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Abstract: With the passage of time, the exploitation of Internet of Things (IoT) sensors and devices
has become more complicated. The Internet of Underwater Things (IoUT) is a subset of the IoT in
which underwater sensors are used to continually collect data about ocean ecosystems. Predictive
analytics can offer useful insights to the stakeholders associated with environmentalists, marine
explorers, and oceanographers for decision-making and intelligence about the ocean, when applied
to context-sensitive information, gathered from marine data. This study presents an architectural
framework along with algorithms as a realistic solution to design and develop an IoUT system to
excel in the data state of the practice. It also includes recommendations and forecasting for potential
partners in the smart ocean, which assist in monitoring and environmental protection. A case study
is implemented which addresses the solution’s usability and agility to efficiently exploit sensor data,
executes the algorithms, and queries the output to assess performance. The number of trails is
performed for data insights for the 60-day collection of sensor data. In the context of the smart ocean,
the architectural design innovative ideas and viable approaches can be taken into consideration to
develop and validate present and next-generation IoUTs and are simplified in this solution.

Keywords: IoT; oceanic data analytics; smart ocean; software architecture style

1. Introduction

Generally, water is divided into small seas and vast oceans, and the idea of the network
is described as a set of devices exchanging useful information using different technolo-
gies such as Ethernet, wireless fidelity (WiFi), and Bluetooth. Likewise, the Internet is
also defined as a network comprising networks. Such a kind of distributed network is
closely associated with regulatory bodies and standardizations, along with providing a
widely attainable ecosystem supporting services for multiple users. As a sub-ecosystem
of the Internet, IoT has emerged to connect different devices to the World Wide Web. IoT
is a challenging combination of heterogeneity and distribution. It is a platform with a
combination of sensors that empowers the basic structure that composes heterogeneous
things including services, systems, devices, and individuals in smart systems and settings.
With the ongoing advanced developments, the IoT has been transferred into a newfan-
gled network of objects including home appliances, smartphones, smart watches, or any
objects incorporated with software, sensing devices, or actuators. Additionally, IoT has
been lurching forward at a rate of 21% since 2016 [1]. IoT is composed of an increasing
number of sensors, interconnected tools, and smart objects that are untraceable, fast, and
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non-intrusive [2]. IoT connects machines that permit users to communicate with each other
and access data that can be processed online [3]. The main purpose of IoT objects is to
generate real-time data that can be analyzed to obtain intended business outcomes [4,5].

IoT has also revolutionized underwater wireless sensor networks (UWSN) as IoUT.
IoUT is referred to as an interconnected network of underwater devices with the capability
to sense, process, and transmit data to distant base stations (BS). IoUT systems are generally
used to measure specific chemical [6], biological or physical ocean parameters in order
to provide both real-time and historical data. This gathered oceanic data can support
researchers for future forecasting and phenomena and help policymakers to ratify strategic
planning [7]. With IoUT, underwater observation, monitoring, and exploration have become
more promising and efficient.

By operationalizing situations such as monitoring marine life, assessing underwater
pollution, and studying the association between numerous parameters, such as the effects
of temperature, pressure, salinity, total dissolved solids, pH, conductivity, turbidity, and
acidity on water, IoUTs give significant insights [8]. Sensor resource scarcity, wireless
network reliability, networked object performance, dynamic topology, energy consumption,
mobility, lack of standardization, and harsh transmission medium, along with data privacy
and security, are just a few of the concerns that might hamper the IoUT’s dependability
and widespread adoption. A comprehensive study is provided by DR KM et al. [9] to assist
industrial experts and academic researchers in further exploring the benefits, critical issues,
and potential solutions for IoUT. IoUT needs to combine and apply technical knowledge
and techniques from other IoT fields, such as smart homes, smart consumer electronics,
communication technologies, intelligent transportation, healthcare, and so on [10]. Several
research studies [11,12] have reported the potential of IoUT. IoUT has a wide range of
applications including environmental protection, ocean observation, underwater communi-
cation, submarine tracking, oil spill detection, search and rescue, marine transportation,
and tactical surveillance.

Smart IoT devices are shown in Figure 1. Utilizing IoT devices to distribute informa-
tion will increase audience engagement and knowledge. Figure 1 aids in explaining the
connection of the currently available IoT devices. The number of devices now linked to the
Internet exceeds 50 billion, according to Cisco [13]. IoT devices are furnished with actuators
and sensors that enable them to intelligently perceive and respond to their environment [10].
IoT device examples are shown in various ways in Figure 1. These devices have a finite
amount of memory, a weak processing engine, and minimal computational capability due
to their intrinsic resource limitations.

UWSN is regarded as the key enabler network for IoUT. Figure 2 presents the network
architecture of UWSN, which is composed of main elements as sensors placed in shallow
or deep water. It also contains sinks such as buoys, ships, ASVs, or AUVs [14]. UWSN
supports various applications such as ecological monitoring, seismic prediction, marine
species tracking, disaster prevention, and water quality monitoring [15–17]. The uncer-
tainty and complexity of IoT systems are increasing day by day. IoT has several quality
attributes associated with architecture, availability, scalability, security, functionality, and
interoperability of IoT applications with software applications as IoT is based on a smart
configuration of devices [18,19]. It is becoming more challenging to reuse IoT systems
because of their complexity. Moreover, interoperability has also become difficult due to
the development of new technologies, which is not the only factor. Interoperability also
becomes more difficult and severely degrades performance if most of the services are linked
without considering any appropriate architecture design-based requirements [20–22]. The
Internet of Things requires a proper framework to enhance interoperability among various
resources and systems [23].
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Figure 1. An illustration of IoUT network.
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vices and constraints of sensor-driven devices, several studies have focused on scalable 
application designs, IoT-intensive digital software, IoT ecosystem, and model-driven 
engineering perspectives. Methods for underwater data mining and analytics have been 
introduced in recent research initiatives such as [24]. In both oceanic data predictive an-
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For defining an appropriate framework to assist the system engineering of IoT services
and constraints of sensor-driven devices, several studies have focused on scalable applica-
tion designs, IoT-intensive digital software, IoT ecosystem, and model-driven engineering
perspectives. Methods for underwater data mining and analytics have been introduced
in recent research initiatives such as [24]. In both oceanic data predictive analytics, how-
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ever, there is no existing solution that allows human decision-based customization and
tool-based automation. The need for architecture in business has become of paramount
importance, with the rapidly growing number of action plans, strategies, and activities
directed towards institutionalized structures. The growing IoT software applications have
driven both researchers’ and practitioners’ interest in the business. However, designing a
new business intelligence (BI) framework for IoT is a complex task. It ensures satisfying the
requirements of decision-makers by taking various constraints into account. These opera-
tions plan to empower the interoperability of ubiquitous network technologies, streamline
advancement, and simplify execution to achieve scalability, ultra-reliability, and low latency
in IoT networks [25]. Software architecture design is the basic artifact, enabling predictive,
straightforward, scalable development of advanced software systems [26]. On the Internet
of Things, features and applications must be put together from a set of independent and
small services. In recent years, software architecture styles have received a lot of atten-
tion as mitigative solutions with the development and operationalization of software IoT
systems [27].

As shown in Figure 3, the solution overview of the architectural framework for IoUTs
and the use of architecting style for IoUT system development as a distinct genre of IoT
can be presented [28,29]. The architectural framework is one of the main objectives of this
study: to provide a solution and a set of guidelines to support IoUT practitioners and
researchers in developing promising next-generation (software-intensive) IoT features from
the perspective of smart ocean systems.
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1.1. Research Contribution

As a result of the fact that the proposed solution employs ocean IoT, an emerging class
of IoT systems that connects intelligent infrastructures and systems to ocean predictive
analytics, the proposed solution is considered innovative. The state of the art in ocean
IoT is being advanced, with a focus on fusing the idea of ocean IoT with methodologies
and procedures for data analysis for smart ocean technology. The experimental work in
this thesis sheds additional light on environmental science’s technological requirements,
particularly the enabling framework required to support scientific discovery.

• The proposed framework, which combines a multi-tier architectural style with features
that highlight the system’s role in developing the ocean forecasting system with the
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concept of sensor correlation, is intended for researchers and other stakeholders in
various communities who may be interested in understanding solutions in terms of
ocean forecasting.

• We used case studies to verify the solution’s effectiveness in a variety of aspects,
including sensor throughput, algorithmic execution, and query response.

1.2. Organization

The remainder of this article is structured as follows: Section 2 presents background in-
formation and previous work. Section 3 illustrates the research methodology and materials.
Section 4 presents the results and analysis. Finally, we conclude the paper in Section 5.

2. Background and Previous Work

This section provides background information to contextualize the components of
IoUT systems and sheds some light on software architectural styles for IoUT development.
First, we comprehensively discuss the background of different types of data mining meth-
ods in the oceanic environment and other scenarios. Later, we discuss the available research
contributions related to oceanic data mining methods in the terms of IoT. Brief detail about
different types of data mining methods and their research state of the art empowers us
to validate the scope and feasibility of the proposed framework. The terminologies and
concepts that are utilized are used in this section.

2.1. Background

IoT is an advanced network of entities such as devices, software, sensors, actuators,
and networking embedded with physical objects (e.g., cars, home appliances, and other
products) that enable them to communicate and share data. It provides the potential
for more extensive incorporation of the real world into computer-aided systems, result-
ing in significant improvements in productivity, economic gains, and reduced human
activities [30]. The IoT computer functions as an entity involved in a data collection pro-
cess; these data are also used to maintain smooth operations, proactive monitoring, and
data-driven choices aimed at improving and optimizing a business strategic plan.

IoT technologies are now installed. Intelligent use of IoT devices can enable the pro-
cessing and review of near real-time data that will contribute to effective and more efficient
decision-making capabilities powered by evidence [31]. The intelligent transportation we
use, the communities we live in, the way we shop, the eHealth system we are developing,
how we take care of ourselves, etc., are finding their way into every facet of our daily
lives. High-speed data streams that are challenging to tackle, interpret, store, and protect,
produce an extensive amount of data. IoT sensors and software gather plenty of useful
insights. IoT data are often extremely perishable, and corporations lack potential without
the appropriate resources to operate with the most efficient time-sensitive insights. Big
data of IoT is an integral dimension of time; thus, it should be handled in real-time or, in
fact, in a limited period of time, because there will be no use resulting from processing
beyond a specific date [32].

The design components of IoUTs are depicted in Figure 4. The first layer of ‘Data
Collection’ performs operations for data collection from deployed sensors. A Scientific
Instrument Interface Module (SIIM), which can be a wired or wireless medium, connects the
backend server to the computer. Each sensor collects a specific type of oceanographic data,
adds the sensor’s name and exact location, and delivers it to the bridge. The bridge receives
data from all these sensors and operates as a link between the sensors that collect data and
the server that keeps a record of it. Oceanic data can comprise a wide range of information,
such as pollution types and levels, sunshine, temperature, pressure, dissolved oxygen, pH
value, conductivity, salinity, turbidity, and water acidity. The data are delivered to the IoT
server, which then delivers them to the ‘Data Processing’ layer, which is the fundamental
layer for carrying out analytic operations and storing data in a database. These methods
might be performed earlier and posted for data storage management. Offshore processing
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is also integrated to execute the necessary analytics in terms of computing the connections
between various forms of oceanic data, such as the impacts of water temperature and the
impact of dissolved biological and chemical pollution and acidity on the underwater web
of life. The ‘User Interface Layer’, the final third layer, presents data to the end-user, who
might be any stakeholder. The potential findings of analytics are communicated to the
end-users to carry out immediate actions and human decision support in the context of
smart oceans.
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2.2. Related Work

Through processing IoT data using current business software and third-party data
sets, major IoT data analytics offer companies and other operating bodies the opportunity
to derive value from IoT sensors and applications to put more contextual knowledge into
this domain. It is then necessary to implement the data to develop gadgets with smart
features and services with high speed, low latency, high accuracy, and interactions with
efficient planning. Organizations must, however, ensure that they have the technology
in place to facilitate real-time data analysis on a scale to achieve maximum benefit from
their investments [33–35]. For instance, the Consumer Electronics Show (CES) is held on
a yearly basis for investors who are highly inclined toward consumer electronics. In a
previous session of the CES, various smart marine devices, e.g., autonomous cameras, sub
blue scooters, and remotely controlled drones that significantly assist in real-time ocean
observation [36] were presented as shown in Figure 5. These smart devices offer different
underwater applications: for instance, the Navatics Mito is a 4K camera empowering 1080p
streaming capability to effectively store and stream in marine services [37]. Furthermore,
Robosea’s Biki is an underwater drone offering marine surveillance, discovery, and the
photographer-shark is another promising technology that can dive up to 300 m. Similarly,
divers are using Sub blue scooters for underwater exploration [38].
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To effectively enhance sound recognition efficiency, marine organizations are increas-
ingly looking for innovative solutions using machine learning systems. Nowadays, most
uses of deep learning are described in [39], which makes it possible to model dynamic
data interactions by leveraging several layers of information processing. It focuses on
mitigating problems in extraction, transformation, classification, and pattern analysis of
functionality [40].

These rapid advancements and deployments of marine technologies to monitor and
explore the underwater environment generate an extensive amount of data or big marine
data (BMD). Big marine data (BMD) is considered as heterogeneous information collected
from underwater platforms. It can be chemical, biological, or environmental data gathered
from different sources such as sensors, tags, drones, or cameras. The processing stages of
BMD are as follows [41,42]:

(1) Acquisition: This refers to raw data collection.
(2) Secure Transmission: This ensures secure and reliable data transmission using various

communication media.
(3) Storage and privacy: This contains archival demands, legal concerns, and user privacy.
(4) Special purpose processing: To handle big datasets, this requires bespoke software

subscriptions to search, process, label, visualization, and update.
(5) Exploit and leverage: This ensures users’ enhanced revenue, safe travel, and secure

transportation. It also makes sure the protection of marine species and the environment.

With the distinctive features of marine big data, including incompleteness, complexity,
and multi-source, these overcome traditional systems’ storage and recovery capabilities.
The existing literature on big data focuses primarily on how these huge data quantities
can be detected and utilized more efficiently and reliably [43]. The main problems re-
ported in different studies are associated with infrastructure [44], storage [45], security [46],
analysis [47], etc.

Traditional oceanographers were provided with a new means to collect synoptic ob-
servations of surface global ocean conditions at unprecedented time and space scales [48].
Over the years, oceanographers have also gained capacity to collect data on crucial vari-
ables such as sea surface temperature, near real-time information, global information,
high spatial and temporal resolution, chlorophyll, coral reef, sea surface height (SSH), sea
surface salinity, winds, and ocean circulation with rapid developments in the advance-
ment of innovative sensor technology, advancements in data collection, communications
and knowledge sharing methods, etc., almost continuously from space. According to
Osen et al. [49], a technique to coordinate IoT data to enable Web-platform-based data col-
lection, retrieval, interpretation, and visualization is introduced. The web-based framework
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has been proposed, distributed, and interactively provided with real-time data originating
from oil detectors, addressing various consumers’ requirements.

On the ground level, the IoT integrates an ever-increasing number of smart devices to
control and track several everyday activities up to the minute. However, it has not been
fully explored in most areas of the open ocean. This constraint hampers the development of
political, industrial, and research societies, many of which require an in-depth understand-
ing of the dynamic and harsh ocean conditions. The Ocean of Things initiative is a research
and development project aimed at solving this maritime knowledge gap by deploying a
large number of low-cost, intelligent floats that act as a distributed sensor network spanning
vast ocean areas. In refs. [50–54] have discussed maritime awareness and cost-effective
ways to efficiently predict ocean circulation and marine mammal tracking. In another
research study [55], the concept of an innovative IoT-assisted mechanism for cost-efficient
ocean sensing was introduced. The technology is composed of consumer electronics off
the shelf and involves a central controller and different sensing devices connected with
it. In Table 1, we provide a comparative summary of the existing solutions. Aiming to
provide a comparative analysis and interpretation of our findings, we have compared the
current solutions considering five distinct criteria as presented in Table 1. Our architectural
framework is essential for creating the ocean systems and aiding research to understand
the ocean. Real-time data collection utilizing algorithms provides the data needed to an-
alyze the ocean’s environment. Data mining and analytics help in data intelligence [56],
which is necessary for accurate forecasting. This fifth criterion of data intelligence is a vital
component that allows us to make better decisions regarding the ocean.

Table 1. Comparison of the proposed framework with existing solutions.

Scheme Architectural
Framework

Real-Time
Data Collection Data Analysis Data Mining

and Analytics Forecasting

Chunqiang Hu [34] * *

Chrysanthi Tziortzioti [35] * *

Tie Qiu [47] *

Ottar L. Osen [49] * *

John Waterston [50] * *

Jiachen Yang [51] *

Our Scheme * * * * *

Asterisk ‘*’ presents that This scheme is available in the paper and discussed.

3. Method and Materials Involving Implementation

The research methods, core algorithms, and employed technologies to attain the
intended goals are discussed in this section. The implemented technologies discussion
is included to supplement the algorithmic requirements by simplifying the tools and
frameworks that software and system engineers may use for the successful implementation
of the proposed solution.

3.1. Research Methodology

Figure 6 depicts a summary of the research methodology, which consists of four phases
that follow an iterative approach to assess, develop, execute, and verify the approach, as
described below.
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The first stage of the methodology is literature analysis, which entails a critical eval-
uation of a large body of existing research such as peer-reviewed published research,
technological road maps, technical reports, etc. By analyzing current research and devel-
opment solutions, system designing is the phase of a methodology’s design that seeks a
modeling approach before its implementation. In the system design section, we developed
design models for the proposed architectural framework to serve as a blueprint for the
implementation of the solution. Algorithm execution displays the implementation of a
solution in the form of computation and storage-intensive stages and gives a breakdown
for configurability based on specified inputs by users. This section includes algorithmic
parameters and underlying source code. The final process, validation of the solution,
evaluates the functionality and quality of the offered solution. We are primarily interested
in assessing various elements of system usability and efficiency.

3.2. Implementation

This section goes through the basic procedures and technologies that were adopted
to achieve the desired result. The implementation technologies section supplements the
algorithmic requirements by simplifying the tools and frameworks that software and
system engineers can use to execute the recommended solution.

In Figure 7, a deployed set of sensors perceives the environmental conditions and
sends measurements. An actuator is used to control the SIIM modules in terms of voltage,
current, frequency, etc. Similarly, the sensors are deployed with the Scientific Instrument
Interface Module (SIIM). SIIM is the controller, and it has the role of operating the sensors’
data by packaging and transmitting it wirelessly. It transmits the data of sensors to the
operational IoT server. The data processing phase is the most crucial layer of this system
to process the data. The data from sensing devices arrive at the IoT server in a specific
package format, which needs to be unpackaged. After unpackaging the data, they are
transmitted to the database server directly for storage purposes. All sensors will be selected
by default, but the user can specify any sensors to obtain the data. After the sensor step, the
query executes all the lists’ data within the specific range of defined parameter values. The
next query executes the whole list to identify the messages against each query in the list.
Each message presents the effects of sensors’ records, which could be positive or negative
on the basis of the criteria. The list of effects is categorized into a group where all details
are presented about the effects. The forecasting (create/use datasets and obtain forecasting
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based on sensors values that could be already defined) phase is in progress and based on
these effects.
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The architectural framework is shown as a proposed framework in Figure 8 that is
divided into many layers. A case study was conducted in order to provide the basis for
this proposed framework. Its primary purpose is to provide a set of guidelines for the use
of algorithms in order to better understand and enhance ocean forecasting systems. Such
improved functionality would be invaluable for decision-making and planning in marine
operations, as well as providing useful insights in forecasting potential oceanic events.
This framework, with its comprehensive set of algorithms, could prove essential for the
future of ocean forecasting. There are four basic levels, the first of which is the physical
layer, which contains the hardware, sensors, and actuators. Under the physical layer, data



J. Mar. Sci. Eng. 2023, 11, 368 11 of 22

from the ocean and observations of the surroundings are gathered, packaged for a given
time cycle into an Excel or CSV file, and sent to the IoUT database server. The second
network layer is utilized to send the data package from the sensors to the database server.
The third layer is the platform, which has three lower layers: the authentication layer, the
database layer, and the data processing layer. Using an API design for microservices, the
authentication sublayer is utilized to verify the user’s identity as an independent layer. Due
to the need to provide more authentication and functionality, we adopted a microservices
API style for only authentication. All of the data from the sensors are kept on the IoUT
database server’s database sub-tier. All the data are utilized to train the forecasting model,
which is a sublayer of data processing that is also known as a model training layer. The
system’s stakeholder users used the application layer, the fourth and final layer, to view
the forecasting and recommendations.
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The database architecture is presented in Figure A1 in the Appendix A. The data from
IoUT’s sensors were stored on an MS-SQL database server. The design of the database
shows the parameters that are considered to store essential sensor information. The data
from the sensor are gathered by the IoT server and stored in a database. We created a
database with a dynamic architecture that allows the addition of new sensors to the system.
We also tracked the details for each activity, as well as any exceptions that may arise for
any certain reason.



J. Mar. Sci. Eng. 2023, 11, 368 12 of 22

The computational phases, data storage operations, and algorithm output are depicted
in Figure 9. By aligning design layers to computational steps across four layouts, the
recommended design (as provided in Figure 7) and algorithmic requirements (as provided
in Figure 8) remain constant. The first layer of the “Sensing Layer,” for example, shows the
method for packing data from the sensors. The technique for storing data from the package
and subsequently training the model with available data is presented in the second layer
of the “Analytics and Training Layer.” The last layer of the “Interface Layer” displays the
forecasting results to the user via a web interface. The findings from the forecasting are
presented through the interface layer.

Algorithm 1 Sensor Data Reading and Packaging

1: Input: S Sensor data
2: Output: Pkg Data Packaging
3: procedure DATAPACKING

4: while true do
5: Si ← Read() Reading Sensor’s Data
6: Pkg ← AddBulkData(ϕid, Si, t) Writing Data
7: if t < tp then
8: t← Reset() Reset timer for next interval
9: Send(T, Pkg) Sending Package to IoUT Data Server
10: end if
11: end while
12: end procedure
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We have provided an overview of the Algorithm 1 in pseudo-code. The algorithm of
data collection from the sensors is explained with the mechanism. The data are collected in
the form of a specific format, which is packaged in a file. The data-packaged file is sent to
the IoT server where all data packages are retrieved and processed to store in a database. In
the data collection process, there are lists of a set of sensors deployed to obtain information
about the specific environmental conditions and to send measurements.
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(1) Input(s): The input in this algorithm is used to collect the data of a specific sensor.
(2) Processing: Data are collected from the sensors, and this process is frequently re-

peated. There are different variables that are being collected as a piece of information
from the sensors, and then data are packaged and further sent to the server for
further processing.

(3) Result: The result is to be packaged with data and sent to the server.

Algorithm 2 Data Processing and Prediction

1: Input: σ, ψ, e, ≈, L, ∇, ρ sensor, data type, date, time, location, id, password
2: Output: P, S forecasting Outcome
3: procedure PREDICTION(ψ, σ, e=Null, ≈=Null)
4: if ID == ∇ || Password == ρ then Authentication Service Layer
5: if ψ == C || ψ == H then Current Data OR Historical Data
6: if σl > 0 then
7: if Q.σl > 0 then Correlation is not null
8: if L ! = NULL then location is not null
9: while j < σl do
10: while i < Q.σl do
11: P← TrainedModel(σl[j],→ [i],L, ψ, e,)
12: if P ! = null then
13: S← GetImpact(P)
14: end if
15: i++
16: end while
17: j++
18: end while
19: else
20: while j < σl do
21: while i <Q.σl do
22: P← TrainedModel(σ[j],Q[i],ψ,e,)
23: if P ! = null then
24: S← GetImpact(P)
25: end if
26: i++
27: end while
28: j++
29: end while
30: end if
31: else
32: while j < σl do
33: P← TrainedModel(σ[j],L,ψ, e)
34: if P ! = null then
35: S← GetImpact(P)
36: end if
37: j++
38: end while
39: end if
40: end if
41: end if
42: return P,S

The model training strategies used to train models for forecasting are presented
in the data analytics Algorithm 2. This is the most significant phase of data analytics,
which contains two sub-phases (current data and historical data) for data processing and
prediction. Historical data are prior data that assess the results of available previous
data for featuring the data forecast. Current data are closer to live data, which are uti-
lized to make the forecasting on the basis of the current date and time. The forecasting
is based on a variety of factors, where correlation-based sensor forecasting is the most
significant prediction.

(1) Input(s): We are passing various parameters with varying sensor relationships as
input. Data type, sensor type, correlation sensor type, date, location, and other
characteristics are used as inputs.
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(2) Processing: This algorithm analyses the data in order to deliver relevant insights
and perform forecasting according to the inputs of the users. The input for custom
data only goes to a database server, which provides data analytics, but the input for
forecasting goes to a specific trained model, which produces a forecasting result that
is displayed to stakeholders via a web interface (as shown in Figure 10).

(3) Result: To deliver helpful insights from the database server’s accessible data and
forecasting from the trained models.

Forecastinginput = f
(

Daterange, Sensorsids , CorrealtionSensorsids, Locationsids) (1)

PredictionOutput = ∑n
i=1 Snlist + ∑n

i=1 CrSnlist−Sn〈list〉 + ∑n
i=1 Loclist (2)

IntelligenceReom = f
(
∑n

i=1 E f f ectsDb〈list〉

(
∑n

i=1 Snlist + ∑n
i=1 CrSnlist−Sn〈list〉 + ∑n

i=1 Loclist

))
(3)

where ∑n
i=1 EffectsDb〈list〉 is the list of recommendations for predicting output and scenar-

ios,
n
∑

i=1
Snlist is the list of sensors that select the number of sensors from the first list,

∑n
i=1 CrSnlist−Sn〈list〉 is the number of correlation sensors, and ∑n

i=1 Loclist is the number of
locations where sensors are deployed.
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Deployed Sensor Information

• Temperature: To measure the current temperature.
• DO: To measure the dissolved oxygen level in the water.
• PH: To measure the acidity or alkalinity of the water.
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• Salinity: To measure the “saltiness” of seawater.
• Turbidity: To find the amount of light that is scattered by suspended or scattering

particles in water.
• Chlorophyll: To measure the resultant light fluorescence by chlorophyll in the red

wavelength. The fluorometer gives measurements of levels of chlorophyll in water.
• Sea Level: To measure the depth.

4. Results and Discussion

In this part, the findings of the recommended solution are reported. The evaluation
environment and dataset are contextualized. Then, we execute a criteria-based evaluation,
which includes monitoring and analyzing sensor data for stability, query response for
performance, and algorithmic execution for efficiency.

With the exponential rise of information technology and improvements in ocean ob-
servatories, ocean science is approaching the big data age. Smart disaster prediction, smart
underwater tourism, smart underwater exploration, smart underwater navigation, smart
deep range monitoring, smart ocean pollution monitoring, and smart underwater incursion
detection are different examples of smart ocean applications. Our suggested approach
can help in a more thorough analysis and understanding of the ocean, as well as a more
complete use of the ocean’s potential and more convenient control of the ocean to better
serve humanity. The sensors utilized for the evaluation of the ocean include temperature,
dissolved oxygen (DO), pH, salinity, turbidity, chlorophyll, and sea level. These sensors are
integral components of the framework used to forecast the ocean environment by providing
input data to the algorithms. The temperature sensor measures the temperature of the
ocean; the DO sensor measures the amount of oxygen in the water; the pH sensor assesses
the acidity of the water; the salinity sensor assesses the salinity of the water; the turbidity
sensor assesses the amount of light in the water; and the sea level sensor assesses the depth
of the ocean. By leveraging these sensors, this framework is able to accurately forecast
changes in oceanic conditions.

The ocean has an impact on our lives. Human actions, in turn, have an impact on
the water. The ocean must be observed, measured, assessed, protected, and managed.
Marine big data research provides new decision-making tools and projections to enhance
security, boost the economy, and safeguard the environment. Big data from the oceans
provide the path for more sustainable development and better living. In a rapidly changing
world, maintaining coastal and marine biodiversity is crucial for human health, marine
species, and ecosystem resilience. Our suggested technique can be used to assess the state
of marine biodiversity as a medium for the health of coastal and ocean ecosystems and
their capability to deliver ecosystem services including oxygen, food, economic advantages,
and a stable climate. As a result, controlling these marine resources through an approach
that protects current marine biodiversity will assist in the achievement of other ocean
management goals.

4.1. Implementation of Technologies

The complementary function of pertinent tools and technologies for the suggested
solution is summarized in this section. The longer discussion here aims to provide the
reader with a better understanding from a technological standpoint.

The data analytics process, which is written in Python and runs on Windows 10,
is the key element of the framework. The purpose of the data analytics algorithm is to
gather data from sensors and run the algorithm to save the data in SQL Server. In the
framework’s second major component, data prediction, the Time-Series model and Random
Forest are employed for model training. Models for data analytics and forecasting are
trained using Jupiter Notebook. The framework was developed to train models for a
collection of correlation sensors, and the training process involves multiple phases with
different sets of algorithms. For example, Sensor A from the first list of sensors and Sensor
B from the second list of correlation sensors were used to train the model. This cycle was
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used to train all of the models for all of the sensors, which is crucial in ocean forecasting.
Therefore, this framework and cycle are extremely important and can be used as a basis for
further research.

Figure 10 shows the default settings of the web intelligence. On the left side, the
historical data are selected by default. We have six different parameters that we are passing
to receive intelligence. For historical data, we set the date range that goes to the database
server for obtaining intelligence. The sensor list shows all available sensors that are used to
achieve the forecasting and the second list of sensors is a set of correlation sensors that are
connected with the sensors list to obtain the intelligence. There is also a locations list where
sensors are deployed.

We trained several models, but only certain models were linked to the stakeholders’
web interface. With numerous options, we present the result for “Current Data.” The
forecasting for the selected city is presented in the left part of Figure 10 based on a single
location. The forecasting result for multiple locations is presented in the right part of
Figure 10. The anticipated output is based on sensor correlation. We choose a temperature
sensor and calculate the pH value, which will be envisaged.

We trained several models, but only certain models were linked to the stakeholders’
web interface. With numerous options, we present the result for “Current Data.” The
forecasting for the selected city is presented in the left part of Figure 11 based on a single
location. The forecasting result for multiple locations is presented in the right part of
Figure 11. The anticipated output is based on sensor correlation. We choose a temperature
sensor and calculate the pH value, which will be envisaged. The source code is available on
GitHub along with uploaded videos for project presentation. In the video, we are briefing
about the training model and showing forecasting on the web interface for stakeholders.

The installation of sensors in the IoT domain and the data sent to a server has enabled
us to assess the sensor layer with the purpose of determining data stability and interrup-
tion. Figure 12 shows uniformity of sensor data throughput, represented by the y-axis,
which represents the data size in kb, and the x-axis, which refers to the number of days.
The data gathered from this framework can be used to improve existing algorithms for
ocean forecasting. By utilizing these algorithms, we can gain better insight into the ocean
environment, which would be beneficial in predicting future changes in ocean conditions.
The framework and algorithms developed in this research can be applied to other ocean
forecasting purposes. As shown in Figure 12, there is very little data disturbance, and
thus the consistency of the data supplied by the pH sensor is maintained. We calculated
the average data size in kb and determined that packets are produced at a pace of one
every ten minutes. The gateway sends them to the network server in response to specified
time-based trigger circumstances, which demonstrates the effectiveness of our framework
and algorithms for ocean forecasting.

Two criteria are used to check the performance of the data analytics phase: query
time and processing time. The query processing time is determined using current and
historical data. The present data refers to the data being processed directly from sensors,
whereas historical data have been captured and may have been analyzed before. However,
in order to make a forecast, previous data may be needed. Data analytics can also be
conducted on a specific set of fields or ranges of data. As a consequence, depending on
the system requirements, the query may vary. In order to assess and for the evaluation of
the efficiency of this proposed approach, we monitored the memory and usage of the CPU.
The processing and power efficiency monitoring overview of this proposed framework is
illustrated in Figure 13.
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4.2. Threats to Validity

We will briefly discuss various potential threats to the study’s validity.

(1) Internal Validity: Internal system aspects such as design and implementation may
be impacted. In our instance, we performed a series of trials to assess the correlation
between the sensors. To reduce internal validity, it must execute on a variety of
platforms in the future and employ massive datasets.

(2) External Validity: This has to do with the verification of solutions using various
relevant mechanisms and case studies. For the validation of the solution and the
single case study that may justify the generalization for the implemented system,
we employed the case study approach. To lessen the effects, more case studies are
required in future work.

5. Conclusions and Future Work

We exploit the IoUT as the state of the art in this paper with the aim of creating an
architectural framework for ocean intelligence data exploration.

The research explores the marine life for monitoring and protecting the environment
by predicting analytics. To operationalize a wide range of situations, from investigating
marine life to assessing water pollution and mining oceanic data, IoUTs serve as the
fundamental technology beneath the sea. Marine data also provide a variety of important
knowledge and exploration artifacts. Predictive analytics can offer useful insights to the
stakeholders associated with environmentalists, marine explorers, and oceanographers
for decision-making and intelligence about the ocean, when applied to context-sensitive
information, gathered from marine data. We proposed an architectural framework along
with processes as a realistic solution to design and develop an IoUT system to excel in the
data state of the practice.

Advancements have been made in IoT technologies, particularly integrating IoUT
concepts with data processing methods and techniques in smart ocean environments,
as follows:

• Following the multi-tier architecture style to design an architectural framework and
evaluate an IoT system subset known as IoUTs, which combines IoTs and data analytics.

• Enabling the customization of collected data as per the requirements of stakeholders.

Key intelligence: We collected data on oxygen level, water temperature, solar lights,
etc., and then investigated the impacts of anything that could affect sea species based on
requirements. We can predict which type of effect can most probably occur that in specific
weather conditions or at a specific time.

Stakeholders: These could be any scientists, practitioners, researchers, government
entities, regulatory bodies, etc., who observe ocean data-based effects on life or other things.
After reading the situation, they may make a model based on it. Models can be used to
investigate sea life that will impact ocean wildlife or other related factors.
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5.1. Limitations

The results of our experiments, involving a limited set of trials in an ocean case
study and using Relation Database Systems (RDBMS), were promising. Our models
had been trained on specific datasets, and the outcome of this system was encouraging.
We look forward to further studies which will allow us to refine our method for more
accurate insights.

5.2. Future Work

We aim to broaden the application of case studies and real-world scenarios in future
research in order to validate the solution even more. As part of the evaluation process, we
intend to provide more case studies to illustrate the solution’s performance in various data
and deployment scenarios. As a long-term goal, we intend to enhance this framework and
develop a platform to securely exchange IoUT data.
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