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Abstract

:

To yield environmental benefits, fine sediments with ~10% organic matter, termed muck, were dredged from a tributary to the Indian River Lagoon. Key changes were documented by sampling amphipods, sediments, and the water column near the bottom before dredging, and approximately one month and one year after dredging. Overall, muck yielded the fewest taxa, muck or sediments in creeks that were dredged yielded a moderate number of taxa, and undisturbed sediments in the lagoon yielded the highest number of taxa. Amphipods did not appear in areas with muck until one month and one year after dredging. In contrast, amphipods in sediments that were not muck decreased after dredging. Increases in the occurrence of amphipods paralleled increases in concentrations of dissolved oxygen and decreases in the water, silt/clay, and organic content of sediments. Overall, results indicated that conditions for amphipods were improved by removing muck, and that dredging sandier sediment led to decreased taxonomic richness and numbers of amphipods, which resembled the effects of navigational dredging. Thus, this study suggested that managers should consider the type of sediment to be dredged when permitting projects.
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1. Introduction


Dredging commonly has been used to improve navigability by increasing the depth of a water column, and surveys of benthic fauna have documented detrimental changes from such activity at the population and assemblage levels. Following such dredging, numbers of individuals often were reduced (e.g., [1,2]), in some cases up to 95% [3]. For this reason, many agencies and coastal managers have required surveys of infauna, or instituted policies specifying methods that limit negative impacts from dredging [4,5,6].



In contrast, dredging to improve benthic habitats by removing polluted or inhospitable sediments has been designed to increase, rather than decrease, populations of infauna (e.g., [7]). For example, Fuller et al. (2021) [8] found that diversity and abundance of infauna were lower in organic-rich sediments, and Cox et al. (2018) [9] found that removing fine-grained sediments prone to hypoxia or anoxia, termed muck, induced colonization by polychaetes. Muck has been defined as sediment with >75% water by weight, >60% silt/clay, and >10% organic matter, with bacterial decomposition of organic matter often creating hypoxic or anoxic conditions (oxygen concentrations < 2 mg L−1) in the sediments and overlying water column [10]. In addition to low concentrations of oxygen, hydrogen-sulfide gas produced by sulfur-oxidizing bacteria in the hypoxic and anoxic muck has been found to be toxic [11]. In fact, multiple studies indicated that hypoxia and toxicity reduced benthic diversity and productivity, constrained populations, altered food webs, and disrupted trophic links [12,13,14,15,16,17,18,19,20,21].



Until recently, muck covered approximately 10% of the bottom in the Indian River Lagoon (IRL), a diverse, shallow, subtropical estuary in Florida, USA [22,23,24,25,26,27,28]. Muck was targeted for removal because it potentially was associated with several undesirable effects, beyond creating low concentrations of dissolved oxygen and high concentrations of toxic hydrogen sulfide. It smothered benthic vegetation and infauna, and it fueled harmful algal blooms when bacterial activity released nitrogen and phosphorus into the water column [25]. In turn, algal blooms limited light availability and hampered photosynthesis by benthic macroalgae and seagrass, as was seen during the “superbloom” in 2011 [25,29,30,31]. The resulting extensive loss of seagrass contributed to an unusual mortality event for manatees, because toxic bacteria in their guts reacted to increased consumption of macroalgae [32]. Furthermore, mass mortalities of fish resulted from low concentrations of dissolved oxygen generated by the senescence and decomposition of some blooms [25]. Overall, muck in the lagoon created a detrimental feedback loop. Senescing and sinking algal cells combined with other particles to form muck that contained a reservoir of organic matter, and decomposition of this matter led to reduced concentrations of dissolved oxygen, increased concentrations of hydrogen sulfide, and increased fluxes of bioavailable nutrients that fueled additional algal blooms [20].



An opportunity to examine the effects of removing muck arose when Brevard County, a county that borders much of the IRL, conducted environmental dredging to remove muck and improve the health of an embayment at the mouth of a creek. As in other evaluations of dredging, the abundances and distributions of benthic fauna represented key measures of the system’s health, due to their ecological importance and relatively limited mobility [33,34,35,36,37,38,39,40]. In particular, amphipods were of interest because previous work has shown: (a) they constitute a significant portion of many macroinvertebrate assemblages in the benthic and pelagic habitats of freshwater and marine environments [2,34,41,42,43,44,45,46,47,48]; (b) they fill multiple ecological roles as grazers, predators, parasites, or non-native invaders [41,42,43,49,50]; and (c) they serve as food for other invertebrates, fish, and seabirds [51]. Their simple life cycle, site fidelity, high abundances, broad environmental tolerances, and rapid growth have made amphipods good candidates for biological monitoring [1,2,52,53,54,55]. Furthermore, amphipods have been shown to be sensitive to environmental conditions, which led to their use in bioassays, including those testing the toxicity of sediments [44,56,57,58,59,60,61]. In fact, the U.S. Environmental Protection Agency recognized their importance and required data on amphipod populations before permitting projects that could impact benthic habitats [34].



Our goal was to detect changes in the assemblages of amphipods that were related to environmental dredging. Detecting changes associated with dredging, or any unreplicated disturbance, using a mensurative experiment based on sampling disturbed and control locations can be complicated by spatiotemporal variation that is not related to the disturbance and cannot be controlled to the same extent as in a manipulative experiment [62,63]. We anticipated such challenges, because dredging was limited to the mouth of a single creek and sampling was constrained by logistics. To address spatial variation in assemblages, we sampled several undisturbed locations at differing distances from the area that was dredged, and to address temporal variation, we sampled assemblages before, one month after, and one year after dredging.



Given this background, we tested the following null hypotheses: (a) sediments in different locations had similar characteristics before and after dredging, and (b) the assemblages of amphipods did not differ before and after dredging.




2. Materials and Methods


The IRL system comprises three lagoons—Mosquito Lagoon, Banana River Lagoon, and Indian River Lagoon proper—that span 40% of the east coast of Florida, USA and the transition from subtropical to temperate biogeographic regions [64,65,66]. The system is shallow (mean depth ~1.2 m) and relatively narrow (width 0.8–8.0 km) [66]. Concentrations of dissolved oxygen decrease with seasonal increases in water temperatures [66]. Salinities vary along the length of the system, being high in the northern portion due to limited freshwater inflows and higher rates of evaporation, high in the southern portion due to tidal exchange through four inlets, and lower in the central portion due to the lack of inlets and the presence of tributaries and canals that deliver fresh water [66]. Except for areas near the inlets, circulation and exchange are driven mainly by wind [66]. The resulting month-long to year-long residence times in most of the system means that nutrients accumulate, which can cause blooms of phytoplankton [25,66,67,68,69,70]. The restricted circulation and limited mixing also facilitate the accumulation of fine-grained organic-rich sediments, commonly called muck, which have accumulated on top of the natural sand and shell since the watershed was developed [7]. Muck becomes hypoxic or anoxic, and contains hydrogen sulfide due to bacterial decomposition of organic matter, which along with metals and organic toxins can inhibit use by infauna [7].



Samples of sediment and infauna were collected near two tributaries: Turkey and Crane creeks (Figure 1). Dredging commenced in Turkey Creek in February 2016, and following a shutdown for manatee season, resumed in September 2016 and continued until January 2017 [7]. Sampling in both locations was undertaken one month prior to dredging (January 2016), approximately one month after dredging was completed (February 2017), and approximately one year after dredging was completed (December 2017). During each event, samples were collected at: (a) four stations in Turkey Creek where muck was dredged (TC1 to TC4); (b) two stations in Crane Creek where muck was present, but not dredged (CC1 and CC2); (c) two stations in Turkey Creek that lacked muck and were not dredged (TC5 and TC6); (d) two stations in Turkey Creek that lacked muck and were dredged (TC7 and TC8); and (e) four stations in the Indian River Lagoon proper that were near each tributary, lacked muck, and were not dredged (TC9 to TC12 and CC3 to CC6; Figure 1). Thus, logistics associated with dredging resulted in a sampling design that was unbalanced, with no data being available for sediments in the lagoon that were dredged (Table 1).



At each station, during each sampling event, two types of sampling were undertaken. Three replicate samples were collected to characterize infauna and an additional sample was collected to characterize properties of the sediment. These samples were taken with a petite ponar grab that sampled 225 cm2. In addition, salinity, pH, temperature, and concentrations of dissolved oxygen were determined near the bottom using a Yellow Springs Instruments multimeter.



Samples of infauna were sieved through 0.5 mm mesh, and the material retained was bagged and frozen. Numbers of infauna in these samples obviated counts of entire samples. For this reason, one-eighth aliquots of thawed samples were examined via stereomicroscopy (8–35× magnification), a process that required an average of two hours of sorting per sample. Amphipods were identified to the lowest possible taxonomic level, and all individuals in the aliquots were counted. This approach yielded more than 100 individuals of abundant taxa per sample.



Samples collected to characterize sediments were analyzed for percentage of water by weight via drying at 135 °C for 24 h, percentage of silt/clay combined based on dry weights, and percentage of organic matter (via loss on ignition; [71]). To determine percentages of silt/clay, 10 g of muck or 30 g of sediments that were not muck were sieved through a 63 μm sieve. Material that was retained was heated at 135 °C for 24 h and re-weighed to obtain the weight of silt/clay.



Data characterizing sediments and counts of amphipods were analyzed with permutation analyses of variance (PERMANOVAs; [72]). The PERMANOVAs treated the muck, sediments in the creeks that were not muck, and sediments in the lagoon as levels of a fixed factor termed Sediment. The PERMANOVAs also treated dredged and undisturbed as levels of another fixed factor termed Treatment. Finally, the model treated before, one month after, and one year after as levels of a random factor, nested in the interaction of sediment and treatment, which was termed Event. The nesting acknowledged the repeated measures approach arising from sampling at fixed sites where abundances of amphipods were expected to follow potentially unique temporal trajectories [62,63], and the factor was treated as random in recognition of the fact that the chosen times were not the sole focus of the analysis. Before Euclidean distance was used to generate the required resemblance matrix, data characterizing sediments were range standardized across all samples ([value—minimum value]/range). Similarly, counts of amphipods were range standardized before Bray–Curtis distances were calculated, so that the focus was on patterns rather than absolute abundances. Due to the unbalanced design, Type III sums of squares were used in the PERMANOVAs [65]. To visualize similarity among different sediment types, non-metric multidimensional scaling was used [73].



Significant effects in the PERMANOVAs were examined further using non-metric multidimensional scaling for the average characteristics of sediments, and a similarities percentages analysis (SIMPER) for counts of amphipods [65]. Data for amphipod taxa highlighted by SIMPER were used to prepare graphs showing the proportion of total individuals found in the appropriate set of samples.




3. Results


Analysis of the data characterizing sediments indicated that those characteristics varied among Events across the interaction between Sediment and Treatment, i.e., differing temporal trajectories among sites that could be distinguished by type of sediment and treatment accounted for a significant proportion of the variation in the data (Table 2). Non-metric multidimensional scaling applied to the relevant range-standardized mean values indicated that undisturbed creek sediments that were not muck were more similar to sediments in the lagoon, unless they were dredged, and then they became more similar to undisturbed muck shortly after dredging (Figure 2). In contrast, muck that was dredged became more similar to undisturbed sediments in the creeks (Figure 2). Creek sediments that were dredged exhibited a decrease in mean concentrations of dissolved oxygen (7.4 mg L−1 down to under 3.2 mg L−1), an increase in mean organic content (8% to over 15%), and an increase in mean silt/clay content (31% to over 54%). In contrast, muck that was dredged exhibited an increase in mean concentrations of dissolved oxygen (<1 mg L−1 to 2 mg L−1), a decrease in mean organic content (21% to 9%), and a decrease in mean silt/clay content (93% to 47%).



The compositions of the assemblages of amphipods also varied significantly among sampling events, i.e., a significant proportion of the variation in the data was due to differing temporal trajectories among sites that could be distinguished by type of sediment and treatment (Table 2). According to SIMPER, all eight taxa found in samples contributed to significant differences, i.e., Grandidierella sp., Cymadusa compta, Cerapus tubularis, Corophium sp., Grandidierella bonnieroides, Jassa sp., Eusirus cuspidatus, and Gammarus mucronatus (Figure 3), with Jassa sp. found only in undisturbed sand one year after dredging (Figure 3a). Cymadusa compta was the only amphipod found at stations with undisturbed muck (Figure 3d), and several taxa occurred primarily at stations in the lagoon where sediments were not disturbed (Figure 3a). Stations where muck was dredged showed an increase in the occurrence of three taxa, and the most taxonomically rich assemblage appeared one month after dredging (Figure 3e). Stations in Turkey Creek with sediments that were not muck, but were dredged, only yielded one taxon (C. compta), and it was less prevalent after dredging (Figure 3c).



Although the amphipod assemblage varied in space and through time irrespective of dredging, the results indicated two important patterns. Dredging sandy sediments reduced the taxonomic richness and occurrence of amphipods as has been noticed in previous studies, whereas removing muck led to colonization by amphipods.




4. Discussion


Dredging to improve navigability has reduced populations of infauna in many cases (e.g., [1,2,3]). Such effects have prompted agencies and coastal managers to require surveys of infauna or enforce strict policies about how dredging occurs to limit detrimental impacts [4,5,6]. In contrast, environmental dredging of muck, such as that conducted in association with this study, has different objectives. The main goal of the environmental dredging in this study was to improve benthic habitats by removing sediments that were polluted or uninhabitable for most macrobenthic organisms, so that populations of infauna would increase [7]. Although the taxonomic richness, composition of assemblages, and densities of individual taxa varied independently of dredging, amphipods did colonize areas following the removal of muck.



Abundances of amphipods often have been associated with increased concentrations of oxygen and reduced amounts of organic matter. In fine sediments with high organic content, hypoxia has been a common phenomenon [9,15,20,74,75,76], and amphipods have been shown to be sensitive to high organic content and low concentrations of dissolved oxygen [44,56,77]. The environmental dredging in this study removed 160,000 m3 of muck from Turkey Creek, and as a result, mean organic matter in the sediment (±standard error) was reduced from 20.8 ± 0.6% to 16.0 ± 1.9% immediately following dredging (2016–2017), and fell below the 10% operationally defined threshold for muck by one year after dredging [10]. As expected, removing muck increased concentrations of dissolved oxygen in the water near the bottom from 0.2 mg L−1 or almost anoxic to over 2.0 mg L−1 one year after the dredging. However, the organic content of dredged sediment was still above the 2% threshold that was shown to be conducive to healthy assemblages of benthic macrofauna [78].



The appearance of C. compta, C. tubularis, and Corophium sp. by one month after dredging suggested that the removal of organic matter improved the habitat. A tendency to colonize sandier sediments that support construction of tubes and dietary preferences may have fostered colonization of dredged habitats by amphipods [79,80]. After dredging, settlement of resuspended and newly oxidized organic matter should have offered new food resources to detritivorous and opportunistic amphipods [3,41,79,80,81,82,83]. In addition, mobile, opportunistic amphipods have exploited a variety of habitats. For example, G. bonnieroides in the IRL has been found in diverse soft sediments ranging from sandy to muddy and in areas dominated by algae [84]. Its varied diet included fungi, bacteria, detritus, and epiphytes [80,85], and this adaptability may have contributed to its presence in sediments in the lagoon and its colonization of areas where muck was dredged.



In general, the taxa that colonized areas where muck was dredged, i.e., C. compta, C. tubularis, Corophium sp., and G. bonnieroides, may have been those that were most adaptable. Although amphipods generally have been described as environmentally sensitive [86], some taxa have been considered tolerant of stress or pollution. For example, Corophium ellisi has been recorded in Sykes Creek, a polluted tributary of the IRL (Grizzle, 1984), and Corophium lacustrae was present and abundant in contaminated sediments in the Gulf of Mexico [86]. In contrast, Corophium salmonis recolonized sediments only after discharges of sewage effluent ceased [87], and abundances of Medicorophium runcicorne declined near sewage outfalls [77]. Overall, past work has underscored the fact that different taxa have different degrees of tolerance for stress [12].



Spatial variation often has been reported for benthic fauna [9,88,89,90], and stations in the lagoon tended to have more taxa and higher numbers of amphipods than stations in the mouths of the creeks, throughout this study. In addition, the significant proportion of the variation in the data accounted for by sampling events in an analysis of the occurrence of amphipods meant that changes likely were due to a combination of dredging and proximity to freshwater inputs, proximity to structural habitats, or other factors that altered the temporal trajectories of abundances at any site. For example, Nelson et al. (1982) [91] observed highly variable abundances of amphipods in the IRL, and time of year and proximity to seagrasses played roles in this variability. In this study, spatial variation influenced but did not obscure responses to dredging.



In addition to spatial variation, temporal variation appeared responsible for some of the differences in occurrences of amphipods, because a significant proportion of the variation in the data was accounted for by sampling events. For example, numbers of individuals differed in the second and third sampling events. In other studies, temporal variation among sampling events has made the comparison of affected and unaffected areas problematic, with dredged areas recovering after a few months and undisturbed control areas exhibiting variable abundances [3,53]. Short-term extreme events, such as hurricanes, storms, and monsoons, also have reduced abundances, and sometimes preceded the disappearance of particular taxa in other studies [92,93,94,95]. In this study, Hurricane Irma, which landed in central Florida in September 2017, and warmer water temperatures in December 2017, may have influenced densities of amphipods because similar temporal changes have been reported before [53,91]. Nevertheless, statistically significant variations in the temporal trajectories of amphipod assemblages were identified, i.e., amphipods colonized areas where muck had been dredged and became less prominent in areas where other sediments were dredged.



Time for colonization and recovery after disturbances has varied among studies, i.e., the temporal trajectories for abundances of amphipods at sites that were disturbed varied. After storm impacts on benthic habitats in the Swan–Canning Estuary, macrofauna recovered in three to four months [19]. Recovery from navigational dredging took six months for the infaunal assemblage in La Coruña Bay, Spain [96], nearly eight months in Danube harbors [97], and a full year for assemblages in the North Sea [98] and Guadalquivir Estuary, Spain [99]. Recovery from oil spills took longer. Nikitik and Robinson (2003) [100] reported that recovery of amphipods after the Sea Empress oil spill in 1996 in Milford Haven Waterway took five years. In addition, it took eight years for an ampeliscid amphipod to reappear after the Amoco Cadiz oil spill near the coast of Brittany, France in 1978, and full recovery took longer [101]. In this study, four amphipod taxa appeared at the stations where muck was dredged by one month after dredging (February 2017), but sediments in the mouths of creeks always yielded fewer taxa and individuals. Thus, a rigorous assessment of recovery awaits further sampling. Dissimilarities between this study and others suggested that removal of sediments with high organic content resulted in colonization by amphipods. Short-term improvements and recoveries suggested that focusing on removal of organically enriched sediments showed promise for restoring benthic habitats, although the assemblage did not achieve the taxonomic richness or numbers of individuals that characterized stations in the lagoon with sandier sediments within a year.




5. Conclusions


Environmental dredging of muck reduced sediment organic content and associated stressors (e.g., silt/clay content and low concentrations of dissolved oxygen in water near the bottom). Following these changes, amphipod taxa colonized stations where muck was dredged. In contrast, amphipods became less numerous at stations where creek sediments that were not muck were dredged. Overall, the results pointed to beneficial effects on amphipod assemblages from dredging that removed muck; therefore, managers should consider such dredging as different from traditional dredging of hospitable sediments to improve navigation [7,8,9].
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Figure 1. Florida and the region of interest in the Indian River Lagoon (box on inset), along with the stations in: (a) Crane Creek and the adjacent Indian River Lagoon, and (b) Turkey Creek and the adjacent Indian River Lagoon. CC1 and CC2 = stations in Crane Creek where muck was not dredged, CC3–CC6 = stations in the lagoon near Crane Creek where sediment that was not muck remained undisturbed, TC1–TC4 = stations in Turkey Creek where muck was dredged, TC5 and TC6 = stations in Turkey Creek where sediment that was not muck remained undisturbed, TC7 and TC8 = stations in Turkey Creek where sediment that was not muck was dredged, TC9–TC12 = stations in the lagoon near Turkey Creek where sediment that was not muck remained undisturbed. 
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Figure 2. Non-metric multidimensional scaling based on mean values for characteristics of sediments. Mu_undist = muck that was not dredged, Mu_dre = muck that was dredged, Creek_undist = sediments in creeks that were not dredged, Creek-dre = sediments in creeks that were dredged, Lag_undist = sediments in the lagoon that were not dredged, Be = before dredging, Mo = one month after dredging, Yr = one year after dredging. 
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Figure 3. Proportion of each amphipod taxon found in (a) sediments in the lagoon that were not muck and were not dredged, (b) sediments in the creeks that were not muck and were not dredged, (c) sediments in Turkey Creek that were not muck and were dredged, (d) sediments in the creeks that were muck and were not dredged, and (e) sediments in Turkey Creek that were muck and were dredged, with the number of individuals in parentheses following the taxon. Note the differences in the y-axes. Grand = Grandidierella sp., Cyma = Cymadusa compta, Cera = Cerapus tubularis, Coro = Corophium sp., Gbonn = Grandidierella bonnieroides, Jass = Jassa sp., Eus = Eusirus cuspidatus, and Gamm = Gammarus mucronatus. 
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Table 1. Sampling design showing the number of stations in categories used in analyses.
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	Location
	Sediment
	Treatment
	Number of Stations





	Lagoon
	Not muck
	Undisturbed
	8



	
	Muck
	Dredged
	0



	Creek
	Not muck
	Undisturbed
	2



	
	
	Dredged
	2



	
	Muck
	Undisturbed
	2



	
	
	Dredged
	4



	Total
	
	
	18
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Table 2. Results of permutation analyses of variance. Se = type of sediment (muck in a creek, sediment that was not muck in a creek, and sediment in the lagoon), Tr = treatment (undisturbed or dredged), Ev = sampling event (before dredging, one month after dredging, and one year after dredging).
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	Data
	Source
	df
	SS
	MS
	Pseudo-F Ratios
	p
	Unique

Permutations





	Sediment
	Se
	2
	8.59
	4.30
	15.32
	0.002
	999



	
	Tr
	1
	0.16
	0.16
	0.67
	0.501
	997



	
	Se × Tr
	1
	1.32
	1.32
	5.67
	0.021
	998



	
	Ev(Se × Tr)
	10
	3.06
	0.30
	2.89
	0.001
	999



	
	Residual
	39
	4.13
	0.10
	
	
	



	
	Total
	53
	23.46
	
	
	
	



	Counts
	Se
	2
	1230
	615
	1.08
	0.414
	999



	
	Tr
	1
	316
	316
	0.68
	0.584
	997



	
	Se × Tr
	1
	388
	388
	0.84
	0.517
	999



	
	Ev(Se × Tr)
	10
	6234
	623
	3.45
	0.001
	996



	
	Residual
	147
	26,499
	180
	
	
	



	
	Total
	161
	34,601
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