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Abstract: Tsunamis can cause high numbers of casualties, as well as direct and indirect economic
losses to coastal regions. The huge destructiveness of tsunamis requires us to study tsunami risk
and its temporal change. We adopt the tsunami scenarios of the Ryukyu Trench as an example to
analyze the temporal change in tsunami risk. According to the tsunami numerical model results,
the tsunami inundation in the worst tsunami scenario covered an area of 82.83 km2. Satellite data
including Landsat 8 images from July 2013 and Landsat 9 images from March 2022 were used with
the random forest (RF) method to analyze land use and tsunami vulnerability in 2013 and 2022. The
tsunami risk and its temporal change were analyzed by integrating tsunami hazard and tsunami
vulnerability. The tsunami risk change analysis results show that the area of tsunami risk level 1
increased by 4.57 km2, and the area of tsunami risk level 4 decreased by 7.31 km2. By analyzing
changes in land use and land cover (LULC) and tsunami risk, we concluded that the expansion of
constructed land and the increase in coastal population were responsible for the increase in tsunami
risk. The results of tsunami risk change analysis will help us understand the current tsunami risk
and predict possible future risk change. In addition, it is necessary to prepare tsunami prevention
measures in advance and produce tsunami emergency response plans for Qidong County and other
regions under potential tsunami threat.

Keywords: random forest; tsunami risk; vulnerability; remote sensing

1. Introduction

A tsunami is a sudden natural disaster with short duration, but it may have a lasting
impact on the affected region. Although a large tsunami is a relatively rare event, it is one
of the most devastating and deadly coastal disasters, often causing great loss of life. On
26 December 2004, the Indian Ocean tsunami [1], with a maximum tsunami runup of 50.9 m,
killed more than 220,000 people. This tsunami destroyed thousands of buildings, industries,
bridges, and other manmade infrastructure, making it one of the most destructive tsunamis
in history. The tsunami waves hit many countries around the Indian Ocean, causing great
damage and leaving 1.5 million people homeless. The 2011 Japan tsunami [2–4], with
a tsunami runup of 38.9 m, killed 18,000 people. The tsunami, in combination with a
series of disasters and accidents caused by it, resulted in devastating damage to parts of
northeast Japan. Historically, there have been several major tsunami events, including the
1755 Lisbon tsunami [5] and the 1964 Alaska Tsunami [6]. In addition, tsunamis are also
triggered by landslides and volcanic eruptions. Two non-seismic tsunamis have occurred
since 2011, the 2018 Indonesia tsunami [7] and the 2022 Tonga tsunami [8].

Previous tsunami research has been conducted to understand the characteristics of
tsunami hazard [9–12]. The management of future tsunami risk requires a good under-
standing of the disaster. According to natural disaster system theory, tsunami risk in a
given region should take into account both the tsunami hazard and the tsunami vulnerabil-
ity of the affected objects (population and infrastructure). Quantifying the vulnerability
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of affected objects is important for tsunami risk assessment. Tsunami risk assessment
results could help to understand the impact of a tsunami before its arrival. In general,
historical tsunami records are too limited to conduct a purely empirical disaster assessment.
Therefore, tsunami risk assessment needs to use a combination of numerical modeling and
observation data to assess tsunami risk. In the last two decades, tsunami risk assessment
methods have experienced substantial growth. Two popular methods are the deterministic
risk assessment [13,14] and the probabilistic risk assessment [15]. The deterministic tsunami
assessment considers the worst-case tsunami scenario, analyzes the tsunami hazard (wave
height, inundation area, and flow velocity), and calculates the tsunami risk in combination
with tsunami vulnerability. The worst-case earthquake scenarios are associated with seis-
mic dip–slip motion [16]. The probabilistic tsunami risk assessment considers all possible
tsunami events to estimate the probability of a wave height at a particular location above a
threshold level over a certain period. This method provides a likelihood of occurrence and
return periods [17].

In recent years, a substantial amount of research on new methods and technologies for
tsunami risk assessment has been conducted. Some studies have highlighted the potential
of remote sensing techniques in tsunami risk assessment [18]. Since 2004, remote sensing
has been used in many tsunami studies. Remote sensing technologies and data are used in
combination with other data to analyze tsunami hazard, vulnerability, and risk. The appli-
cation of remote sensing in tsunami risk assessment includes providing input for tsunami
numerical calculations, tsunami damage monitoring, and tsunami vulnerability analysis.
The bathymetry data derived from remote sensing can be used as input bathymetry data
for tsunami numerical models. Land use data can be used to analyze coefficients of friction
in tsunami models [19]. Satellite images can also be used for rapid, large-scale damage
detection to understand the scale of tsunamis, especially in affected areas that cannot be
reached immediately after a tsunami disaster [19]. A number of important input parameters
for vulnerability analysis were derived from remote sensing [20,21].

Land use and land cover (LULC) is a classic concept and key parameter for under-
standing the relationship between humans and the environment [22]. Remote sensing data
are often used to monitor LULC change [23,24]. LULC changes are related to the catas-
trophic effects of disasters. Understanding changes in LULC and their regional distribution
is critical to addressing a variety of environmental and natural disaster issues [25]. Over the
past half a century, more and more free satellite imagery data and improved classification
technologies have been made available. The Landsat 8 satellite was launched in February
2013 and has provided data for nearly a decade [26]. The new generation Landsat 9 satellite
was launched in September 2021 [27]. At present, the Operational Land Imager (OLI)
and OLI2 sensors regularly observe the global land surface. The Landsat images with a
resolution of 30 m have been widely used in ecosystem variation research [28], disaster
prevention and mitigation [29], and detailed LULC mapping [30] because of their rich
archives and free availability [31]. In previous literature, Landsat images and their spectral
indices were often used for LULC classifications [32].

With rapid global urbanization, the population living in coastal areas is increasing,
and economic assets are becoming concentrated in the region. Tsunami risk change means
the change in tsunami risk of a certain area over time. Paulik developed a spatiotemporal
loss model to quantify the changes in tsunami risk to residential buildings over a 20-year
period [33]. Qidong County, located on the southeast coast of China, is facing the threat
of both transoceanic and regional tsunamis, especially tsunamis from the Ryukyu Trench.
The purpose of this paper is to analyze the change in tsunami risk for Qidong County,
China, from 2013 to 2022, considering the worst tsunami scenario of Ryukyu Trench. LULC
classification results were used to analyze tsunami vulnerability. Tsunami risk and risk
change were analyzed in combination with tsunami hazard and tsunami vulnerability.
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2. Materials and Methods
2.1. Study Area

Qidong County is located at the southeastern tip of Jiangsu Province on the north bank
of the Yangtze River Estuary. It is bordered by the sea and surrounded by water on three
sides. Figure 1a shows the location of Qidong County, which is only approximately 50 km
away from Shanghai. Important marine aquaculture areas exist off the coast of Qidong.
The terrain of Qidong County is flat, slightly higher in the northwest and lower in the
southeast. The ground elevation is between 2.0 and 5.0 m. Such flat terrain is vulnerable to
potential tsunami events. Ports and marine aquaculture areas may suffer significant losses.
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Figure 1. (a) Location of Qidong County. (b) Location of the potential tsunami sources considered in
this study.

Historically, there have been several tsunamis in the surrounding areas of Qidong
and Shanghai. On 9 July 1498, an earthquake occurred in Japan and triggered a tsunami.
Similar tsunami disasters have been observed in Jiangsu, Shanghai, and other areas of
China. On 24 December 1854, an earthquake of magnitude 8.4 occurred in Nankaido,
Japan and caused a tsunami, which spread to the Jiangsu and Zhejiang provinces of China.
According to the historical county chronicle, the river suddenly rose by nearly 1 m, and
there were huge waves near the sea. After the 2011 Tohoku earthquake, a tsunami was
observed on the coast of Jiangsu Province and Shanghai. Although no observational data
were available in Qidong County, tide gauges in Shanghai recorded a tsunami height of
~20 cm with a long-lasting resonance [34].

The most dangerous tsunami source affecting Qidong is from the Ryukyu Trench. The
Ryukyu Trench is located on the eastern side of the Ryukyu Islands, which stretch from
Japan to Taiwan [35], being approximately 1000 km in length. The southern section of the
trench is deepest, with a maximum depth of 7507 m. The Ryukyu Trench is the boundary
between the Eurasian Plate and the Philippine Sea Plate. At the location of the Ryukyu
Trench, the Philippine Sea Plate subducts north-westwards below the Eurasian Plate at a
rate of 8 cm per year [36].

Earthquakes in the Ryukyu Trench could trigger tsunamis [36]. Historically, there have
been several earthquakes with magnitudes more than 8.0 in the Ryukyu Trench. The most
influential earthquakes include the Yaeyama earthquake in 1771 and the earthquake near
Kikai in 1911 [37]. On 24 April 1771, an earthquake struck near the Yaeyama Islands in the
southern Ryukyu Islands. Although the ground shaking was relatively weak, the following
tsunami was devastating. The southeast coast of Ishigaki Island recorded a tsunami runup
of 30 m. The tsunami runup observed in the Yaeyama and Miyako Islands exceeded 10 m.
Approximately 12,000 people were killed on Yaeyama and Miyako Islands.

Historical tsunamis have occurred in several locations of the Ryukyu Trench. Therefore,
this study assumed three sources in the northern, middle, and southern sections of the
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Ryukyu Trench, as shown in Figure 1b. The worst-case scenarios with a magnitude of 9.0 were
considered. The source parameters were set according to the local historical earthquakes.

2.2. Data Materials and Preprocessing

The Landsat satellite images from sensors OLI and OLI2 were used in this study. The
satellite data were from the Collection 2 level 1 dataset (https://earthexplorer.usgs.gov/:
accessed on 12 August 2022). The OLI imagery acquisition time was 12 July 2013 and
the OLI2 imagery acquisition time was 23 March 2022, as shown in Table 1. The Landsat
images provide 30 m spatial resolution with a revisit time of 16 days, including four visible
bands, one near-infrared (NIR) band, and two short-wavelength infrared (SWIR) bands.
Landsat imagery preprocessing includes radiometric calibration and atmospheric correction.
Radiation calibration was conducted to eliminate the error produced by variations in
sensor performance and characteristics over time. The atmospheric correction was then
implemented to obtain surface reflectance.

Table 1. Datasets used in the study.

Satellite Sensor Acquisition Date Spatial Resolution Bands Path/Row Data Sources

Landsat 8 OLI 12 July 2013 30 m 1–7 118/038 https://earthexplorer.usgs.gov/
Landsat 9 OLI2 23 March 2022 30 m 1–7 118/038 https://earthexplorer.usgs.gov/

In addition to seven bands, we also considered the spectral indices related to LULC
types, including the normalized difference vegetation index (NDVI), modification of nor-
malized difference water index (MNDWI), normalized difference building index (NDBI)
and bare soil index (BSI).

NDVI is related to the photosynthetic potential of vegetation, which is widely used
to quantify vegetation density [38]. NDVI was developed by Rousse [39], and takes into
consideration the red band and the near-infrared band.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρRED and ρNIR are Band 4 and Band 5 of OLI/OLI2, respectively.
MNDWI is a water index, which was developed by Xu [40]. MNDWI can improve the

accuracy when identifying water features [41]. It uses the green band and the short-wave
infrared bands.

MNDWI =
ρGREEN − ρSWIR
ρGREEN + ρSWIR

(2)

where ρGREEN and ρSWIR are Band 3 and Band 6 of OLI/OLI2, respectively.
The NDBI [42] is an index developed to rapidly extract urban fabric. The method

considers the unique spectral responses of built-up areas and other land covers. The
formula is as follows:

NDBI =
ρSWIR − ρNIR
ρSWIR + ρNIR

(3)

where ρSWIR and ρNIR are Band 6 and Band 5 of OLI/OLI2, respectively.
Rikimaru proposed the BSI in 1996 [43]. BSI is a numerical indicator that combines

blue, red, near-infrared, and short-wave infrared spectral bands to capture soil variations.
The formula of BSI is as below:

BSI =
((ρRED + ρSWIR)− (ρNIR + ρBLUE))

((ρRED + ρSWIR) + (ρNIR + ρBLUE))
(4)

where ρRED, ρBLUE, ρNIR, and ρSWIR are Band 4, Band 2, Band 5, and Band 6 of OLI/OLI2,
respectively.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3. Methodology

In this study, tsunami risk and its temporal change were analyzed by combining
tsunami hazard and tsunami vulnerability. The tsunami numerical model was used to
calculate tsunami inundation. The calculation results were analyzed for tsunami hazard.
Landsat images were used to classify LULC and analyze tsunami vulnerability. The
technical flowchart of this study is shown in Figure 2.
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The COMCOT model was used for tsunami hazard analysis. The COMCOT model is
a type of long-wave simulation model developed by Cornell University. It can simulate the
entire process of tsunami from generation to propagation and inundation. The governing
equations are shallow-water equations, which are solved by explicit staggered leap-frog
finite difference schemes in both spherical and cartesian coordinates. A nested grid system
can be used to fulfill the need for tsunami simulations at different scales. The accuracy
and applicability of the model were verified through the simulation of historical tsunami
events, such as the 1960 Chilean tsunami [44] and the 2004 Indian Ocean tsunami [45].

In the tsunami vulnerability analysis, machine learning (ML) was used for LULC
classification. Recently, a variety of techniques have been developed to improve LULC
classification accuracy [46]. ML classifiers are popular due to their ability to use training
samples to classify satellite images [47]. Common ML classifiers include the random forest
(RF), extreme Gradient boosting (XGBoost), k-nearest neighbor (k-NN), and support vector
machine (SVM) [48]. The RF method was used for LULC mapping in this study.

The RF classifier was introduced by Breiman [49]. It is regarded as an ensemble
learning algorithm. The key to RF is to create a set of decision trees. The RF classifier uses a
set of decision trees to make a prediction and applies a voting mechanism to the results.
RF allows the training and classification process to be highly parallelized to reduce the
overfitting phenomenon. Therefore, it is widely used in LULC monitoring [50]. We use the
Python language scikit-learn library to establish an RF model. This study set the number of
decision trees in the random forest to 200.
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3. Tsunami Risk Change Analysis
3.1. Tsunami Hazard Analysis

In COMCOT, the following nonlinear shallow-water equations are implemented in
spherical coordinates as

∂η

∂t
+

1
Rcosϕ

{
∂P
∂ψ

+
∂

∂ϕ
(cosϕQ)

}
= −∂h

∂t
(5)
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+
1
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∂
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H

}
+
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R

∂

∂ϕ

{
PQ
H

}
+

gH
Rcosϕ

∂η

∂ψ
− f Q + Fx = 0 (6)

∂Q
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+
1

Rcosϕ

∂

∂ψ

{
PQ
H

}
+

1
R

∂

∂ϕ

{
Q2

H

}
+

gH
R

∂η

∂ϕ
+ f P + Fy = 0 (7)

where H is the total water depth and H = η + h. η is the water surface elevation, h is the
water depth, R is the radius of the Earth, and g represents the gravitational acceleration. P
and Q denote the volume fluxes in longitudinal (ψ) direction and latitudinal (ϕ) direction,
f is the Coriolis force, Fx and Fy denote the bottom friction in longitudinal direction and
latitudinal direction, respectively. This tsunami numerical model used a four-layer nested
grid, which is shown in Table 2.

Table 2. Nested grids of numerical model.

Layers Longitude and Latitude Spatial Resolution Grids

Layer 1 −60.0◦–70.0◦N, 100.0◦–300.0◦ E 4′ 2999 × 2623
Layer 2 31.3◦–34.5◦ N, 119.5◦–122.6◦ E 1′ 188 × 232
Layer 3 31.5◦–33.1 N◦, 120.7◦–122.2◦ E 1/4′ 356 × 452
Layer 4 31.6◦–32.1 N◦, 121.4◦–122.0◦ E 1/32′ 1208 × 1112

The results of the tsunami numerical calculation of layer 1 are shown in Figure 3. The
maximum tsunami amplitude reaching the coast of Qidong County is more than 3 m. The
tsunami numerical results show that tsunami inundation occurred in the coastal area of
Qidong County. The tsunami scenario that had the largest inundation areas in Qidong
County was selected. This tsunami source is located in the middle section of the Ryukyu
Trench. The numerical result of layer 4 was used to analyze tsunami inundation. This study
classified tsunami hazards into four levels according to the tsunami inundation depth, as
given in Table 3. Level 1 indicates the greatest tsunami inundation, while level 4 is the
lowest inundation level.

Table 3. Classification of tsunami hazard.

Levels Inundation Depth (m)

1 (3.0, +∞)
2 (1.0, 3.0]
3 (0.3, 1.0]
4 (0, 0.3]

According to the numerical results and tsunami hazard levels shown in Figure 4,
82.83 km2 of coastal areas were inundated under the tsunami scenario of a magnitude
9.0 earthquake in the middle of the Ryukyu Trench. The maximum tsunami inundation
depth was more than 3 m, classified as a hazard of level 1. There were villages, communities,
transport terminals, parks, schools, companies, temples, and hotels in the inundation area.
A variety of LULC types were in the inundation area, including cropland, woodland,
built-up land, and water.
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3.2. Tsunami Vulnerability Analysis
3.2.1. Supervised Classification with Random Forest

The RF method was used for the LULC classification. We collected ground truth
samples in the inundation area of Qidong County through field observation, including
257 samples from 2013 and 336 samples from 2022.

Several optical band combinations of Landsat 8 and 9, which are often used to distin-
guish ground objects, were used for LULC classification. Spectral indices were also used in
LULC classifications. The band combinations and spectral indices are shown in Table 4.

Table 4. Band combinations used in this study.

Options Bands Bands No.

A Coastal, Blue, Green, Red, NIR, SWIR 1, SWIR 2 1,2,3,4,5,6,7
B Blue, Green, Red, NIR, SWIR 1 2,3,4,5,6
C Blue, Green, Red 2,3,4
D Green, Red, NIR 3,4,5
E Blue, NIR, SWIR 1 2,5,6
F Red, NIR, SWIR 1 4,5,6
G Optimal bands + Spectral index Optimal bands + Spectral index

The sample training was conducted according to the different combinations (Table 4).
Option G selected the best option from the previous options, and then combined it with
each spectral index to find the optimal bands and index combination. The spectral indices
used included NDVI, MNDWI, NDBI, and BSI.

To evaluate the accuracy of the classification results under different options, we
calculated the classification accuracy. The F1 score was used to test the accuracy.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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F1 =
2 · Precision · Recall
Precision + Recall

(10)

where TP is the number of true positives, FP indicates the number of false positives, and
FN is the number of false negatives. The precision is the classifier’s ability to not label
negative samples as positive, and the recall evaluates the classifier’s ability to find all
positive samples. The relative contribution of precision and recall to the F1 score are equal.
The best value of the F1 score is 1 and the worst value is 0.

The F1 scores for 2013 are shown in Figure 5. The scores of cropland and built-up
land are relatively high, and the scores of water and bare land are lower. After adding
the spectral index of MNDWI, the F1 score of water increases. After comparison, Scheme
G scored the highest, followed by Scheme E. Therefore, we applied Scheme G (i.e., a
combination of bands 2, 5, 6, and MNDWI) for LULC classification in 2013.
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Figure 5. F1 scores for 2013.

The F1 scores for 2022 are shown in Figure 6. The cropland and built-up land scored
higher, and the scores of woodland and bare land were relatively low. With the addition
of NDVI, the F1 score of woodland and bare land increases. Option G performed best.
Therefore, the combination of bands 4, 5, and 6 plus NDVI in scheme G was chosen for
LULC classification in 2022.
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The acquisition period for Landsat 8 imagery was the summer of 2013, while the
Landsat 9 imagery acquisition period was the spring of 2022. The F1 scores show that
LULC classification could be conducted using different band combinations in different
seasons. Option G with a spectral index performed well in both 2013 and 2022, indicating
that a suitable spectral index could improve the classification accuracy.

The LULC classification results for 2013 and 2022 are shown in Table 5 [51]. After
analysis, the area of built-up land and woodland increased, while the area of cropland, bare
land, and water decreased in the inundation area of Qidong County. The change in built-up
land is obvious, with an increase of 16.62 km2. Of the new built-up land, 6% used to be
bare land, 21% used to be cropland, 29% used to be woodland, and 44% used to be water.

Table 5. Results of LULC classification.

LULC Types 2013 (km2) 2022 (km2) Change (km2) Vulnerability

Cropland 17.0 15.13 −1.87 2
Woodland 18.78 19.40 +0.62 3

Built-up land 16.50 33.12 +16.62 1
Water 27.03 14.83 −12.20 3

Bare land 3.52 0.35 −3.17 4

3.2.2. Tsunami Vulnerability Analysis

The term ‘vulnerability’ in natural disaster science refers to the vulnerability of disaster-
affected objects [52]. It is defined as the ability of disaster-affected objects to withstand
different degrees of damage and to compensate for the damage and return to normal level.
Vulnerability assessment is an analysis of the disaster-bearing capacity of disaster-affected
objects under the conditions of natural disasters of a specific intensity. In this study, we
performed a tsunami vulnerability classification based on the results of LULC classification.
The correspondence between LULC types and vulnerability levels was established and the
vulnerability assessment was conducted using LULC types as the disaster-affected objects.
The classification criteria are shown in Table 5. The vulnerability level was divided into
four levels, with level 4 being the lowest vulnerability.

The vulnerability analysis results of tsunami inundation area in Qidong County are
shown in Table 6, counting the area of all vulnerability levels. According to Tables 5 and 6,
the areas with high vulnerability in Qidong County were urban residential and commercial
land with intensive human economic and social activities, as well as agricultural land
related to production activities. The areas with the lowest vulnerability were water, bare
land, and woodland, which were not closely related to human activities.

Table 6. Results of tsunami vulnerability analysis.

Vulnerability Levels 2013 (km2) 2022 (km2) Change (km2)

1 16.50 33.12 +16.62
2 17.00 15.13 −1.87
3 45.81 34.23 −11.58
4 3.52 0.35 −3.17

From the vulnerability change in Table 6, we can see that areas at vulnerability level 1
increased by 16.62 square kilometers. As the economy develops, the area of building
land increases, and the corresponding tsunami vulnerability will increase. The level 4
vulnerability decreased, and there was less bare land.

3.3. Tsunami Risk Change Analysis

Based on the results regarding tsunami hazard and tsunami vulnerability, we analyzed
the tsunami risk and its temporal change. The tsunami risk of a specified scenario is a
function of its hazard and vulnerability. The tsunami risk level was determined according
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to the hazard levels and vulnerability levels [53] (Table 7). The tsunami risk assessment
results provide scientific reference for policy makers to manage and reduce the risk of
disaster from a potential tsunami event.

Table 7. The criteria of tsunami risk levels.

Hazard
Vulnerability

Level 4 Level 3 Level 2 Level 1

Level 4 4 4 3 3
Level 3 4 3 2 2
Level 2 3 2 2 1
Level 1 3 2 1 1

A convenient and effective way of representing tsunami risk levels is tsunami risk
maps. These maps show the extent of areas with defined risk levels (e.g., high, medium,
and low). Risk maps can be derived using Geographic Information System technology to
integrate tsunami hazard and vulnerability map layers. The results of the tsunami risk
analysis for 2013 and 2022 are shown in Figure 7. The tsunami risk in the inundation area of
Qidong County could be divided into four levels, denoted by red (level 1), orange (level 2),
yellow (level 3), and blue (level 4).
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In general, the tsunami risk levels along the coast of Qidong County were high. Areas
further from the coast were at lower tsunami risk. The tsunami risk change in Qidong
County is shown in Table 8. The area at tsunami risk level 1 increased by 4.57 km2, while
the area at level 4 decreased by 7.31 km2. Hence, we conclude that economic development
and urbanization have led to an increase in tsunami risk. The area at tsunami risk level 1
increased mainly in coastal areas, which are the main areas for the expansion of built-
up land.

Table 8. Tsunami risk change from 2013 to 2022.

Risk Levels 2013 (km2) 2022 (km2) Change (km2)

1 3.58 8.15 +4.57
2 25.88 26.10 +0.22
3 32.07 34.59 +2.52
4 21.29 13.98 −7.31
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4. Discussion

With the ongoing rapid economic development, increasing numbers of people and
important facilities are being concentrated in coastal areas. Tsunami risk and its temporal
change require more attention. This study discussed the tsunami risk change in Qidong
County from 2013 to 2022.

Our results suggest that the tsunami risk of Qidong County is generally high in cases
of potential earthquakes in the Ryukyu Trench. Meanwhile, economic development and
urbanization have led to an increase in tsunami risk. Hence, disaster prevention and
mitigation efforts need to be strengthened to address increased tsunami risk in Qidong
County. Relevant tsunami mitigation measures need to be developed, including strength-
ening tsunami risk assessments, conducting research on disaster prevention measures for
important disaster affected objects, and formulating tsunami emergency and evacuation
plans in advance.

This paper has several limitations. (1) This paper analyzed the change in tsunami risk
based on change in land use and vulnerability, assuming that tsunami inundation remains
unchanged. Tsunami risk change with a change in inundation areas needs to be analyzed
in the future. (2) The Landsat imagery used in this paper is a long-term data source
available at present. Data sources with higher resolution will be considered in the future.
(3) This study used the land use factor to analyze the change in tsunami vulnerability
and tsunami risk. However, tsunami vulnerability involves some other factors, such as
ecological vulnerability, economic vulnerability, and social vulnerability. More vulnerability
factors could be considered to analyze tsunami risk change.

5. Conclusions

This study analyzed the tsunami risk change in Qidong County based on LULC classi-
fication. The tsunami hazard was evaluated by analyzing three magnitude 9.0 earthquakes
in the Ryukyu Trench. Tsunami inundation was calculated using a tsunami numerical
model. Tsunami hazard analysis defined the spatial scope of tsunami risk analysis.

Remote sensing was used for tsunami vulnerability analysis. The RF method, which
was used for LULC classification, enabled rapid and accurate modeling based on sample
training and analyzed LULC based on the model. A number of bands and spectral index
combinations were tested to ensure the accuracy of land use classification. The analysis
results show that the band combinations should be selected according to the month and
season to improve the classification accuracy. In addition, suitable spectral indices could
improve the accuracy of land use classification.

According to the results of LULC classification, built-up land in the inundation area
of Qidong County increased by 16.62 km2 from 2013 to 2022. The risk change analysis
results show that in the case of a magnitude 9.0 earthquake in the middle of the Ryukyu
Trench, the area at tsunami risk level 1 in Qidong County increased by 4.57 km2 from 2013
to 2022. The area at tsunami risk level 1 area was along the coastal area. With the ongoing
economic development of Qidong County, the coastal population and urbanization process
have accelerated, resulting in the expansion of urban construction land and an increase in
tsunami risk. Our method is important for tsunami disaster mitigation in Qidong County,
and can also be applied to other regions with potential tsunami risk. This study conducted
tsunami change analysis for five main land use types. However, if there is a children’s
summer camp in the woodland, the tsunami risk will increase. Therefore, more detailed
risk change analysis should be carried out in the future.

The occurrence of a tsunami disaster is inevitable, but the loss caused by disasters
can be mitigated through reasonable disaster prevention measures. Tsunami mitigation
awareness is an important part of tsunami disaster prevention. Educating the public about
tsunami risk can popularize tsunami disaster observation and prevention, enhancing the
public’s awareness of disaster prevention and mitigation. In addition, tsunami warning
exercises should be carried out irregularly to practice the production and dissemination of
tsunami warning information, in order to improve participation with tsunami warning in-
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stitutions and government departments. Tsunami evacuation and other disaster responses
should be studied. Tsunami evacuation plans should be developed and issued to help
citizens cope with tsunami disasters.
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