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Abstract: This study proposes a mathematical model for the coupled translational-rotational motions
of a mooring system for an ocean energy converter working under a typhoon wave impact. The ocean
energy convertor comprises two turbine generators and an integration structure. The configuration
of the turbine blade and the floating platform is designed. The two turbine blades rotate reversely at
the same rotating speed for rotational balance. If the current velocity is 1.6 m/s and the tip speed
ratio is 3.5, the power generation is approximately 400 kW. In the translational and rotational motions
of elements under ocean velocity, the hydrodynamic parameters in the fluid—structure interaction
are studied. Initially, the hydrodynamic forces and moments on the converter and the platform are
calculated and further utilized in obtaining the hydrodynamic damping and stiffness parameters. The
18 degrees of freedom governing equations of the mooring system are derived. The solution method
of the governing equations is utilized to determine the component’s motion and the ropes” dynamic
tensions. In the mooring system, the converter is mounted under a water surface at some safe depth
so that it can remain undamaged and stably generate electricity under typhoon wave impact and
water pressure. It is theoretically verified that the translational and angular displacements of the
converter can be kept small under the large wave impact. In other words, the water pressure on the
converter cannot exceed the predicted value. The relative flow velocity of the convertor to the current
is kept fixed such that the power efficiency of convertor can be maintained as high. In addition, the
dynamic tension of the rope is far less than its breaking strength.

Keywords: hydrodynamic damping; displacement; rope tension; ocean current; mooring system;
stability

1. Introduction

Ocean current power generation is a potential renewable energy technology. The
Taiwan Kuroshio current has a potential capacity of over 4 GW [1]. However, the seabed
beneath the Kuroshio current is almost over 1000 m in the area mentioned above. The deep
mooring technology is essential for harnessing that energy. Additionally, the typhoon wave
impact affects the operation of the ocean power generation system. Hence, there is a need
to model and develop a technology overcoming these limitations.

So far, Chen et al. [1] successfully tested the 50-kW ocean current convertor mooring to
the 850 m deep seabed in the Taiwan Pingtung sea area. IHI and NEDO [2] tested a 100 kW
ocean current convertor mooring to the 100 m deep seabed beneath the Japan Kuroshio
current. The current converter generated approximately 30 kW under the current speed
of 1.0 m/s. These two experiments were conducted under the small excitation of wave
and in a few weeks. The goal of these experiments was to test the power performance of
the developed convertors. However, it is for a commercial power farm that the convertor
will be safe working for a long time and under different wave impact. Therefore, the deep
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mooring theory and technology for the ocean current convertor system are in great need of
development. Nobel et al. [3] presented the standards and guidance for the development
and testing of the devices for marine renewable energy.

Lin et al. [4] investigated the dynamic stability of the mooring system under regular
wave and ocean current. The significant effects of some parameters on the dynamical
stability of the mooring system were detected. The lightweight high-strength PE (HSPE)
mooring rope was determined to be suitable for the deep mooring system. C’atipovic
et al. [5] investigated the hydrodynamic damping force of fiber mooring lines taking longi-
tudinal deformation by the finite element method. Lin and Chen [6] developed the linear
elastic model for the mooring system with PE mooring rope. They proposed a methodology
to protect the convertor from the typhoon wave—current impact. The protection function of
the proposed methodology under Typhoon wave impact was theoretically verified. Lin
et al. [7] investigated the dynamic stability of the mooring system for surfaced convertor
under the regular wave during non-typhoon periods and steady ocean current. Lin et al. [8]
proposed a mooring system that enabled the energy convertor to work under typhoon
wave impact. The plane translational motion of the mooring system was simulated in the
linear elastic model. The concentrated mass assumption was made. Meanwhile, only the
hydrodynamic forces of the convertor and platform were considered in the surge motion.

The mathematical model of the mooring system is also important for wave energy
converters (WEC). Davidson and Ringwood [9] reviewed the mathematical modeling of
mooring systems for wave energy converters. Chen et al. [10] investigated the wave-
induced motions of a floating WEC with mooring lines by using the Smoothed Particle
Hydrodynamics (SPH) method. Xiang et al. [11] proposed the finite element cable model
to study the performance of a buoy mooring system. Paduano et al. [12] validated the
quasi-static and dynamic lumped-mass models. Touzon et al. [13] compared a linearized
frequency domain model, a non-linear quasistatic time domain model, and a non-linear
dynamic model for WEC. Xiang et al. [14] investigated the dynamic response of a floating
wind turbine foundation with a Taut Mooring System.

Anagnostopoulos [15] studied the dynamic performance of offshore platforms under
wave loadings in the Morison model. It was determined that the effect of hydrodynamic
damping on the resonant response of the structure is significant. Bose et al. [16] studied
the dynamic stability of an airfoil supported by a spring. The problem of fluid—structure
interaction is usually solved by using numerical methods such as the boundary element
method [17], the finite volume method [18], the Lagrangian—Eulerian Method [19], the
particle-based method [20], and the hybrid methods [21].

Lin et al. [5-7] investigated the plane translational motion of the mooring system
in the linear elastic model. The concentrated mass assumption was made but the fluid-
structure interaction (FSI) was not completely considered. In this study, a mooring system
for an ocean energy convertor that is working under the typhoon wave impact is proposed.
The mathematical model of the coupled translational-rotational motions of the system
is derived. The configuration of the turbine blade and the floating platform is designed.
The hydrodynamic forces and moments on the operational convertor and the platform
in motion are determined by using the finite volume method. The damping effect of the
fluid—structure interaction on the stability of the mooring system under typhoon wave
is investigated.

2. Mathematical Model

To avoid the typhoon wave impact, the energy convertor and the floating platform
were submerged to a depth of approximately 60 m, as shown in Figure 1. Therefore, the
direct impact of the typhoon wave is almost negligible. In this study, the translational—-
rotational response of the mooring system under coupled wave—ocean effect is investigated.
The translational motions include ‘heave’, ‘surge’, and ‘sway’. The rotational motions
include “pitch’, ‘roll’, and ‘yaw’. The ocean energy convertor is composed of two turbine
generators and an integration structure. When ocean currents flow through the energy
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convertor, the turbine blade rotates and drives the power generator to generate electricity.
Meanwhile, the convertor and the floating platform are subjected to the hydrodynamic force
and moment due to the ocean current-structure interaction. Lin and Chen [3] determined
that the HSPE rope could be assumed as a straight line over a certain amount of ocean
current drag force because the force deformation of the HSPE rope was negligible. The
linear elastic model proposed by Lin and Chen [3] is used to analyze the motion equation
of the overall mooring system.

f Pontoon 4

~

Convertor 2
Yaw
heave

(iﬁc“ Platform 1

X

Mooring foundation

0

Figure 1. Configuration of the mooring system of ocean energy convertor.

Based on the facts for ocean current energy converters (OCEC), the following assump-
tions are made:

—  The current flow is steady.

— The HSPE mooring ropes are used.

— Under the ocean velocity, the deformed configuration of the HSPE rope is nearly straight.
—  The elongation strain of the ropes is small.

— The translational and rotational displacements of the components are small.

— The tension of the rope is considered uniform.

These displacements of the component and tensions of ropes include (1) the static one
under the steady current only, (2) the dynamic one due to the wave impact and current.
The global translational and the rotational displacement of the component are expressed as

Xi = Xjs + Xig, Yi=VYistVYid, Zi=ZzZis+zg i=1,234,

Pjx = Pjxs + Pjxds Pjy = Pjys + Pjydr Pjz = Pjzs + Pjza, ] =1,2. 1)
The total tensions of the ropes are expressed as
T, =Tis + Ty, i=A,B,C,D. (2)

Static Displacements and Equilibrium under the Steady Current Only

Under the steady current only, the static displacements of the components are obtained:
x0:0, y():O, Z():O,

x1s = Hppy — Lc = Lasin®as, y1s = Laocosfys, z15 =0,
X5 = Hpeg — Lp = x15 — Lpsinfps, Yo = Y15 + LpcosOps, zps =0,

X3s = X1s + Lc = Hped, Y3s = Y15 , 23s =0,
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X4s = X35 = X2s + Lp = Hped)  Yas = Y25 , Z4s =0,
Pjks =0, i=12 k=xy,z 3)
The global setting angle 645 of rope A is
sinfas = x15/La- 4
The global setting angle 6, of rope B is
sinfps = (x15 — x25)/ L. ©)

Under the steady current only, the static equilibrium of the platform in the y-direction is

1
Tpscos 05 — Tps cosOps = fpys = ECDPyPAPYVZ- (6)
The static equilibrium of the platform in the x-direction is
Tcs + Fp1s = Tassin 045 + Tps sin 0ps + W 7)

The static equilibrium of the energy convertor in the y-direction is

Tps cos Ops = frys = CDTy%pATsz. (8)
The static equilibrium of the energy convertor in the x-direction is
Fpps = Wy — Tps — Tps sin ps. )
The static equilibrium of the pontoon 3 in the x-direction is
Fp3s = W3 + Tgs. (10)
The static equilibrium of the pontoon 4 in the x-direction is
Fpas = Wy + Tps. (11)

3. Dynamic Equilibrium
3.1. Translational Motion in the x-Axis Direction
3.1.1. Equation of Heaving Motion for Pontoon 3

The damping force on the pontoon is negligible. Because the length of the rope
connecting the platform and pontoon 3 is long and the connecting point runs through
the mass center of the platform, the rotational motion of pontoon 3 is not affected by the
rotational motion of the platform. The dynamic equilibrium of the pontoon 3 in the heaving
motion is

MsX35 — Fgz + W3 + Tc = 0. (12)

According to Equations (2) and (10), Equation (12) becomes
M3x34 + Tcg — Fpaq = 0. (13)
Considering the linear elastic model, the dynamic tension of the rope C is [5]
Tca = Keadea, (14)

where K¢ and ¢, are the effective spring constant and the dynamic elongation of rope C,
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respectively. Dynamic elongation is the difference between the dynamic and static lengths
of rope C. Further, by using the Taylor formula, the following is obtained:

dci = Leg — Les = (x30 — X14), (15)

where Lcs = \/(x3s - xls)2 + (y3s — ]/ls)z + (235 — 215)2/

Lea = \/(x3 —x1)?+ (s — 1)’ + (3 —21)>
Assume the coordinates of the pontoons 3 and 4 as shown in Figure 2:

ﬁ

R pontoons = 0, (16)
= e
Rpontoons = LE ] - 17)

- floatiyig platform '\ current '\

@) ' | —\

v

ontoon 3\ \ rope A
\
\
\ \
\
Figure 2. Top view of mooring system under wave and current [5].
The wave elevations at the pontoons 3 and 4 are

Xw,pontoon3 = Hyo sin O, (18)
Xw,pontoond = Hyo Sin(Qt + 90) (19)

The corresponding dynamic buoyance of the pontoon 3 due to the difference in wave
elevation and the vertical dynamic displacement is

Fp34(t) = Apxpg(Huwo sin QU — x35) = fps sin Qt — ApypgX34, (20)
where fp; = ApypgHuo. Substituting Equations (14) and (20) into Equation (13), one obtains
M3x34 — Kegxig + (Kea + Apxpg)xsq = fps sin i, (21)

where the third term is the restoring force. The last term is the wave exciting force.

3.1.2. Equation of Heaving Motion for Pontoon 4
The dynamic equilibrium of the pontoon 4 in the heaving motion is

M4j&4d — Fgs + Wy +Tp =0. (22)

According to Equations (2) and (11), Equation (22) becomes
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MyXyq — Fpag + Tpa = 0. (23)
Considering the linear elastic model, the dynamic tension of the rope D is [5]
Tpa = Kpadpa, (24)

where Kp,; and ép; are the effective spring constant and the dynamic elongation of the rope
D, respectively. The dynamic elongation is the difference between the dynamic and static
lengths of the rope D. Further, by using the Taylor formula, the following is obtained:

Opd = Lpa — Lp = (xaq — X24), (25)

where

Lps = \/(x4s - 3525)2 + (y4s - ]/25)2 + (Z4s - ZZS)ZI Leg = \/(x4 - x2)2 + (y4 - ]/2)2 + (Z4 - 22)2' (26)

. X . X
- (M1 + Meff,x)xld + fpx + Tca — Tas cos GASL%T — Tpgsinf4s — Tps cos O —2——12

The corresponding dynamic buoyance of the pontoon 4 due to the difference in wave
elevation and the vertical dynamic displacement is

Fpya(t) = Aprpg(Huwo sin(Qt + @) — x49) = frecos Ot + frosinQt — Aprpgxsa,  (27)

where fr, = AprpgHuwocos ¢, fr. = AprpgHuo sin¢. Substituting Equations (24), (25) and
(28) into Equation (23), one obtains

Myxy4q — Kpgxag + (Kpg + AptpgQ)Xaq = fre cos Ot + frssin O, (28)
where the third term is the restoring force. The last two terms are the wave exciting force.

3.1.3. Equation of Heaving Motion of the Platform
The dynamic equilibrium of the floating platform in the heaving motion is

- (M1 + Meff,x)xld + fpy + Fgis — Wi + Tc — Tasinfy — Tysinfp =0,  (29)
where

X X — X
04 = 0as + A0 py, Op = Ops + AOpy, AOpy = L%f Ny = ”L—B” (30)

Substituting Equations (7) and (30) into Equation (29), one obtains

d =M 1o osingg =0,  (31)

Lg
where the hydrodynamic force on the floating platform due to the fluid-structure interaction
is expressed in Taylor series as follows:

9
) ) . . . . 0
fo (V, X1d, Y1d4: Z1dr P1xr Plys Plzs P1ys (Ply’ (Plz) = fo(V, 0,0,0,0,0,0,0,0, 0) + 2 ??51]' + O(Slmsln)- (32)
=1 %51

Briefly, (Xkd/ykd/ikd/ Pixs Prys Phzr Prs (Pkyr ¢kz> = (Sk1, k2 Sk3s Skds Sk57 k6 k7, k81 5K9)
k =1, 2. When the symmetry configuration of the platform is considered, the hydrodynamic
force on the platform in the x-direction under the current only is fp,(V,0,0,0,0,0,0,0,0,0) = 0.
Considering small oscillation, the higher-order terms are neglected later. The right-handed side
second term of Equation (32) is the hydrodynamic force due to the fluid—structure interaction.
The dynamic tensions of ropes A and B are

Tag = Kaadag, Tra = Kpadpa- (33)
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The dynamic elongation is the difference between the dynamic and static lengths,
0pd = Lgg — L 55, [3 =A,B. Using the Tylor formula, the dynamic elongations are derived,

6ad = Tox1a + F2y1g and 6pg = M2 (014 — Xog) + P (Y1g — Yaa)-
Substltutmg Equations (32) and (33) into Equation (31), one obtains

(Ml + Meff,x) jé1d + fdamp,Px + fstif,Px
+ (ch + Ths EOS 04s + sin 9A£KAdxls T i‘;s Ops sin GBSKBd (XZSL_Bxls) ) X14

A A
Tp cos 0 . X5 —X
+(7BS 00808 — sin O, Ky U2 15) 15))de — Keaxaq

+ (sin BASKAd%: — sin BBSKBd (yzq yls) )]/1d + sin BBSKBd (25 — yls)yZd =0

(34

where the dynamic effective masses of the rope A, Mfj,j = X, y, z are listed in Appendix A.

The hydrodynamic damping force fiamp,px = ( Y aaf; gy + E aP xd 51]> and the hydro-

6

dynamic stiffness force fgirpr = — 1 agé’l’fd s1j on the platform about the x-axis due to
=y %

the FSL

3.1.4. Equation of Heaving Motion for the Convertor

The dynamic equilibrium of the convertor in the heaving motion is
— MpXoy + frx — W + Fpps + Tp + Tpsinfp = 0, (35)

where the hydrodynamic force due to the motion of the convertor is expressed in Taylor
series as follows:

frx(V, 801,822, -+ 529, TSR) = fr(V,0,0,---,0,0, TSR) + Z 52] + 0(s2mS2n). (36)

When the symmetry configuration of the convertor is considered, the hydrodynamic
force on the convertor in the x-direction under the current and operation of blades is
frx(V,0,0,0,0,0,0,0,0,0, TRS) = 0. Considering small oscillation, the higher-order terms
are neglected later.

Substituting Equations (2), (9), (24), (33) and (36) into Equation (35), one obtains

. Tgs 0 . s —X1s
MaXoq + faamp,tx + fetif, 1 + (%BSB +sin s Kpg 2 = ))xld
(KDd TBSCic;SQBS sin 0p;Kp, (xzs_xls))x 2d ’ (37)
(Y2s—Y1s)
CLp

—KpgXag + sin 0Ky Y2 yIS)]/ld — sin 0psKpy Yoa =0

where the hydrodynamic damping force fgap,x = ( Y af T“” S2j + Z aT’“’ 52]> and the

6
hydrodynamic stiffness force fgif,re = — 1 aaﬁ%szj on the convertor about the x-axis due
= 95y

to the FSI.

3.2. Translational Motion in the y-Direction
3.2.1. Equation of Surging Motion of the Platform

The dynamic equilibrium of the floating platform in the surging motion is

- (M1 n Meff,y) i34+ foy — Tacosa + Tp cos 0 = 0, (38)
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where the hydrodynamic force is
ny = fpys + fpyd/ (39)
of
where fpys = fpy(V,0,0,0,0,0,0,0,0,0) = Cppy30ApyV?, fpya = z asff
Substituting Equations (2), (9), (34) and (39) into Equation (38) one obtains
(Ml + Meffj)yld + fdamp Py + fstif Py
X1s _ 25 _ Tpssinfas Tps sin Ops
+( Kag T, cos 045 — Kpg X2 cos O ( o+ ))xld , “0)

T 0
+ Kdelb X2s COSGBS BSSLI;; Bs>x2d

+(Kaate = c0s 045 — Kpg Ns—tos y = cos 935)y1d + Kpg e 22 y % 008 Opsly2qg = 0

where the hydrodynamic damping force fyuup,py = ( )y agfl s+ Z fpyd s1 ]> and the
6

hydrodynamic stiffness force fg;irp, = — 1 %%y]fjsl j on the platform about the y-axis due
=

to the FSI.

3.2.2. Equation of Surging Motion of the Convertor in the y-Direction

The dynamic equilibrium of the convertor in the surging motion is
— May,; + fry — T cos 0 = 0. (41)
The hydrodynamic force on the convertor is expressed as
fry = frys + frya (42)
in which frs = ny(V 0,0,0,0,0,0,0, O 0,TRS) = CDTy%pATyVZ, Ary is the effective
operating area of the convertor, nyd = Z aj;Ty 52j-
Substituting Equations (2), (8), (33) and (42) into Equation (41), one obtains

- X1s—2 X1s—2
MZyzd =+ fdamp,Ty + fstif,Ty + (KBd 117325 Ccos 935) X1d — (KBdl‘List cos eBs) Xod

_ R , (43)
+ (Kgd% COS GBS>]/1d — (KdelbLiByz” COs QBs)yZd =0

af Tyd
aSZ

where the hydrodynamic damping force fuump, 1y = ( Y S2j + Z o Tyd 52]> and the

of Tyd

hydrodynamic stiffness force fy;if,1y, = Z 52j on the convertor about the y-axis due

to the FSI.

3.2.3. Equation of Surging Motion of the Pontoon 3 in the y-Direction
The dynamic equilibrium of the pontoon 3 in the surging motion is

M3ys43 + Tesinge, = Fay(t), (44)

where sin¢c, = (Y34 —y1a4)/Lc. Tc = Tcs + Tg,, in which T¢s and T, are the static
and dynamic tensions. It is observed from Equation (7) that for static equilibrium of the
platform, the static tension T¢; and the buoyancy of the platform Fpy, are lift forces. If the
designed buoyancy Fp1; is not sufficient, the static tension T¢; must be increased. In this
study, the static tension T is considered to be significantly larger than the dynamic tension
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(Ml + Meff,z)ild +fdump,Pz +fstif,Pz + ( + o+

Tcg4. The horizontal impact force of regular wave on the pontoon 3 is F3yupe = Fuave3 Sin wt,
where fwﬂveﬁ = Cuave3Hwave, In which Cyype 3 is the wave impact coefficient depending on
the geometry of the pontoon 3, and Hyee is the wave amplitude. The y- and z-direction
components of wave force are

F3y(t) = Asysinwt, and F3z(t) = Az sinwt, (45)

where Az, = l?wm,eg cosa and Az, = l?wm,glg sin «.
Considering small displacements and substituting Equations (14) and (45) into
Equation (44), one obtains

. T, )
MsY343 + f(ysd —Y14) = Azysinwt. (46)

3.2.4. Equation of Surging Motion of the Pontoon 4 in the y-Direction

The dynamic equilibrium of the pontoon 4 in the surging motion is
M4y4d +Tp Sil’l(pr = F4y(t), (47)

where sin ¢p, = (Yad — Y24)/Lp. Tp = Tps + Tp,, in which Tp, and Tp, are the static
and dynamic tensions. The horizontal impact force of regular wave on the pontoon 4 is
Fawave = Fwavea(wt + ¢), where Fyppe 4 = CuwaveaHwave, in which Cypape 4 is the wave impact
coefficient depending on the geometry of the pontoon 4. The y- and z-direction components
of wave force are

Fyy(t) = Agysin(wt + ¢), and Fy, () = Ag, sin(wt + ¢), (48)

where Ay, = fwave,‘i cosa and Ay, = Nwm,e/; sina.
Considering small displacements and substituting Equations (24) and (48) into
Equation (47), one obtains

.. T .
Mujay + 72 (ya1 = Yoa) = Aay Sin(@t +9). (49)

3.3. Translational Motion in the z-Direction
3.3.1. Equation of Swaying Motion of the Platform

The dynamic equilibrium of the floating platform in the swaying motion is
(M1 + Mgff,z)ild — fpz +TacosBysingy — TpcosOpsingp — Tesinge =0, (50)

wheresings = z15/(La cos84),singp = (205 — 214)/ (Lp cosOp), sinpc = (233 — z14)/ Le,
sin¢p = (z49 — 2z24)/ Lp- The hydrodynamic force is

9 afP
frz = “s1;. (51)
Z = 351]' ]

Considering small displacements and based on Equations (2), (14), (33) and (51),
one obtains

Tes
Py — 8 =0, 52
Li  Lp Lo )W Ty Lo (52)
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where the hydrodynamic damping force fyp,p: = ( Y agspl s+ Z aP 2 51]> and the

hydrodynamic stiffness force fgifp, = — Z a” 2 g, j on the platform about the z-axis due to

the FSI.

3.3.2. Equation of Swaying Motion of the Convertor
The dynamic equilibrium of the convertor in the swaying motion is

Mpzog — sz + TpcosOpsingpg — Tpsingp =0, (53)

where the hydrodynamic force is

fr2 = Z %J; T]Z : (54)

Considering small displacements and based on Equations (2), (24), (33) and (54),
one obtains

T T T,
Bs Ds) ol — Ds Zyg = O, (55)

) Tp
MZZZd + fdump,Tz +fstif,Tz - TBSZLJI + ( L + I g

852

where the hydrodynamic damping force fyamp, - = — ( Y frad Soj + Z f Lzd g > and the
j=1

hydrodynamic stiffness force fyif, . = — 2 afsTZZ" sj on the convertor about the z-axis due
j=4

to the FSI.

3.3.3. Equation of Swaying Motion for the Pontoon 3

The dynamic equilibrium of the pontoon 3 in the swaying motion is
MsZzsg3 + Tesinge = Faz(t), (56)

where sin¢c, = (Y34 —Y¥14)/Lc. Considering small displacements and substituting
Equations (2), (14) and (45) into Equation (56), one obtains

. T .
M3z343 + LLCS(Zad —214) = Az, sinwt. (57)

3.3.4. Equation of Swaying Motion of the Pontoon 4
The dynamic equilibrium of the pontoon 4 in the swaying motion is

Myzyq + Tpsingp = Fy(t), (58)

where singp = (z49 — 2zp4)/Lp. Considering small displacements and substituting
Equations (2), (24) and (48) into Equation (58), one obtains

. T .
Myzyy + %(ZM — zpq) = Ay sin(wt + ¢). (59)

3.4. Rotational Motion
3.4.1. Equation of Yawing Motion of the Convertor

The dynamic equilibrium of the convertor in the yawing motion is

ITx¢2x —mr7y + Tgcos OgRrp, sinf,y =0, (60)
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where Rty is the distance between the center of gravity and the rope B about the x-axis.
0p = Ops + Abp, Afp = (x4 — xld)/LB, x = @Tx + A0y, A8y = (204 — 214)/Lp cos Ops.

The hydrodynamic moment m, = Z 5’:2“ 2j-
j

Considering small dlsplacement and substituting Equation (34) into Equation (60),
one obtains

. TgsR TsR
ITx ¢y, + Mamp, Tx + Mstif, Tx + (TBs cos GBSRTBx)q)Zx — <M> Z14 + ( Bs TBX)sz =0, (61)

Lp

352

L
where the hydrodynamic damping moment 4,12 = (Z agg“’s + Z Mg 52]>

and the hydrodynamic stiffness moment mg;¢ 7, = — Z 5 ?d $pj on the convertor about
j=4

the x-axis due to the FSI.

3.4.2. Equation of Rolling Motion of the Convertor

The dynamic equilibrium of the convertor in the rolling motion is
ITy¢2y —mry + TDRTDy sin Gy =0, (62)

where Rrpy is the distance between the center of gravity G and the rope D about the y-axis.
The dynamic angle between the rope D and the line from G to the rope D is 6y = ¢, + Aby,
A8y = (24 — z44)/ Lp. The hydrodynamic moment

7.52]" (63)

Considering small displacement and substituting Equation (63) into Equation (62),
one obtains

TpsRrpy TpsRrpy

Iy¢2y + Maamp, Ty + Mstif, Ty + TDSRTDy(PZy + Lp Z2d4 — Ip 249 = 0, (64)

aSZJ

: : d 2. 9
where the hydrodynamic damping moment 114,y = ( y S g $23i+ 1 ;ﬂszygszj> and
=7 7

6
the hydrodynamic stiffness moment mg;r 7 = — ¥ — Szy, $oj on the convertor about the
= 0y

y-axis due to the FSI.

3.4.3. Equation of Pitching Motion of the Convertor

The dynamic equilibrium of the convertor in the pitching motion is
I129y, — m1z + TpR7p; sinfrp; =0, (65)

where the dynamic angle about the z-axis between the rope B and the line from the center
of gravity to the rope B is 67p, = 0ps + @1, + Afp, A0 = (x5 — x14)/Lp. The moment
MT, = MT.s + M7,3, Where the moment in static equilibrium

mrs; = —TsRrp, sin Ops, (66)

the hydrodynamic moment

52]‘. (67)
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ITZ¢22 + Mdamp, Tz + Mstif, Tz + (TBSRTBZ Ccos QB)QDZZ -

Considering small displacement and substituting Equations (66) and (67) into
Equation (65), one obtains

TBSRTBZ COS 93 X TBsRTBz cOos 93

=0 68
L 1d L Xoq =0, (68)

3
where the hydrodynamic damping moment g4, 7, = — ( Y aggz" Soj + Z a Tzd 52]> and
j=1

6
the hydrodynamic stiffness moment mgir, = — 1 agg?"’ s2j on the convertor about the
j=4 7

z-axis due to the FSI.

3.4.4. Equation of Yawing Motion of the Platform

The dynamic equilibrium of the floating platform in the yawing motion is
IPx¢1x — Mpy + TA cos GARpr sin PpxA + TB cos GBRpr sin PpxB = 0, (69)

where Rpg, and Rpp, are the distance in the y-z plane from the center of gravity to the
rope A and B, respectively. The angles of rope A and B in the x-y plane 64 = 045 + Af 4y,
6p = 0ps + AOp,, respectively. The relative angles between rope A and B and the longi-
tudinal axis of the platform in the y-z plane ¢py4 = @1x — A¢y, and @pyp = @1 — Aby,
respectively, in which A8y = (2o — 2z14)/ (Lp cos0ps), Apx = z14/ (L cosbys). The hy-
drodynamic moment on the floating platform due to the FSI is expressed in Taylor series
as follows:

9
. L am
me(V, xld/y]drzld/ (P1XI (Plyl (Plzr (Plxr (Plyl (Plz) = mPX(V/O/0,0, 0/ 0/ 0/ 0/ 0/ 0) + 2 an‘XSU +0(51msln)/ (70)
j=1 ]

where mp,(V,0,0,0,0,0,0,0,0,0) = 0. Considering small oscillation, the higher order
terms are neglected. Substituting Equations (34) and (70) into Equation (69), one obtains

IPx¢1x + Maamp,Px + Mstif,Px + (TAs cos 0 4sRpay + Tgs cos GBSRPBx)q)lx

+(TBSLRBPBX _ TAiIZPAx)Zld _ %BPBXZZCI — 0 7 (71)
here the hydrodynamic dampi — (5 amag 4y g Y and
where the hydrodynamic damping moment Magmp,px = — j;l 351 51; +/§7 TUSU an
6
the hydrodynamic stiffness moment mg;rp, = — ). ag;f]_ *51; on the platform about the
j=4
x-axis due to the FSI.
3.4.5. Equation of Rolling Motion of the Platform
The dynamic equilibrium of the floating platform in the rolling motion is
Ipyy¢1y — mpy + T4 cos QARPAy sin PryA + TcRpr sin Ppyc = 0, (72)

where Rpyy, and Rpc,, are the distance in the x-z plane from the center of gravity to the rope
A and C, respectively. The relative angles between rope A and C and the lateral axis of
the platform in the x-z plane ¢p,4 = @p, + APy, and ¢p,c = @py + Adcy, respectively, in
which Apay = z14/Lasin0as, Apcy = (214 — 234)/ Lc- The hydrodynamic moment

Bmpy
mpy = 2 351] j (73)
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Ip, ¢1z — Mpy

ch = [flc f2c

Considering small displacement and substituting Equations (14), (33) and (73) into
Equation (72), one obtains

IPy¢1y + Magmp,py + Mstif,py + (TAS cos GASRPA]/ + TCsRPCy) P1y

, 74
+(TAsLliPAy + TCSLRCPCy>Zld . TCSLRCPCy 23y =0 (74)
. . 3 mp 9. dmp
where the hydrodynamic damping moment 4, p, = —| ¥ asljy s1j+ 2 leyslj and
j=1 =7
6
the hydrodynamic stiffness moment mg;rp, = — ) aan:—lp_yslj on the platform about the
j=4 7
y-axis due to the FSI.
3.4.6. Equation of Pitching Motion of the Platform
The dynamic pitching equilibrium of the floating platform about the z-axis is
+ Ta cos04Rpazsin pp; 4 + Tp cos OpRpp; sin ¢p,p + TcRpc sin ¢pc =0, (75)

where the angles of ropes A, B: 04 = 045 + A8 4,4, and 8p = 8p; + Afp,. The relative angles be-
tween ropes A, B and C and the axis of the platform in the x-y plane
PpzA = @p; + A04, ¢p.p = @p, + AOp and @p,c = @p, + Abc, respectively, in which
Ay = x14/La, ABg = (xpq9 — x14)/Lp, AOc = (Y24 — Y14) / Lc. The hydrodynamic moment

om
Mp; = Z 713'251]'- (76)

Considering small displacement and substituting Equation (76) into Equation (75),
one obtains

Ipz¢1, + Maamp,pz + Maif,pz + (Tas 08 0asRpaz + Tps cos OpsRppz + TesRpez) 912

+ ( Tys COSLiAsRPAz _ Tps COSL(ZBSRPBZ ) X14 + Tps COSL(ZBSRPBZ Xo4 + TCSLRCPCZ (yZd _ yld) =0 4

(77)

3 9
where the hydrodynamic damping moment #4,p,p, = — < Y aa'Zf_ TR aa";f 259; | and
j=1 Y =7

aggtlpj =s1; on the platform about the

6
the hydrodynamic stiffness moment mg;irp, = — )}
j=4

z-axis due to the FSI.

4. Force Vibration Equation of System

The governing Equations (21), (28), (32), (34), (37), (40), (43), (46), (49), (55), (57), (59),
(61), (64), (68), (71), (74) and (77) can be expressed as

MZ,; + CZ; +KZ, = F,, (78)
where the dynamic displacement vector
T
Zi=|x14 Y4 Zd X4 Y2d Z2d X34 Y3d  Z3d  Xad  Yad  Zad  PTx Py P12 PPx PPy QUPZ} .
The elements of the force vector F; = [Fd]} L8x1 are
X
F; = F;. cos Ot + F5 cos O, (79)
in which
T T
fize fise] JFas = [fis fas -+ fizs fiss] Sk =0k=1~6,13~18.
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f7c =0, f7s = ABngHwOr f8c =0, f85 = Cwuve,Skuve cos «, f9c =0, f9s = Cwave,SHwave sina,
fioc = AprpgHuwo sin ¢, fios = AprpgHuwo cos ¢,
fllc = _CwuveAHwave COSs & sin ¢, flls = CwaveAkuve COS & COS ¢,
f12e = —CuoaveaHuwave sinasin g, f1os = Cuwgoe,s Huwave Sin & cos ¢. (80)

Convertor 2

The elements of the mass, damping and stiffness matrix M, C, and K are listed in
Appendices D-F, respectively.

5. Determination of Hydrodynamic Parameters
5.1. Hydrodynamic Parameter of Floating Platform
5.1.1. Dimension of Platform

To reduce hydrodynamic drag on the platform and to avoid disturbing the current
through the turbine, the following oval configuration is designed as shown in Figure 3.

Pontoon 3

Sm

2 Platform 1

Foundation 0

(a) connection of platform (b) dimension of platform

Figure 3. Configuration of the platform.

5.1.2. Hydrodynamic Damping and Stiffness Parameters of Platform

Because the hydrodynamic forces and moments on the floating platform due to the
FSI are expressed in Taylor series, the hydrodynamic damping parameter of platform can
be determined by the two methods: (1) determine these forces and moments by using the
commercial STAR-CCM* software, (2) calculate the hydrodynamic parameter based on the
determined forces and moments.

Firstly, given (V, X1d: Yadr Z1ds Prxs Plys P1zr Prr Py ¢1z> = (v,0,0,0,0,0,0,0,0,0),
0 < V <2.5m/s and by using the commercial STAR-CCM software, it is determined that
the hydrodynamic forces and moments are fpy = fp, = mpy = mpy = mp, = 0, because of
the symmetry of the platform. The hydrodynamic drag is

1
fpus = fry(V,0,0,0,0,0,0,0,0,0) = Cpy50Ap, V2, (81)

where the cross-sectional area of the platform Ap, = 19.635 m? . According to the numerical
hydrodynamic drag with different current velocity V, the drag coefficient C,, = 0.034.
The flow field around the platform is shown in Figure 4 with V = 1m/s . It is observed
that the velocity around the platform is symmetrical. The current near the platform will
be disturbed.
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=

Velocity (m/s)
0.00 1.19

Figure 4. Velocity around the platform along the current.

Secondly, considering the condition, (V, X1d, Y14, Z1ds Plxs P1y, P12, P1xr (ply, 4)12)
(V,%14,0,0,0,0,0,0,0,0), and given n sets of parameters 0 < V < 2.5m/s,—1.5 < x14 <0,
these n sets of numerical hydrodynamic forces and moments are calculated by using the
commercial STAR-CCM software. The flow field around the platform is shown in Figure 5
with {V =1m/s, x;; = —0.5m/s} . It is observed that the velocity around the platform is
asymmetrical. The hydrodynamic heaving force will be induced. Based on the formula

) ofpi .
fp]‘(v, xld,0,0,0,0,0,0,0,0) = fp]'(V, 0,0,0,0,0,0,0,0,0) + a],c—P’xld,j =X,z
X1d

. omp; . .
mp]-(V,xld, 0,0,0,0, 0,0,0,0) = mp]-(V, 0,0,0,0,0,0,0,0,0) + axldj X14,] =%,z (82)

one can determine the hydrodynamic parameters {am pj/ 0X14,0m pj/ axld}, j=xy,zIn
the similar way, other hydrodynamic parameters are obtained and listed in Appendix B.

Pressure (Pa) Velocity (m/s)
—447 139 725 0.020 0.754 1.49
o TS B .

Figure 5. Velocity and pressure around the platform in heaven motion.

5.2. Hydrodynamic Parameter of Convertor
5.2.1. The Turbine Blade and Its Performance
The ocean energy convertor is composed of two turbine generators and an integration

structure, as shown in Figure 6. Its normal power generation is 400 kW. The blade shape is
shown in Figure 7.
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Guide tunnel

14

Rblade

10 20 30 40
Pitch angle (deg.)

(a) Dimension of turbine blade (b) Blade section

(c) Relationship between pitch angle
[unit: m]

and radius

Figure 7. Configuration of turbine blade.

The two turbine blades rotate reversely at the same rotating speed for rotational
balance. Under the current velocity V =2 m/s, the velocity field around the fixed convertor
with rotating blade at the tip speed ratio TSR = 3.5 is calculated by using Star CCM+ and
shown in Figure 8. It is observed that the current flows through the turbine blade along the
guide tunnel. It will increase the flow velocity through the blade and the power generation.
Moreover, the flow field around the two turbine blades will not disturbs each other. Figure 9

shows the effect of the TSR on the power coefficient of the turbine, CP = power/ (%pAV3) ,

at the current velocity V =2 m/s. The maximum power coefficient CP of the proposed
turbine is 0.43 at TSR = 3.5.

Velocity.@m/s) - -

(a) In vector pattern

(b) In color pattern

Figure 8. Velocity field around turbine (V =2 m/s, TSR = 3.5).
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0.35
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Z0.25
o 02
0.15
0.1
0.05

Figure 9. Relationship between CP and TSR of turbine.

Further, Figure 10 shows the relation between the current velocity V and the output
power at TSR = 3.5. It is determined that when the current velocity V = 1.6 m/s, the power
of each turbine Pe,c, = 197 kW and the total output power of the two turbines is 394 kW. It
is close to the nominal power of 400 kW.

450
400 »
350 d
300 p

~ J.

£ 250

£ 200 x "1 o
150 e

A
100
_
50 7__,,4»—""——
0 4 eV " "
0.4 0.9 14 1.6 1.9

V(m/s)
Figure 10. Influence of current velocity V on the power of turbine.

5.2.2. Hydrodynamic Damping Parameter of Convertor

Because the hydrodynamic force and moment due to the motion of the convertor
are expressed in Taylor series, its hydrodynamic damping parameters can be determined
as follows:

Firstly, given (V,¥ag, V4 224, @25, P2y, 922, P @2y, P2z TSR) = (V,0,0,0,0,0,0,0,0,0,3.5),
0 < V<2.5m/s, and by using the commercial STAR-CCM* software, the hydrodynamic
forces and moments are fry = fr, = mry = mp, = mr, = 0, because of the symmetry of
the convertor. The hydrodynamic drag is

1
f15(V,0,0,0,0,0,0,0,0,0,3.5) = Crz, 5pA7s, V2, (83)

where the cross-sectional area of the convertor Aty = 1034 m? . According to the numerical
hydrodynamic drag with different current velocity V, the drag coefficient Crs, = 0.50. The
flow field around the convertor is shown in Figure 8 with V =2 m/s.

Secondly, considering the condition, (V, X2d, Yogr Z2dr P2xs P2ys P22s Pors (pzy, @, TS R)
= (V, %24,0,0,0, 0,0,0,0,0,3.5),0 <V < 25m/s, —1.5 < xp5 < 0, the numerical hydro-
dynamic forces and moments are calculated.

Finally, based on the formula

. ofrj .
Fr;(V, %24,0,0,0,0,0,0,0,0,3.5) = f1;(V,0,0,0,0,0,0,0,0,0,35) + a],cT]xzd,
X2d
: omrj . .
mTj(V/ X2d, OrOrOrOrOrO/O/O/?"S) = ij(V/O/O/O/ 0,0,0,0,0, 0135) + ox X2d,] = X, Y,2 (84)
2d

one can determine the hydrodynamic parameters {my;/0%x;4,0myj/0%24},j = X, Y, 2.
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Similarly, other hydrodynamic parameters are obtained and listed in Appendix C.

6. Solution Method
6.1. Dynamic Displacement

Multiplying Equation (78) by the inverse matrix of mass M}, one obtains
X; +M1Cx; + M 1Kx; = M !F; = Fg4. cos Qt + Fy, sin Q. (85)
Assume the solution of Equation (85),
Z4 = Z4c c0s Ot + 245 sin O, (86)

where

T
Z4c = [ X1de  Yide Z1dc  X2dc  Y2de Z2dc  X3dc  Y3de Z3dc  X4dc VYade Z4dc  PTxc PTyc  PTze PPxc  PPyc  PPzc ]
Zgs = [ X1ds  Yids Z1ds X2ds Y2ds Zads  X3ds  Y3ds Z3ds  Xads Yads Zads  PTxs  PTys  PTzs  PPxs  PPys  Ppzs }

Substituting the solution (86) into Equation (85), one obtains

—0%1(zg, cos Ot + zg, sin Q) + M~1C(—Qzq, sin Ot + Ozg, cos Ot)

+M 1K (zg. cos Qf + zg, sin Ot) = Fy, sin Ot + Fy, cos Qf ®7)
By using the balanced method for Equation (87), one obtains
Zge = —OA"! (M_1C> zqo + A71E,, (88)
and
Azg, — OM1Czy4, = Fys, (89)
where A = (MK — O?I). Substituting Equation (88) into (89), one obtains
g, = (A + 02 (M*C) Al (M*lc) ) B {Fds +0 (M”C)A*lec}. (90)
Based on Equation (90), the frequency equation is obtained:
‘A L2 (M—lc)A—1 (M—lc) ’ — 0. 91)

6.2. Dynamic Tensions of Ropes
Under regular wave, the dynamic tensions of Ropes A, B, C, D are

Tag = Tagecos Qf + Tpgesin Qt, |Tag| = m, (92)

X1 1 X1 1
where Ty = Kag (Lsxldc + zsyldc>/ Tags = Kaga (Lsxus + is}/ms)
A A A A

Tpy = Tpac cos Qt + Tpys sin Ot |Tpg| = /T3, + T34 (93)

Xps—X s —V1s
where Tpye = Kpg | 227 (Yage — X140) + 20 (Yade — Yiae) |

B
M( Y2s—Yis

o (Xoas — X1gs) + 2 (Vads — Yaas) |-

Tca = Tege cos Ot + Tegs sin O, |Tey| = \/m, 94)

where Tege = Kea(%30c — X14c), Teas = Kea(X3ds — X14s)-

Tpa = Tpac €0s Qt + Tpgs sinQt, |Tpg| = /T3, + T34 (95)

Tas = Kpg
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where Tpge = Kpy(Xadaec — X2dc), Tpas = Kpa(Xads — Xods)-

7. Numerical Results and Discussion

Consider the conditions: (1) Hyey = 1300 m, (2) Apx = 4 m?, (3) Apr = 4 m?, (4) HSPE
rope: Epr = 100 GPa, wpr = 1622 kg/m, Dpg = 154 mm, Apr = 0.0186 m?2,
Thacture = 799 tons, (5) Lc = Lp = 60 m, (6) Lg = 150 m, (7) 64 = 30°, (8) V = 1.6 m/s,
(9) Hyape = 16 m and A = 156 m. (10) My = 300 tons , My = 538 tons , Mz = My = 250 tons,
(11) Ity = 8.940 x 1010 kg — m?, I, = 2.712 x 10" kg — m?, I, = 8.940 x 10'" kg — m?;
Ipy = 3.0 x 10° kg — m?, Ip, = 5.0 x 10 kg — m?, Ip, = 3.0 x 10® kg — m?, (12) the hy-
drodynamic damping and stiffness parameters (8 fri/ ask]-) Oand <8mki / ask]-> o are listed in

Section 5, (13) the performance of convertor is presented in Section 5, (14) T4s = 78.07 tons,
Tgs = 67.53 tons, T = 80 tons, and Tpg = 80 tons, (15) & = 30°.

Figure 11a demonstrates the spectrum of dynamic tension of rope. It is determined that
the resonant frequency is 0.110 Hz. The resonant dynamic tension of ropes: T 4,4 = 84.56 tons.
Tpy = 68.04 tons Ty = 32.18 tons, and Tpy = 32.13 tons. These are greatly smaller than
the fracture strength of rope Tfcpyre = 759 tons. Figure 11b demonstrates the translational
displacements of the platform, the convertor, the pontoons 3 and 4. It is observed that
the resonant surge displacements of the pontoons y3; and y4; are very significant. The
sway displacements z1; and z,; are very small. The maximum heave, surge and sway
displacements x,,4, ¥,,, and z,; of the convertor are 3.21, 4.29 and 0.292 m, respectively.
It is observed from Figure 11c that the maximum yawing, rolling and pitching angles
of the platform ¢p,, ¢py, and @p, are 0.26°, 5.83° and 54.4°, respectively. The maximum
yawing, rolling and pitching angles of the convertor ¢y, ¢1,, and @7 are 0.005°, 0.322° and
0.283°, respectively.

100 —

2 2
3 8 8

80 —

60 —

Dynamic tensions amplitude of ropes (tons)

Displacement amplitudes of platform,turbine and pontoons (m)
=
s

T
0 01 02 03 04 05 06 07 08 09 1 | T LN LR |

‘Wave frequency f(H17) 001 1

01
Wave frequency f{Hz)

(a) Spectrum of dynamic tension of rope  (b) Spectrum of translational displacement

100

Angular displacement amplitudes of

platform and turbine (degree)

1X10_11| T T T T T T T T T

0.01 0.1 1
Wave frequency f(Hz)

(c) Spectrum of rotational displacement

Figure 11. Spectrums of dynamic response.
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According to Figure 11b,c, the displacement of the platform is obviously larger than
that of the convertor. Because the translational and rotational displacements of the convertor
are small under the wave impact, the efficiency of power generation of convertor can be
maintained to be high.

Obviously, the hydrodynamic damping parameters of the convertor and platform
significantly depend on their configuration design. The dynamic performance of the system
is decided by the corresponding hydrodynamic damping parameters or the configuration
design. For clarity, the relationship between the hydrodynamic damping and the rope
tension is investigated here. The hydrodynamic damping and stiffness parameters of some
convertor and platform different to the proposed ones are assumed to be

0 fri o fri omy; omy;
fii _ B ( a{:j) ,and M _ ,Bk< mkl) , (96)
0 0

askj aSkj N aSk]'

where the parameters with subscript ‘0’ are those presented in Section 5 and Figure 11.
Bk, k = P, T are the hydrodynamic parameter ratio of different convertors and platforms to
those presented in Section 5.

In Figure 12, the hydrodynamic parameter ratios are assumed to be fp = fr = 0.1.
Other parameters are the same as those in Figure 11. The effects of the small hydrodynamic
parameters and the typhon wave frequency on the dynamic tensions of the ropes, T 44,
T4, Tcy, and Tpy, are studied. It is determined that the resonant frequencies are 0.032 and
0.160 Hz. The maximum resonant dynamic tension of ropes A, B, C, and D: T 44 = 294.4 tons,
Tpq =165.0 tons, Ty = 113.9 tons, and Tp, = 48.9 tons. These are significantly larger than
those in Figure 11a. Further, if the hydrodynamic damping and stiffness parameters of
the convertor are neglected, i.e., Bp = 0.1 and Bt = 0. The dynamic tension spectrum
is presented in Figure 13. It is observed from Figure 13 that without the hydrodynamic
damping of the convertor, the resonant tensions are significantly increased. The resonant
dynamic tensions are greatly larger than the fracture strength of rope Tycpre = 759 tons.
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Figure 12. Spectrum of rope tension (Lc = Lp =60 m fp = fr = 0.1).

Figure 14a demonstrates the dynamic tension spectrum with Lc = 140 m and
Lp = 60 m. In Figure 11a, with the rope lengths Lc = Lp = 60 m, the maximum dynamic ten-
sion Tyy; = 84.56 tons. In Figure 14a, with the rope lengths Lo = 140 m,
Lp = 60 m, the maximum dynamic tension Ty = 171.8 tons. It is because the surge
and heave displacements of the pontoon 3 and platform at the resonance in Figure 14b are
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significantly larger than those in Figure 11b. Moreover, the pitch angle of the platform in
Figure 14c is significantly larger than that in Figure 11c.

10,000

1000

100

Dynamic tensions amplitude of ropes (tons)

0 01 02 03 04 05 06 07 08 09 1
Wave frequency f(Hz)

Figure 13. Spectrum of rope tension (Lc = Lp =60 m fp = 0.1, Bt = 0).
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Figure 14. Spectrums of displacement and tension (L¢c = 140 m, Lp = 60 m Bp = Bt = 1).
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Figure 15a demonstrates the dynamic tension spectrum with Lc = 60 m and
Lp = 140 m. In Figure 11a, with Lc = Lp = 60 m, the maximum dynamic tension was
Tpq = 84.56 tons. In Figure 15a, the maximum dynamic tension T44 = 64.06 tons and
Ty = 60.06 tons. It is observed from Figure 15b that the maximum resonance displacement
is the surge of the pontoon 4. However, it is observed from Figure 11b that the maximum
resonance displacement is the surge of the pontoon 3. In Figure 15¢, the maximum yaw, roll
and pitch angles of the platform ¢1,, ¢1y, and ¢, are 1.3°, 2.5° and 21°, respectively. The
maximum yaw, roll and pitch angles of the convertor @2, ¢2y, and ¢, are 0.01°, 0.104° and
0.027°, respectively. The maximum pitch angle of the platform in Figure 15c is significantly
smaller than that in Figure 11c.
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Figure 15. Spectrums of displacement and tension (Lc = 60 m, Lp = 140 m, fp = Bt = 1).

Figure 16 demonstrates the effect of the length L on the maximum dynamic tensions
of ropes under 0.01 Hz < wave frequency f < 0.91 Hz and Lp = 60 m. It is observed that if
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50 m < Lc < 130 m, all the dynamic tensions are under 130 tons. The maximum tension
of rope C changes with the length Lc. It is because if the length Lc approaches 150 m,
rope A and rope B are nearly in line and it results in the instability of the platform and the
pontoon 3.

200 —

160 —

120 — Tt

VAN

80 —

40 —

Maximum dynamic tension of rope (tons)

—_ Tn‘ e

L e e I
40 60 80 100 120 140
Length of rope C, L .(m)
L,,=60m

Figure 16. Effect of length of rope C on the dynamic tension (fp = Bt = 1).

Figure 17 demonstrates the relation between the length Lp and the maximum dynamic
tensions of ropes under 0.01 Hz < wave frequency f < 091 Hz and Lc = 60 m. It is
determined that all dynamic tensions are under 90 tons. For 90 m < Lp < 130 m, all dynamic
tensions are under 50 tons.
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Figure 17. Effect of length of rope D on the dynamic tension (fp = 1 = 1).

Figure 18 demonstrates the relation among the rope angle 64, the wave frequency f
and the total tensions of ropes. It is observed that the angle 64 will increase the resonant
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frequency; this is because if the angle 64 is increased, the stiffness of system is increased.
Moreover, if the angle 6 4 is over critical, the dynamic tension T4 increases with the angle 04.

Total tension of rope (tons)

200 —
A
- Ty Tl Ty | )
.- 69,7500 8,=40°; .
160 —— 7300 - -1 9,=200 'I

40 T I IIIIIII T I I

0.01 0.1 1
Wave frequency f{Hz)

Figure 18. Spectrum of total tension of rope (Bp = 1 = 1).

8. Conclusions

This paper presents the mathematical model of the coupled translational-rotational

motions of the mooring system for an ocean energy convertor operating under the typhoon
wave impact. The configurations of the convertor and the floating platform are designed.
The hydrodynamic damping and stiffness parameters under the fluid-structure interaction

are

calculated. The performance of the mooring system under typhon wave impact and

with different parameters is investigated and discovered as follows:

@
@
®)
4)

©)

(6)

The translational displacements of pontoons 3 and 4 are more obvious than those of
the platform and convertor.

The angular displacement in pitch motion of the platform is greatly larger than those
of the yaw and roll motions.

The translational and angular displacements of the platform are obviously higher
than those of the convertor.

For this proposed mooring system, all the displacements of the convertor are kept
small under the significant wave impact. Therefore, the relative flow velocity and
direction of the convertor to the current are almost constant such that the power
efficiency of convertor can maintain to be stable and high.

If there is a mooring system without the hydrodynamic damping of the convertor,
the resonant tensions are significantly increased and greatly over than the rope frac-
ture strength.

The resonant frequency of the mooring system and the total tension T4 increases with
the setting angle 6 4 of rope A.
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Nomenclature

Apx, ApT = cross-sectional area of surfaced cylinder of pontoons 3 and 4, respectively
Agy, Aty = damping area of platform and convertor under current, respectively

C = matrix of damping

Cp Fys C pry = damping coefficient of floating platform and convertor

E; = Young’s modulus of ropei,i=A,B,C,D

F = vector of force

Fp = buoyance

fw = wave frequency

fij = hydrodynamic force of element k in the j-direction

frys frys = the drag of the floating platform and the convertor under steady current
Hyeq = depth of seabed

H; = significant wave height

Hwo = amplitude frequency of wave

Itj, Ipj = mass moment of inertia of the convertor and the platform about the j-axis
g = gravity

K = matrix of stiffness

Kig = effective spring constant of rope i, E;A;/L;

E,« = wave vector of the i-th regular wave

L; = length of ropei,i=A,B,C,D

Lg, = horizontal distance between the convertor and platform, y/L2 — (Lc — L p)?
M = matrix of mass

M; = mass of element i

Mgy, = effective mass of rope A in the i-direction

My = hydrodynamic moment of convertor or platform about the i-axis

E = coordinate

Rpiade = radius of blade

T; = tension force of rope i

t = time variable

TSR = tip speed ratio, wRpj4./V

\%4 = ocean current velocity

W; = weight of component i

WpE = weight per unit length of HSPE

Xi, Vi, Zi = displacements of component i

Xw = sea surface elevation

o = relative angle between the directions of wave and current
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1
Subscript:

0~4

A,B,C,D
s, d

PE

P

T

= hydrodynamic parameter ratio of different convertors and platforms to

those presented in Section 5

= density of sea water

= angular frequency of wave

= angular speed of turbine

= angular displacement of convertor or platform about the j-axis
= phase delay of wave, ¢ = 27tLpcosa/A

= angles of rope i

= length of wave

= elongation of rope i

= mooring foundation, floating platform, convertor, and
two pontoons, respectively

=ropes A, B, C, and D, respectively

= static and dynamic, respectively

= PE dyneema rope

= platform

= convertor

Appendix A. Effective Masses {M,f,x, Meff,y, Mefr,2 }

For the longitudinal vibration of a rope, the governing equation is

2us %us
EAW - pAﬁ,S S (0, LS)/ S = x,y.

The boundary conditions are:
Ats=0,

us = 0.
Ats=1Lg,

Jdug

g - 0.

The solution of Equation (A1) is assumed:

us(s,t) = U(s) sin wt.

Substituting Equation (A4) into Equation (A1), one obtains

d*u
Eos + pw?U = 0,5 € (0, Ls).
The transformed boundary conditions are:
Ats=0,
U=0.

Ats=1L;,

au

F

The solution of Equation (A5) is assumed:

U(s) = e’s.

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

Substituting Equation (A8) into Equations (A5)—(A7), the mode shape and frequency
are obtained [8]:

(2n —1)7s

Uy, (s) = sin oL

,n=1,273,..,

(A9)
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2n—1)m
2L,

(A10)

E
Wy —,n=1273,..,
Y
For simplicity, the rope system is simulated by an effective mass—-spring model. Its
equation of motion is [22]
d2

effs dtz +keffsuLs—O (A11)

where 1, is the displacement at the free end. The effective spring constant k.¢ss = %.
M, s is the effective mass. The natural frequency is

keff,s .
Meff,s

(A12)
The first natural frequency in the effective mass—spring model is the same as that in

the distributed model. Equating Equations (A10)-(A12), the effective mass is obtained:

4fgLAs
72

MEff,S = 7 s = x/ y/ Z/ (A13)
where the mass per unit length of rope A f; = pA. The component of rope A in the x, y,
and z axisare Ly, = Lasin0,, Ly, = Ly cosf4 and Ly, = 0. The corresponding effective

masses are

4pAL A cos 04
2

40AL 4 sin @
Meffr = M’

- , Myssz = 0.

effy = (A14)

Appendix B. Hydrodynamic Damping and Stiffness Parameters of Platform
Appendix B.1. Hydrodynamic Damping Parameters of Platform

d
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d
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om omp om
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d ) d
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Appendix B.2. Hydrodynamic Stiffness Parameters of Platform
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Appendix C. Hydrodynamic Damping and Stiffness Parameters of Convertor
Appendix C.1. Hydrodynamic Damping Parameters
0
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Appendix C.2. Hydrodynamic Stiffness Parameters
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Appendix D. Elements of the Mass Matrix M = [M;;] 1818

Mip = (Mi+Mypy),  Mij=0,j#1; Mo = (My+ Mgy ), My =0, #2;
Mas = (M + Mgz ), My = 0,j £3;  Mas = Mo, My =0, £ 4;
Mss = M, Ms5; =0,] #5; Mee = M, Mg;j =0, #£6;
Mz77 = M3, M7; = 0,j #7; Mgg = M3,Mg]' =0,j#8;
Mog = M3, Mo; =0,j #9;  Miga0 = My, Myp; = 0,j # 10;
My = My, M11j=0,j #11;  Mip1o = My, Mpp; =0,j # 12;

Mizaz = Ity Mi3j=0,j #13;  Migre = Iy, M1 j = 0,j # 14;
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Misis = Iz, Mysj=0,j #15,  Mig16 = Ipx, Migj = 0,j # 16;

Miz17 = Ipy, M17; =0,j #17;  Mig1s = Ip;, Mig; =0,j # 18.

Appendix E. Elements of the Damping Matrix C = [Cj] 1818
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Appendix F. Elements of the Stiffness Matrix K = [Kj;] 18%18
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18,1 L L ’ 18,2 L s N84 L ’
A B C B
Kigs = M, Kis18 = Tas €08 04sRpaz + Tps cos 0psRppz + TesRpez — oy ,
Le 9912
Kigie = — Iipy , Kigiz=— anp, , Kig;j=0,j#1,24,516,17,18.
’ 3901x ’ agoly 4
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