degenerates to the least mean absolute
deviation (LMAD) algorithm. The p-order distance can effectively suppress impulse noise;
thus, the LMP algorithm is more suitable for processing the data amid non-Gaussian noise
than the LMS algorithm.

2.2.2. Principle of PSALE

In the conventional ALE, the filter coefficients are updated in the time domain. Con-
sidering that the tonal signal is narrowband in the frequency domain, there will be a few
elements of the frequency domain filter coefficients contributing to the enhancement. Thus,
the weight coefficients of the adaptive filter are sparse. In order to use the prior sparsity
information, the proposed PSALE is achieved in the frequency domain. The working
schematic is shown in Figure 2.
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In the SALE, matrix F is the discrete Fourier operator given by Formula (10)

F =
1√
L


1 1 · · · 1

1 e−j 2π
L · · · e−j 2π(L−1)

L

...
...

. . .
...

1 e−j 2π(L−1)
L · · · e−j 2π(L−1)2

L

, (10)

where we have
FHF = I. (11)

The frequency forms of the adaptive filter input and the filter coefficients can be,
respectively, denoted as xF(n− n0) = Fx(n− n0) and wF(n) = Fw(n). The output of the
adaptive filter can be represented by

y(n) = wT(n)x(n− n0)
= wT(n)FHFx(n− n0)
= wH

F (n)xF(n),
(12)

where the frequency domain filter coefficients are updated according to the cost function.
Thus, the building of the cost function is important for the whole PSALE.

The estimation error of the adaptive filter can be determine by

ε(n) = x(n)− y(n). (13)

In the conventional ALE, the adaptive filter is based on the LMS algorithm, and the
cost function is an estimation of MSE. However, in the non-Gaussian distribution, it does
not have second-order statistics or higher-order statistics. Thus, the MSE criterion is not
suitable for describing the cost function under non-Gaussian noise. In order to suppress
the non-Gaussian noise, we imposed the LMP error criterion on the adaptive filter. Then,
we can obtain the first part of the cost function expressed by Formula (14)

J1(n) = E
(
|ε(n)|p

)
, (14)

where 1 < p < 2.
As analyzed, the frequency domain filter coefficients wF(n) should be sparse. To

utilize the sparsity, we imposed the sparse penalty on wF(n). The most widely used norms
are l0 and l1, where l0 represents the number of non-zero elements in the vector, and l1
represents the sum of the absolute values of each element in the vector. Due to the fact that
the solution of l0 is a nondeterministic polynomial-time (NP) difficult problem and l1 is
the optimal convex approximation of l0, l1 can be used as the approximate solution of l0.
However, p-norm regularization has proved to be much sparser than l1 regularization [29].
Thus, we imposed a p-norm sparse constraint on wF(n). The sparse norm constraint part
in the cost function can be expressed by Formula (15)

J2(n) = k‖wF(n)‖p1
, (15)

where 0 < p1 < 1.
The term in Formula (15) is called the zero-forcing term, which means the noise

component in the filter coefficients will be suppressed to maintain the sparse part. The value
of k influences the suppression ability on noise of the zero-forcing term. An excessively
small k cannot make the zero-forcing term effective, while an excessively large k will lead
to the suppression of the large weights.
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Based on the above analysis, the optimized cost function can be expressed by

J(n) = J1(n) + J2(n)
= E

(
|ε(n)|p

)
+ k‖wF(n)‖p1

. (16)

The gradient of the cost function J(n) regarding w∗F(n) is denoted by

∇w∗F(n)
J(n) = ∇w∗F(n)

E
(
|ε(n)|p

)
+ k∇w∗F(n)

‖wF(n)‖p1
. (17)

By computing the two gradient parts in Formula (17), we can obtain Formulas
(18) and (19)

∇w∗F(n)
E
(
|ε(n)|p

)
= p|ε(n)|p−1sgn(ε(n))(−xF(n)), (18)

∇w∗F(n)
‖wF(n)‖p1

= ∇w∗F(n)

(
p1

√
∑L−1

l=0

∣∣wF,l(n)
∣∣p1

)
= 1

p1
‖wF(n)‖1−p1

p1
· p1sgn(wF(n)) ◦ |wF(n)|p1−1

= ‖wF(n)‖1−p1
p1

sgn(wF(n)) ◦ |wF(n)|p1−1,

(19)

where the operation ◦means multiplication by element.
The updating formulation of the adaptive filter can be written by

wF(n + 1)
= wF(n) + µ1 p|ε(n)|p−1sgn(ε(n))(−xF(n))
+k‖wF(n)‖1−p1

p1
sgn(wF(n)) ◦ |wF(n)|p1−1

= wF(n) + µ|ε(n)|p−1sgn(ε(n))xF(n)
+k‖wF(n)‖1−p1

p1
sgn(wF(n)) ◦ |wF(n)|p1−1,

(20)

where µ is the iteration step size used to control the converging speed of the adaptive
algorithm, and µ1 is an adjusting parameter.

3. Simulation Performance

In this section, the α stable distribution is introduced, the performance of the proposed
PSALE is compared with those of several adaptive line spectrum enhancers (CALE, PALE
and SALE), and different situations are discussed.

3.1. The α Stable Distribution

The characteristics of α stable distribution are affected by four parameters: α, β, γ and
δ. These four parameters, respectively, determine the tail characteristics, deflection char-
acteristics, dispersion characteristics and position characteristics of α stable distribution.
α ∈ (0, 2] is the characteristic parameter, which determines the tail thickness of the proba-
bility density function for a random sequence. β ∈ [−1, 1] is the skew parameter, which
affects the symmetry of the probability density function. When β = 0, the distribution
is symmetrical; when α = 1 and β = 0, the α stable distribution is Cauchy distribution;
and when α = 2, the random distribution becomes Gaussian distribution. The smaller
the value of α, the heavier the tail of the probability density distribution and the stronger
the impulsivity of the random sequence. γ ∈ (0,+∞) is the dispersion parameter, which
is used to measure the deviation of the sample from the mean value. γ is similar to the
concept of variance. δ ∈ (−∞,+∞) is a position parameter and determines the offset
degree of the probability density function on the x-axis.

Figure 3 shows the influence of the different parameters on the probability density dis-
tribution function of α stable distribution. The embedding diagram in Figure 3a shows the
tailing characteristics of the probability density function when the characteristic parameter
α takes different values.
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3.2. Simulation

The formula for calculating the SNR under a non-Gaussian distribution is similar to the
formula under Gaussian distribution. Assuming that the noise in the discrete time domain
is n[k], where k is the time index, the signal not contaminated by noise is x[k], and the signal
length is K; then, the signal power is Px = 1

K ∑K
k=1 x[k]2. We used the generalized SNR

(GSNR) to measure the relationship between signal and noise. The formula for calculating
the GSNR can be expressed by

RGSN = 10 log10

(
Px

γα

)
(dB). (21)

First, the situation of one tonal is discussed. The original input signal was the sum
of one narrowband signal and broadband impulse noise. The additional noise fit the non-
Gaussian distribution. The signal frequency was 192 Hz, sampling frequency was 2000 Hz,
signal length was 200 s, and GSNR was −11 dB. Different methods were used to process
the contaminated signal. The learning parameter µ was 1 × 10−10. The norm parameter p
was 1.1. The search interval of the parameter k in SALE was 9 × 10−12. The search intervals
of the parameters k and p1 in PSALE were 2 × 10−13 and 0.5, respectively.

We used a low-frequency analysis and recording (LOFAR) diagram to evaluate the
enhancement results here and after. In addition, the output SNR of the processed signal
was calculated based on the LOFAR results. The computing method was achieved in the
frequency domain to (1) calculate the sum of the power at the detected line spectrum
frequencies as the signal power; (2) calculate the average power of the broadband noise
without the signal power as the noise power; and, finally, (3) calculate the result of the
signal power divided by the noise power as the output SNR. The LOFAR diagrams after
different processing are shown in Figure 4. The diagrams are the LOFAR spectrums of
the original input data and the respective outputs of CALE, PALE, SALE and PSALE. The
specific output SNRs of PALE, SALE and PSALE are 16.9, 16.7 and 19.0 dB higher than that
of the CALE, respectively. The proposed PSALE, shown in Figure 4e, had the clearest line
spectrum and the best enhancement performance.
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To compare the enhancement performance of the ALEs under different GSNRs, the
output SNR under different GSNRs is discussed to evaluate the output SNR gains.

The output SNR gains in dB of the various ALEs are shown in Table 1 compared to
the CALE. We set the GSNRs to −12, −9, −6, −3 and 0 dB. The values were averaged over
10 times under each GSNR. The simulated signal continued for 200 s. The results show that
the proposed PSALE always had the highest SNR gain. Moreover, we could determine that
the output SNR gain of the PSALE was, respectively, 9.3 and 2.6 dB higher than that of the
SALE and PALE when the input GSNR was −12 dB.

Table 1. SNR gains of the various ALEs.

GSNR (dB) PALE (dB) SALE (dB) PSALE (dB)

−12 16.3 9.6 18.9
−9 12.0 10.6 12.4
−6 10.5 7.7 10.6
−3 7.9 7.0 8.0
0 3.5 2.9 3.6

The situation of three tonals is also discussed in this paper. The frequencies of the
three tonals were 86, 135 and 192 Hz. The sampling frequency was 2000 Hz, signal length
was 300 s and the GSNR was −10 dB. We used the four ALEs to process the contaminated
input. The learning parameter µ was 1 × 10−12. The norm parameter p was 1.1. The search
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interval of the parameter k in SALE was 9 × 10−14. The search intervals of the parameters
k and p1 in PSALE were 2 × 10−15 and 0.5, respectively.

The LOFAR diagrams of the original input and the results processed through different
ALEs are shown in Figure 5. The subgraphs, from top to bottom, are the original LOFAR
diagram, and the results after processing by the CALE, PALE, SALE and PSALE. The
output SNRs of the PALE, SALE and PSALE were 13.7, 7.5 ad 17.2 dB higher than that of
the CALE, respectively. The LOFAR diagram, as shown in Figure 5e, after processing by the
PSALE had the best performance among all of the ALEs. It can be seen that the proposed
PSALE could efficiently suppress the non-Gaussian noise when the CALE and SALE failed.
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4. Data Analysis

In this section, we use the environmental noise data recorded under ice to verify the
performance of the proposed method and the CALE, PALE and SALE. The situations of
one and three tonals are discussed.

4.1. Environmental Noise Characteristics

The under-ice noise data recorded at a depth of 95 m contained broadband noise with
sharp bursts. The sampling frequency after downsampling was 4000 Hz. The noise data
in the time domain and their LOFAR diagram are, respectively, depicted in Figures 6a
and 7. The results in Figure 7 show that the strong non-Gaussian impulsive noise was
not averagely distributed in each frequency band. To determine the exact frequency band
where the non-Gaussian impulse noise was distributed, we used α stable distribution to fit
the under-ice noise to determine the fitting value of the parameter α in every frequency
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band. The fitting result is shown in Figure 8. From Section 4.1, we know that the smaller
the parameter α, the stronger the non-Gaussian and impulsive characteristic. Therefore,
signals in the frequency band with α ≈ 1.7 have stronger impulsivity. We chose the filtered
noise signal between 650 and 850 Hz as the non-Gaussian environmental noise to verify the
methods. The noise in this frequency band exhibited stronger non-Gaussian characteristics.
The filtered noise data are shown in Figure 6b. Next, we analyzed the proposed PSALE
performance in this frequency band and compared it with those of the three other ALEs
amid impulse noise.
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4.2. Experimental Data Analysis

Next, we added the narrowband component into the filtered noise data to form the
under-ice received data. The frequency of the tonal was 750 Hz, and the frequency band
of the impulse noise ranged between 650 and 850 Hz. The time length of the signal was
200 s. The learning parameter µ was 5 × 10−12. The norm parameter p was 1.1. The
search interval of the parameter k in the SALE was 2 × 10−22. The search intervals of
the parameters k and p1 in the PSALE were 9 × 10−20 and 0.5, respectively. The LOFAR
diagrams are depicted in Figure 9.
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Figure 9a shows the original LOFAR diagram of the unprocessed signal with low SNR.
The output SNRs of the PALE, SALE and PSALE were 2.5, 14.7 and 16.4 dB higher than that
of the CALE, respectively. Figure 9e shows the processing result of the PSALE proposed in
this paper. It can be seen that broadband noise and impulse noise were strongly suppressed,
and the line spectrum at 750 Hz was obvious. The line spectrum in the PSALE was much
clearer than those of the other ALEs.

Finally, we discuss the situation of three tonals under non-Gaussian noise for passive
detection. We added three narrowband signals to the recorded environmental impulse noise
to verify the proposed PSALE. The time it continued for was 200 s. The three frequencies
were 690, 750 and 810 Hz. The learning parameter µ was 5 × 10−12. The norm parameter
p was 1.1. The search interval of the parameter k in the SALE was 1 × 10−22. The search
intervals of the parameters k and p1 in the PSALE were 1 × 10−19 and 0.5, respectively. The
processing results are shown in Figure 10.
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The first subgraph is the original LOFAR spectrum. The respective output SNRs of
the PALE, SALE and PSALE were 2.4, 9.5 and 12.2 dB higher than that of the CALE. The
results in both Figure 10c,e show three clear tonals, while the tonals in Figure 10b,d are not
sufficiently clear. It can thus be seen that the proposed PSALE had the highest output SNR
and developed the best among the four ALEs.

5. Discussion

Non-Gaussian noise has rich impulse components and different statistical characteris-
tics from Gaussian noise. The conventional ALEs are based exactly on the hypothesis of
Gaussian noise. However, when ALEs are employed to suppress non-Gaussian noise, the
model mismatch will influence the enhancement performance. Under-ice noise exhibits
non-Gaussian characteristics. To improve the enhancement performance amid under-ice
noise, we proposed the PSALE method.

First, the method was tested by simulation in the scenarios of one under-ice target and
three under-ice targets. Second, the experimental data were processed in order to compare
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and discuss the results provided by other approaches and our approach. The results show
that the PSALE had a higher SNR gain than the three other ALEs amid non-Gaussian noise.

In past studies, both the CALE and SALE were based on the Gaussian noise model,
and the SALE performed better than the CALE using frequency domain sparsity penalties.
These two methods do not have a strong inhibiting ability on non-Gaussian noise because of
the noise model mismatch, while our method is aimed at suppressing non-Gaussian noise.
The PALE performed better amid non-Gaussian noise than the CALE with the influence of
the LMP algorithm. However, the PSALE imposes sparse penalties on the basis of the LMP.
Meanwhile, though the SALE imposes sparse penalties too, the PSALE uses p-norm sparse
penalties to modify the cost function to suppress non-Gaussian noise. Moreover, there
also exist the logarithmic sparse penalty and CIM (correntropy-induced metric) sparse
penalty which are applied in the cost function and are effective for overcoming the non-
Gaussian problem [23]. Compared to the variable step-size methods [24], the PSALE does
not have a variable step-size parameter, and all parameters need to be provided artificially.
The study may help to automatically determine the step-size parameter of the PSALE. In
the PSALE, the gradient is determined by the steepest gradient (SG) algorithm. There is
also the conjugate gradient (CG) algorithm, which is used in adaptive filters to improve
the performance in non-Gaussian noise [25]. In addition, the CG algorithm has a faster
convergence speed than the SG algorithm, while the SG algorithm has a lower algorithmic
complexity than the CG algorithm.

To this end, we showed that the PSALE can efficiently suppress non-Gaussian noise.
However, there are still several problems needing further study. The specific rule between
the norm parameter p and the characteristics of the non-Gaussian noise is not very clear,
and it determines the optimal parameter p. We will work to improve the issues.

6. Conclusions

In this paper, considering the problem of the performance degradation of the conven-
tional ALEs against the background of non-Gaussian noise, an improved method, PSALE,
was proposed. By suppressing non-Gaussian noise, the proposed PSALE can yield a higher
output SNR and superior performance. In addition, it can be seen from the simulation
that the proposed PSALE achieved the highest output SNR compared to the CALE, PALE
and SALE. Furthermore, the output SNR gain of the PSALE was, respectively, 9.3 and
2.6 dB higher than that of the SALE and PALE when the input GSNR was −12 dB. The
results of processing the real data also support the superiority of the proposed PSALE amid
impulse noise. In the future, the relationship between the parameters of adaptive filters
and the impulsivity of the noise will be further investigated. Although the PSALE method
performed well amid non-Gaussian noise, it still has several weaknesses. On the one hand,
both the parameter debugging work and the calculation take a long time. On the other
hand, from the LOFAR results we can see that there still remains some impulse noise in the
background, which means the enhancement of the PSALE needs to be further improved.
In the next step, we suggest that an auto-debugging algorithm can be designed based on
the LOFAR results, and the cost function can be optimized further.
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