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Abstract: This study proposes a mathematical model for the coupled translational–rotational motions
of a mooring system for an ocean energy converter working under a typhoon wave impact. The ocean
energy convertor comprises two turbine generators and an integration structure. The configuration
of the turbine blade and the floating platform is designed. The two turbine blades rotate reversely at
the same rotating speed for rotational balance. If the current velocity is 1.6 m/s and the tip speed
ratio is 3.5, the power generation is approximately 400 kW. In the translational and rotational motions
of elements under ocean velocity, the hydrodynamic parameters in the fluid–structure interaction
are studied. Initially, the hydrodynamic forces and moments on the converter and the platform are
calculated and further utilized in obtaining the hydrodynamic damping and stiffness parameters. The
18 degrees of freedom governing equations of the mooring system are derived. The solution method
of the governing equations is utilized to determine the component’s motion and the ropes’ dynamic
tensions. In the mooring system, the converter is mounted under a water surface at some safe depth
so that it can remain undamaged and stably generate electricity under typhoon wave impact and
water pressure. It is theoretically verified that the translational and angular displacements of the
converter can be kept small under the large wave impact. In other words, the water pressure on the
converter cannot exceed the predicted value. The relative flow velocity of the convertor to the current
is kept fixed such that the power efficiency of convertor can be maintained as high. In addition, the
dynamic tension of the rope is far less than its breaking strength.

Keywords: hydrodynamic damping; displacement; rope tension; ocean current; mooring system;
stability

1. Introduction

Ocean current power generation is a potential renewable energy technology. The
Taiwan Kuroshio current has a potential capacity of over 4 GW [1]. However, the seabed
beneath the Kuroshio current is almost over 1000 m in the area mentioned above. The deep
mooring technology is essential for harnessing that energy. Additionally, the typhoon wave
impact affects the operation of the ocean power generation system. Hence, there is a need
to model and develop a technology overcoming these limitations.

So far, Chen et al. [1] successfully tested the 50-kW ocean current convertor mooring to
the 850 m deep seabed in the Taiwan Pingtung sea area. IHI and NEDO [2] tested a 100 kW
ocean current convertor mooring to the 100 m deep seabed beneath the Japan Kuroshio
current. The current converter generated approximately 30 kW under the current speed
of 1.0 m/s. These two experiments were conducted under the small excitation of wave
and in a few weeks. The goal of these experiments was to test the power performance of
the developed convertors. However, it is for a commercial power farm that the convertor
will be safe working for a long time and under different wave impact. Therefore, the deep
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mooring theory and technology for the ocean current convertor system are in great need of
development. Nobel et al. [3] presented the standards and guidance for the development
and testing of the devices for marine renewable energy.

Lin et al. [4] investigated the dynamic stability of the mooring system under regular
wave and ocean current. The significant effects of some parameters on the dynamical
stability of the mooring system were detected. The lightweight high-strength PE (HSPE)
mooring rope was determined to be suitable for the deep mooring system. C’atipovic
et al. [5] investigated the hydrodynamic damping force of fiber mooring lines taking longi-
tudinal deformation by the finite element method. Lin and Chen [6] developed the linear
elastic model for the mooring system with PE mooring rope. They proposed a methodology
to protect the convertor from the typhoon wave–current impact. The protection function of
the proposed methodology under Typhoon wave impact was theoretically verified. Lin
et al. [7] investigated the dynamic stability of the mooring system for surfaced convertor
under the regular wave during non-typhoon periods and steady ocean current. Lin et al. [8]
proposed a mooring system that enabled the energy convertor to work under typhoon
wave impact. The plane translational motion of the mooring system was simulated in the
linear elastic model. The concentrated mass assumption was made. Meanwhile, only the
hydrodynamic forces of the convertor and platform were considered in the surge motion.

The mathematical model of the mooring system is also important for wave energy
converters (WEC). Davidson and Ringwood [9] reviewed the mathematical modeling of
mooring systems for wave energy converters. Chen et al. [10] investigated the wave-
induced motions of a floating WEC with mooring lines by using the Smoothed Particle
Hydrodynamics (SPH) method. Xiang et al. [11] proposed the finite element cable model
to study the performance of a buoy mooring system. Paduano et al. [12] validated the
quasi-static and dynamic lumped-mass models. Touzon et al. [13] compared a linearized
frequency domain model, a non-linear quasistatic time domain model, and a non-linear
dynamic model for WEC. Xiang et al. [14] investigated the dynamic response of a floating
wind turbine foundation with a Taut Mooring System.

Anagnostopoulos [15] studied the dynamic performance of offshore platforms under
wave loadings in the Morison model. It was determined that the effect of hydrodynamic
damping on the resonant response of the structure is significant. Bose et al. [16] studied
the dynamic stability of an airfoil supported by a spring. The problem of fluid–structure
interaction is usually solved by using numerical methods such as the boundary element
method [17], the finite volume method [18], the Lagrangian–Eulerian Method [19], the
particle-based method [20], and the hybrid methods [21].

Lin et al. [5–7] investigated the plane translational motion of the mooring system
in the linear elastic model. The concentrated mass assumption was made but the fluid–
structure interaction (FSI) was not completely considered. In this study, a mooring system
for an ocean energy convertor that is working under the typhoon wave impact is proposed.
The mathematical model of the coupled translational–rotational motions of the system
is derived. The configuration of the turbine blade and the floating platform is designed.
The hydrodynamic forces and moments on the operational convertor and the platform
in motion are determined by using the finite volume method. The damping effect of the
fluid–structure interaction on the stability of the mooring system under typhoon wave
is investigated.

2. Mathematical Model

To avoid the typhoon wave impact, the energy convertor and the floating platform
were submerged to a depth of approximately 60 m, as shown in Figure 1. Therefore, the
direct impact of the typhoon wave is almost negligible. In this study, the translational–
rotational response of the mooring system under coupled wave–ocean effect is investigated.
The translational motions include ‘heave’, ‘surge’, and ‘sway’. The rotational motions
include ‘pitch’, ‘roll’, and ‘yaw’. The ocean energy convertor is composed of two turbine
generators and an integration structure. When ocean currents flow through the energy
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convertor, the turbine blade rotates and drives the power generator to generate electricity.
Meanwhile, the convertor and the floating platform are subjected to the hydrodynamic force
and moment due to the ocean current–structure interaction. Lin and Chen [3] determined
that the HSPE rope could be assumed as a straight line over a certain amount of ocean
current drag force because the force deformation of the HSPE rope was negligible. The
linear elastic model proposed by Lin and Chen [3] is used to analyze the motion equation
of the overall mooring system.
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Figure 1. Configuration of the mooring system of ocean energy convertor.

Based on the facts for ocean current energy converters (OCEC), the following assump-
tions are made:

− The current flow is steady.
− The HSPE mooring ropes are used.
− Under the ocean velocity, the deformed configuration of the HSPE rope is nearly straight.
− The elongation strain of the ropes is small.
− The translational and rotational displacements of the components are small.
− The tension of the rope is considered uniform.

These displacements of the component and tensions of ropes include (1) the static one
under the steady current only, (2) the dynamic one due to the wave impact and current.
The global translational and the rotational displacement of the component are expressed as

xi = xis + xid, yi = yis + yid, zi = zis + zid, i = 1, 2, 3, 4,

ϕjx = ϕjxs + ϕjxd, ϕjy = ϕjys + ϕjyd, ϕjz = ϕjzs + ϕjzd, j = 1, 2. (1)

The total tensions of the ropes are expressed as

Ti = Tis + Tid, i = A, B, C, D. (2)

Static Displacements and Equilibrium under the Steady Current Only

Under the steady current only, the static displacements of the components are obtained:

x0 = 0, y0 = 0, z0 = 0,

x1s = Hbed − LC = LA sin θAs, y1s = LA cos θAs, z1s = 0,

x2s = Hbed − LD = x1s − LB sin θBs, y2s = y1s + LB cos θBs, z2s = 0,

x3s = x1s + LC = Hbed, y3s = y1s , z3s = 0,
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x4s = x3s = x2s + LD = Hbed, y4s = y2s , z4s = 0,

ϕjks = 0, j = 1, 2; k = x, y, z. (3)

The global setting angle θAs of rope A is

sin θAs = x1s/LA. (4)

The global setting angle θBs of rope B is

sin θBs = (x1s − x2s)/LB. (5)

Under the steady current only, the static equilibrium of the platform in the y-direction is

TAs cos θAs − TBs cos θBs = fPys =
1
2

CDPyρAPYV2. (6)

The static equilibrium of the platform in the x-direction is

TCs + FB1s = TAs sin θAs + TBs sin θBs + W1. (7)

The static equilibrium of the energy convertor in the y-direction is

TBs cos θBs = fTys = CDTy
1
2

ρATyV2. (8)

The static equilibrium of the energy convertor in the x-direction is

FB2s = W2 − TDs − TBs sin θBs. (9)

The static equilibrium of the pontoon 3 in the x-direction is

FB3s = W3 + TCs. (10)

The static equilibrium of the pontoon 4 in the x-direction is

FB4s = W4 + TDs. (11)

3. Dynamic Equilibrium
3.1. Translational Motion in the x-Axis Direction
3.1.1. Equation of Heaving Motion for Pontoon 3

The damping force on the pontoon is negligible. Because the length of the rope
connecting the platform and pontoon 3 is long and the connecting point runs through
the mass center of the platform, the rotational motion of pontoon 3 is not affected by the
rotational motion of the platform. The dynamic equilibrium of the pontoon 3 in the heaving
motion is

M3
..
x3d − FB3 + W3 + TC = 0. (12)

According to Equations (2) and (10), Equation (12) becomes

M3
..
x3d + TCd − FB3d = 0. (13)

Considering the linear elastic model, the dynamic tension of the rope C is [5]

TCd = KCdδCd, (14)

where KCd and δCd are the effective spring constant and the dynamic elongation of rope C,
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respectively. Dynamic elongation is the difference between the dynamic and static lengths
of rope C. Further, by using the Taylor formula, the following is obtained:

δCd = LCd − LCs = (x3d − x1d), (15)

where LCs =
√
(x3s − x1s)

2 + (y3s − y1s)
2 + (z3s − z1s)

2,

LCd =
√
(x3 − x1)

2 + (y3 − y1)
2 + (z3 − z1)

2.
Assume the coordinates of the pontoons 3 and 4 as shown in Figure 2:

→
R pontoon3 = 0, (16)

→
R pontoon4 = LE

→
j . (17)
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Figure 2. Top view of mooring system under wave and current [5].

The wave elevations at the pontoons 3 and 4 are

xw,pontoon3 = Hw0 sin Ωt, (18)

xw,pontoon4 = Hw0 sin(Ωt + ϕ). (19)

The corresponding dynamic buoyance of the pontoon 3 due to the difference in wave
elevation and the vertical dynamic displacement is

FB3d(t) = ABxρg(Hw0 sin Ωt− x3d) = fBs sin Ωt− ABxρgx3d, (20)

where fBs = ABxρgHw0. Substituting Equations (14) and (20) into Equation (13), one obtains

M3
..
x3d − KCdx1d + (KCd + ABxρg)x3d = fBs sin Ωt, (21)

where the third term is the restoring force. The last term is the wave exciting force.

3.1.2. Equation of Heaving Motion for Pontoon 4

The dynamic equilibrium of the pontoon 4 in the heaving motion is

M4
..
x4d − FB4 + W4 + TD = 0. (22)

According to Equations (2) and (11), Equation (22) becomes
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M4
..
x4d − FB4d + TDd = 0. (23)

Considering the linear elastic model, the dynamic tension of the rope D is [5]

TDd = KDdδDd, (24)

where KDd and δDd are the effective spring constant and the dynamic elongation of the rope
D, respectively. The dynamic elongation is the difference between the dynamic and static
lengths of the rope D. Further, by using the Taylor formula, the following is obtained:

δDd = LDd − LD = (x4d − x2d), (25)

where

LDs =

√
(x4s − x2s)

2 + (y4s − y2s)
2 + (z4s − z2s)

2, LCd =

√
(x4 − x2)

2 + (y4 − y2)
2 + (z4 − z2)

2. (26)

The corresponding dynamic buoyance of the pontoon 4 due to the difference in wave
elevation and the vertical dynamic displacement is

FB4d(t) = ABTρg(Hw0 sin(Ωt + φ)− x4d) = fTc cos Ωt + fTs sin Ωt− ABTρgx4d, (27)

where fTs = ABTρgHw0 cos φ, fTc = ABTρgHw0 sin φ. Substituting Equations (24), (25) and
(28) into Equation (23), one obtains

M4
..
x4d − KDdx2d + (KDd + ABTρg)x4d = fTc cos Ωt + fTs sin Ωt, (28)

where the third term is the restoring force. The last two terms are the wave exciting force.

3.1.3. Equation of Heaving Motion of the Platform

The dynamic equilibrium of the floating platform in the heaving motion is

−
(

M1 + Me f f ,x

) ..
x1d + fPx + FB1s −W1 + TC − TA sin θA − TB sin θB = 0, (29)

where

θA = θAs + ∆θAd, θB = θBs + ∆θBd, ∆θAd =
x1d
LA

, ∆θBd =
x2d − x1d

LB
. (30)

Substituting Equations (7) and (30) into Equation (29), one obtains

−
(

M1 + Me f f ,x

) ..
x1d + fPx + TCd − TAs cos θAs

x1d
LA
− TAd sin θAs − TBs cos θBs

x2d − x1d
LB

− TBd sin θBs = 0, (31)

where the hydrodynamic force on the floating platform due to the fluid–structure interaction
is expressed in Taylor series as follows:

fPx

(
V,

.
x1d,

.
y1d,

.
z1d, ϕ1x, ϕ1y, ϕ1z,

.
ϕ1x,

.
ϕ1y,

.
ϕ1z

)
= fPx(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) +

9

∑
j=1

∂ fPx
∂s1j

s1j + o(s1ms1n). (32)

Briefly,
( .

xkd,
.
ykd,

.
zkd, ϕkx, ϕky, ϕkz,

.
ϕkx,

.
ϕky,

.
ϕkz

)
≡ (sk1, sk2, sk3, sk4, sk5, sk6, sk7, sk8, sk9),

k = 1, 2. When the symmetry configuration of the platform is considered, the hydrodynamic
force on the platform in the x-direction under the current only is fPx(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0.
Considering small oscillation, the higher-order terms are neglected later. The right-handed side
second term of Equation (32) is the hydrodynamic force due to the fluid–structure interaction.

The dynamic tensions of ropes A and B are

TAd = KAdδAd, TBd = KBdδBd. (33)
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The dynamic elongation is the difference between the dynamic and static lengths,
δβd = Lβd − Lβs, β = A, B. Using the Tylor formula, the dynamic elongations are derived,
δAd = x1s

LA
x1d +

y1s
LA

y1d and δBd = x1s−x2s
LB

(x1d − x2d) +
y1s−y2s

LB
(y1d − y2d).

Substituting Equations (32) and (33) into Equation (31), one obtains(
M1 + Me f f ,x

) ..
x1d + fdamp,Px + fsti f ,Px

+
(

KCd +
TAs cos θAs

LA
+ sin θAsKAdx1s

LA
− TBs cos θBs

LB
− sin θBsKBd

(x2s−x1s)
LB

)
x1d

+
(

TBs cos θBs
LB

− sin θBsKBd
(x2s−x1s)

LB

)
x2d − KCdx3d

+
(

sin θAsKAd
y1s
LA
− sin θBsKBd

(y2s−y1s)
LB

)
y1d + sin θBsKBd

(y2s−y1s)
LB

y2d = 0

, (34)

where the dynamic effective masses of the rope A, Me f f ,j, j = x, y, z are listed in Appendix A.

The hydrodynamic damping force fdamp,Px = −
(

3
∑

j=1

∂ fPxd
∂s1j

s1j +
9
∑

j=7

∂ fPxd
∂s1j

s1j

)
and the hydro-

dynamic stiffness force fsti f ,Px = −
6
∑

j=4

∂ fPxd
∂s1j

s1j on the platform about the x-axis due to

the FSI.

3.1.4. Equation of Heaving Motion for the Convertor

The dynamic equilibrium of the convertor in the heaving motion is

−M2
..
x2d + fTx −W2 + FB2s + TD + TB sin θB = 0, (35)

where the hydrodynamic force due to the motion of the convertor is expressed in Taylor
series as follows:

fTx(V, s21, s22, · · · , s29, TSR) = fTx(V, 0, 0, · · · , 0, 0, TSR) +
9

∑
j=1

∂ fTx
∂s2j

s2j + o(s2ms2n). (36)

When the symmetry configuration of the convertor is considered, the hydrodynamic
force on the convertor in the x-direction under the current and operation of blades is
fTx(V, 0, 0, 0, 0, 0, 0, 0, 0, 0, TRS) = 0. Considering small oscillation, the higher-order terms
are neglected later.

Substituting Equations (2), (9), (24), (33) and (36) into Equation (35), one obtains

M2
..
x2d + fdamp,Tx + fsti f ,Tx +

(
TBs cos θBs

LB
+ sin θBsKBd

(x2s−x1s)
LB

)
x1d

+
(

KDd − TBs cos θBs
LB

− sin θBsKBd
(x2s−x1s)

LB

)
x2d

−KDdx4d + sin θBsKBd
(y2s−y1s)

LB
y1d − sin θBsKBd

(y2s−y1s)
LB

y2d = 0

, (37)

where the hydrodynamic damping force fdamp,Tx = −
(

3
∑

j=1

∂ fTxd
∂s2j

s2j +
9
∑

j=7

∂ fTxd
∂s2j

s2j

)
and the

hydrodynamic stiffness force fsti f ,Tx = −
6
∑

j=4

∂ fTxd
∂s2j

s2j on the convertor about the x-axis due

to the FSI.

3.2. Translational Motion in the y-Direction
3.2.1. Equation of Surging Motion of the Platform

The dynamic equilibrium of the floating platform in the surging motion is

−
(

M1 + Me f f ,y

) ..
y1d + fpy − TA cos θA + TB cos θB = 0, (38)
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where the hydrodynamic force is

fPy = fpys + fpyd, (39)

where fPys = fPy(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) = CDPy
1
2 ρAPYV2, fpyd =

9
∑

j=1

∂ fPy
∂s1j

s1j.

Substituting Equations (2), (9), (34) and (39) into Equation (38), one obtains(
M1 + Me f f ,y

) ..
y1d + fdamp,Py + fsti f ,Py

+
(

KAd
x1s
LA

cos θAs − KBd
x1s−x2s

LB
cos θBs −

(
TAs sin θAs

LA
+ TBs sin θBs

LB

))
x1d

+
(

KBd
x1s−x2s

LB
cos θBs +

TBs sin θBs
LB

)
x2d

+
(

KAd
y1s
LA

cos θAs − KBd
y1s−y2s

LB
cos θBs

)
y1d + KBd

y1s−y2s
LB

cos θBsy2d = 0

, (40)

where the hydrodynamic damping force fdamp,Py = −
(

3
∑

j=1

∂ fPyd
∂s1j

s1j +
9
∑

j=7

∂ fPyd
∂s1j

s1j

)
and the

hydrodynamic stiffness force fsti f ,Py = −
6
∑

j=4

∂ fPyd
∂s1j

s1j on the platform about the y-axis due

to the FSI.

3.2.2. Equation of Surging Motion of the Convertor in the y-Direction

The dynamic equilibrium of the convertor in the surging motion is

−M2
..
y2d + fTy − TB cos θB = 0. (41)

The hydrodynamic force on the convertor is expressed as

fTy = fTys + fTyd (42)

in which fTys = fTy(V, 0, 0, 0, 0, 0, 0, 0, 0, 0, TRS) = CDTy
1
2 ρATYV2, ATy is the effective

operating area of the convertor, fTyd =
9
∑

j=1

∂ fTy
∂s2j

s2j.

Substituting Equations (2), (8), (33) and (42) into Equation (41), one obtains

M2
..
y2d + fdamp,Ty + fsti f ,Ty +

(
KBd

x1s−x2s
LB

cos θBs

)
x1d −

(
KBd

x1s−x2s
LB

cos θBs

)
x2d

+
(

KBd
y1s−y2s

LB
cos θBs

)
y1d −

(
KBd

y1s−y2s
LB

cos θBs

)
y2d = 0

, (43)

where the hydrodynamic damping force fdamp,Ty = −
(

3
∑

j=1

∂ fTyd
∂s2j

s2j +
9
∑

j=7

∂ fTyd
∂s2j

s2j

)
and the

hydrodynamic stiffness force fsti f ,Ty = −
6
∑

j=4

∂ fTyd
∂s2j

s2j on the convertor about the y-axis due

to the FSI.

3.2.3. Equation of Surging Motion of the Pontoon 3 in the y-Direction

The dynamic equilibrium of the pontoon 3 in the surging motion is

M3
..
y3d3 + TC sin φCy = F3y(t), (44)

where sin φCy = (y3d − y1d)/LC. TC = TCs + TCd , in which TCs and TCd are the static
and dynamic tensions. It is observed from Equation (7) that for static equilibrium of the
platform, the static tension TCs and the buoyancy of the platform FB1s are lift forces. If the
designed buoyancy FB1s is not sufficient, the static tension TCs must be increased. In this
study, the static tension TCs is considered to be significantly larger than the dynamic tension
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TCd. The horizontal impact force of regular wave on the pontoon 3 is F3wave = F̃wave,3 sin ωt,
where F̃wave,3 = Cwave,3Hwave, in which Cwave,3 is the wave impact coefficient depending on
the geometry of the pontoon 3, and Hwave is the wave amplitude. The y- and z-direction
components of wave force are

F3y(t) = A3y sin ωt, and F3Z(t) = A3z sin ωt, (45)

where A3y = F̃wave,3 cos α and A3z = F̃wave,3 sin α.
Considering small displacements and substituting Equations (14) and (45) into

Equation (44), one obtains

M3
..
y3d3 +

TCs
LC

(y3d − y1d) = A3y sin ωt. (46)

3.2.4. Equation of Surging Motion of the Pontoon 4 in the y-Direction

The dynamic equilibrium of the pontoon 4 in the surging motion is

M4
..
y4d + TD sin φDy = F4y(t), (47)

where sin φDy = (y4d − y2d)/LD. TD = TDs + TDd , in which TDs and TDd are the static
and dynamic tensions. The horizontal impact force of regular wave on the pontoon 4 is
F4wave = F̃wave,4(ωt + φ), where F̃wave,4 = Cwave,4Hwave, in which Cwave,4 is the wave impact
coefficient depending on the geometry of the pontoon 4. The y- and z-direction components
of wave force are

F4y(t) = A4y sin(ωt + φ), and F4z(t) = A4z sin(ωt + φ), (48)

where A4y = F̃wave,4 cos α and A4z = F̃wave,4 sin α.
Considering small displacements and substituting Equations (24) and (48) into

Equation (47), one obtains

M4
..
y4d +

TDs
LD

(y4d − y2d) = A4y sin(ωt + φ). (49)

3.3. Translational Motion in the z-Direction
3.3.1. Equation of Swaying Motion of the Platform

The dynamic equilibrium of the floating platform in the swaying motion is(
M1 + Me f f ,z

)..
z1d − fPz + TA cos θA sin φA − TB cos θB sin φB − TC sin φC = 0, (50)

where sin φA = z1d/(LA cos θA), sin φB = (z2d − z1d)/(LB cos θB), sin φC = (z3d − z1d)/LC,
sin φD = (z4d − z2d)/LD. The hydrodynamic force is

fPz =
9

∑
j=1

∂ fPz

∂s1j
s1j. (51)

Considering small displacements and based on Equations (2), (14), (33) and (51),
one obtains

(
M1 + Me f f ,z

)..
z1d + fdamp,Pz + fsti f ,Pz +

(
TAs
LA

+
TBs
LB

+
TCs
LC

)
z1d −

TBs
LB

z2d −
TCs
LC

z3d = 0, (52)
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where the hydrodynamic damping force fdamp,Pz = −
(

3
∑

j=1

∂ fPzd
∂s1j

s1j +
9
∑

j=7

∂ fPzd
∂s1j

s1j

)
and the

hydrodynamic stiffness force fsti f ,Pz = −
6
∑

j=4

∂ fPzd
∂s1j

s1j on the platform about the z-axis due to

the FSI.

3.3.2. Equation of Swaying Motion of the Convertor

The dynamic equilibrium of the convertor in the swaying motion is

M2
..
z2d − fTz + TB cos θB sin φB − TD sin φD = 0, (53)

where the hydrodynamic force is

fTz =
9

∑
j=1

∂ fTz
∂s2j

s2j. (54)

Considering small displacements and based on Equations (2), (24), (33) and (54),
one obtains

M2
..
z2d + fdamp,Tz + fsti f ,Tz −

TBs
LB

z1d +

(
TBs
LB

+
TDs
LD

)
z2d −

TDs
LD

z4d = 0, (55)

where the hydrodynamic damping force fdamp,Tz = −
(

3
∑

j=1

∂ fTzd
∂s2j

s2j +
9
∑

j=7

∂ fTzd
∂s2j

s2j

)
and the

hydrodynamic stiffness force fsti f ,Tz = −
6
∑

j=4

∂ fTzd
∂s2j

s2j on the convertor about the z-axis due

to the FSI.

3.3.3. Equation of Swaying Motion for the Pontoon 3

The dynamic equilibrium of the pontoon 3 in the swaying motion is

M3
..
z3d3 + TC sin φC = F3Z(t), (56)

where sin φCy = (y3d − y1d)/LC. Considering small displacements and substituting
Equations (2), (14) and (45) into Equation (56), one obtains

M3
..
z3d3 +

TCs
LC

(z3d − z1d) = A3z sin ωt. (57)

3.3.4. Equation of Swaying Motion of the Pontoon 4

The dynamic equilibrium of the pontoon 4 in the swaying motion is

M4
..
z4d + TD sin φD = F4z(t), (58)

where sin φD = (z4d − z2d)/LD. Considering small displacements and substituting
Equations (2), (24) and (48) into Equation (58), one obtains

M4
..
z4d +

TDs
LD

(z4d − z2d) = A4z sin(ωt + φ). (59)

3.4. Rotational Motion
3.4.1. Equation of Yawing Motion of the Convertor

The dynamic equilibrium of the convertor in the yawing motion is

ITx
..
ϕ2x −mTx + TB cos θBRTBx sin θx = 0, (60)
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where RTBx is the distance between the center of gravity and the rope B about the x-axis.
θB = θBs + ∆θB, ∆θB = (x2d − x1d)/LB, θx = ϕTx + ∆θx, ∆θx = (z2d − z1d)/LB cos θBs.

The hydrodynamic moment mTx =
9
∑

j=1

∂mTx
∂s2j

s2j.

Considering small displacement and substituting Equation (34) into Equation (60),
one obtains

ITx
..
ϕ2x + mdamp,Tx + msti f ,Tx + (TBs cos θBsRTBx)ϕ2x −

(
TBsRTBx

LB

)
z1d +

(
TBsRTBx

LB

)
z2d = 0, (61)

where the hydrodynamic damping moment mdamp,Tx = −
(

3
∑

j=1

∂mTxd
∂s2j

s2j +
9
∑

j=7

∂mTxd
∂s2j

s2j

)
and the hydrodynamic stiffness moment msti f ,Tx = −

6
∑

j=4

∂mTxd
∂s2j

s2j on the convertor about

the x-axis due to the FSI.

3.4.2. Equation of Rolling Motion of the Convertor

The dynamic equilibrium of the convertor in the rolling motion is

ITy
..
ϕ2y −mTy + TDRTDy sin θy = 0, (62)

where RTDy is the distance between the center of gravity G and the rope D about the y-axis.
The dynamic angle between the rope D and the line from G to the rope D is θy = ϕTy + ∆θy,
∆θy = (z2d − z4d)/LD. The hydrodynamic moment

mTy =
9

∑
j=1

∂mTy

∂s2j
s2j. (63)

Considering small displacement and substituting Equation (63) into Equation (62),
one obtains

Iy
..
ϕ2y + mdamp,Ty + msti f ,Ty + TDsRTDy ϕ2y +

TDsRTDy

LD
z2d −

TDsRTDy

LD
z4d = 0, (64)

where the hydrodynamic damping moment mdamp,Ty = −
(

3
∑

j=1

∂mTyd
∂s2j

s2j +
9
∑

j=7

∂mTyd
∂s2j

s2j

)
and

the hydrodynamic stiffness moment msti f ,Ty = −
6
∑

j=4

∂mTyd
∂s2j

s2j on the convertor about the

y-axis due to the FSI.

3.4.3. Equation of Pitching Motion of the Convertor

The dynamic equilibrium of the convertor in the pitching motion is

ITz
..
ϕ2z −mTz + TBRTBz sin θTBz = 0, (65)

where the dynamic angle about the z-axis between the rope B and the line from the center
of gravity to the rope B is θTBz = θBs + ϕTz + ∆θB, ∆θB = (x2d − x1d)/LB. The moment
mTz = mTzs + mTzd, where the moment in static equilibrium

mTsz = −TBsRTBz sin θBs, (66)

the hydrodynamic moment

mTzd =
9

∑
j=1

∂mTyd

∂s2j
s2j. (67)
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Considering small displacement and substituting Equations (66) and (67) into
Equation (65), one obtains

ITz
..
ϕ2z + mdamp,Tz + msti f ,Tz + (TBsRTBz cos θB)ϕ2z −

TBsRTBz cos θB
LB

x1d +
TBsRTBz cos θB

LB
x2d = 0, (68)

where the hydrodynamic damping moment mdamp,Tz = −
(

3
∑

j=1

∂mTzd
∂s2j

s2j +
9
∑

j=7

∂mTzd
∂s2j

s2j

)
and

the hydrodynamic stiffness moment msti f ,Tz = −
6
∑

j=4

∂mTzd
∂s2j

s2j on the convertor about the

z-axis due to the FSI.

3.4.4. Equation of Yawing Motion of the Platform

The dynamic equilibrium of the floating platform in the yawing motion is

IPx
..
ϕ1x −mPx + TA cos θARPAx sin ϕPxA + TB cos θBRPBx sin ϕPxB = 0, (69)

where RPAx and RPBx are the distance in the y-z plane from the center of gravity to the
rope A and B, respectively. The angles of rope A and B in the x-y plane θA = θAs + ∆θAd,
θB = θBs + ∆θBd, respectively. The relative angles between rope A and B and the longi-
tudinal axis of the platform in the y-z plane ϕPxA = ϕ1x − ∆φx, and ϕPxB = ϕ1x − ∆θx,
respectively, in which ∆θx = (z2d − z1d)/(LB cos θBs), ∆φx = z1d/(LA cos θAs). The hy-
drodynamic moment on the floating platform due to the FSI is expressed in Taylor series
as follows:

mPx

(
V,

.
x1d,

.
y1d,

.
z1d, ϕ1x, ϕ1y, ϕ1z,

.
ϕ1x,

.
ϕ1y,

.
ϕ1z

)
= mPx(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) +

9

∑
j=1

∂mPx
∂s1j

s1j + o(s1ms1n), (70)

where mPx(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0. Considering small oscillation, the higher order
terms are neglected. Substituting Equations (34) and (70) into Equation (69), one obtains

IPx
..
ϕ1x + mdamp,Px + msti f ,Px + (TAs cos θAsRPAx + TBs cos θBsRPBx)ϕ1x

+
(

TBsRPBx
LB

− TAsRPAx
LA

)
z1d − TBsRPBx

LB
z2d = 0

, (71)

where the hydrodynamic damping moment mdamp,Px = −
(

3
∑

j=1

∂mPx
∂s1j

s1j +
9
∑

j=7

∂mPx
∂s1j

s1j

)
and

the hydrodynamic stiffness moment msti f ,Px = −
6
∑

j=4

∂mPx
∂s1j

s1j on the platform about the

x-axis due to the FSI.

3.4.5. Equation of Rolling Motion of the Platform

The dynamic equilibrium of the floating platform in the rolling motion is

IPyy
..
ϕ1y −mPy + TA cos θARPAy sin ϕPyA + TCRPCy sin ϕPyC = 0, (72)

where RPAy and RPCy are the distance in the x-z plane from the center of gravity to the rope
A and C, respectively. The relative angles between rope A and C and the lateral axis of
the platform in the x-z plane ϕPyA = ϕPy + ∆φAy, and ϕPyC = ϕPy + ∆φCy, respectively, in
which ∆φAy = z1d/LA sin θAs, ∆φCy = (z1d − z3d)/LC. The hydrodynamic moment

mPy =
9

∑
j=1

∂mPy

∂s1j
s1j. (73)
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Considering small displacement and substituting Equations (14), (33) and (73) into
Equation (72), one obtains

IPy
..
ϕ1y + mdamp,Py + msti f ,Py +

(
TAs cos θAsRPAy + TCsRPCy

)
ϕ1y

+
( TAsRPAy

LA
+

TCsRPCy
LC

)
z1d −

TCsRPCy
LC

z3d = 0
, (74)

where the hydrodynamic damping moment mdamp,Py = −
(

3
∑

j=1

∂mPy
∂s1j

s1j +
9
∑

j=7

∂mPy
∂s1j

s1j

)
and

the hydrodynamic stiffness moment msti f ,Py = −
6
∑

j=4

∂mPy
∂s1j

s1j on the platform about the

y-axis due to the FSI.

3.4.6. Equation of Pitching Motion of the Platform

The dynamic pitching equilibrium of the floating platform about the z-axis is

IPz
..
ϕ1z −mPz + TA cos θARPAz sin ϕPzA + TB cos θBRPBz sin ϕPzB + TCRPCz sin ϕPzC = 0, (75)

where the angles of ropes A, B: θA = θAs +∆θAd, and θB = θBs +∆θBd. The relative angles be-
tween ropes A, B and C and the axis of the platform in the x-y plane
ϕPzA = ϕPz + ∆θA, ϕPzB = ϕPz + ∆θB and ϕPzC = ϕPz + ∆θC, respectively, in which
∆θA = x1d/LA, ∆θB = (x2d − x1d)/LB, ∆θC = (y2d − y1d)/LC. The hydrodynamic moment

mPz =
9

∑
j=1

∂mPz
∂s1j

s1j. (76)

Considering small displacement and substituting Equation (76) into Equation (75),
one obtains

IPz
..
ϕ1z + mdamp,Pz + msti f ,Pz + (TAs cos θAsRPAz + TBs cos θBsRPBz + TCsRPCz)ϕ1z

+
(

TAs cos θAsRPAz
LA

− TBs cos θBsRPBz
LB

)
x1d +

TBs cos θBsRPBz
LB

x2d +
TCsRPCz

LC
(y2d − y1d) = 0

, (77)

where the hydrodynamic damping moment mdamp,Pz = −
(

3
∑

j=1

∂mPz
∂s1j

s1j +
9
∑

j=7

∂mPz
∂s1j

s1j

)
and

the hydrodynamic stiffness moment msti f ,Pz = −
6
∑

j=4

∂mPz
∂s1j

s1j on the platform about the

z-axis due to the FSI.

4. Force Vibration Equation of System

The governing Equations (21), (28), (32), (34), (37), (40), (43), (46), (49), (55), (57), (59),
(61), (64), (68), (71), (74) and (77) can be expressed as

M
..
Zd + C

.
Zd + KZd = Fd, (78)

where the dynamic displacement vector
Zd =

[
x1d y1d z1d x2d y2d z2d x3d y3d z3d x4d y4d z4d ϕTx ϕTy ϕTz ϕPx ϕPy ϕPz

]T
.

The elements of the force vector Fd =
[

Fdj

]
18×1

are

Fd = Fdc cos Ωt + Fds cos Ωt, (79)

in which

Fdc =
[

f1c f2c · · · f17c f18c
]T , Fds =

[
f1s f2s · · · f17s f18s

]T , fk = 0, k = 1 ∼ 6, 13 ∼ 18.
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f7c = 0, f7s = ABxρgHw0, f8c = 0, f8s = Cwave,3Hwave cos α, f9c = 0, f9s = Cwave,3Hwave sin α,

f10c = ABTρgHw0 sin φ, f10s = ABTρgHw0 cos φ,

f11c = −Cwave,4Hwave cos α sin φ, f11s = Cwave,4Hwave cos α cos φ,

f12c = −Cwave,4Hwave sin α sin φ, f12s = Cwave,4Hwave sin α cos φ. (80)

The elements of the mass, damping and stiffness matrix M, C, and K are listed in
Appendices D–F, respectively.

5. Determination of Hydrodynamic Parameters
5.1. Hydrodynamic Parameter of Floating Platform
5.1.1. Dimension of Platform

To reduce hydrodynamic drag on the platform and to avoid disturbing the current
through the turbine, the following oval configuration is designed as shown in Figure 3.
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Figure 3. Configuration of the platform.

5.1.2. Hydrodynamic Damping and Stiffness Parameters of Platform

Because the hydrodynamic forces and moments on the floating platform due to the
FSI are expressed in Taylor series, the hydrodynamic damping parameter of platform can
be determined by the two methods: (1) determine these forces and moments by using the
commercial STAR-CCM+ software, (2) calculate the hydrodynamic parameter based on the
determined forces and moments.

Firstly, given
(

V,
.
x1d,

.
y1d,

.
z1d, ϕ1x, ϕ1y, ϕ1z,

.
ϕ1x,

.
ϕ1y,

.
ϕ1z

)
= (V, 0, 0, 0, 0, 0, 0, 0, 0, 0),

0 < V < 2.5 m/s and by using the commercial STAR-CCM software, it is determined that
the hydrodynamic forces and moments are fPx = fPz = mPx = mPy = mPz = 0, because of
the symmetry of the platform. The hydrodynamic drag is

fpys = fPy(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) = Cpy
1
2

ρAPyV2, (81)

where the cross-sectional area of the platform APy = 19.635 m2 . According to the numerical
hydrodynamic drag with different current velocity V, the drag coefficient Cpy = 0.034.
The flow field around the platform is shown in Figure 4 with V = 1 m/s . It is observed
that the velocity around the platform is symmetrical. The current near the platform will
be disturbed.
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Secondly, considering the condition,
(

V,
.
x1d,

.
y1d,

.
z1d, ϕ1x, ϕ1y, ϕ1z,

.
ϕ1x,

.
ϕ1y,

.
ϕ1z

)
=(

V,
.
x1d, 0, 0, 0, 0, 0, 0, 0, 0

)
, and given n sets of parameters 0 < V < 2.5 m/s,−1.5 <

.
x1d < 0,

these n sets of numerical hydrodynamic forces and moments are calculated by using the
commercial STAR-CCM software. The flow field around the platform is shown in Figure 5
with {V = 1 m/s,

.
x1d = −0.5 m/s } . It is observed that the velocity around the platform is

asymmetrical. The hydrodynamic heaving force will be induced. Based on the formula

fPj
(
V,

.
x1d, 0, 0, 0, 0, 0, 0, 0, 0

)
= fPj(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) +

∂ fPj

∂
.
x1d

.
x1d, j = x, y, z,

mPj
(
V,

.
x1d, 0, 0, 0, 0, 0, 0, 0, 0

)
= mPj(V, 0, 0, 0, 0, 0, 0, 0, 0, 0) +

∂mPj

∂
.
x1d

.
x1d, j = x, y, z, (82)

one can determine the hydrodynamic parameters
{

∂mPj/∂
.
x1d, ∂mPj/∂

.
x1d
}

, j = x, y, z. In
the similar way, other hydrodynamic parameters are obtained and listed in Appendix B.
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5.2. Hydrodynamic Parameter of Convertor
5.2.1. The Turbine Blade and Its Performance

The ocean energy convertor is composed of two turbine generators and an integration
structure, as shown in Figure 6. Its normal power generation is 400 kW. The blade shape is
shown in Figure 7.
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Figure 7. Configuration of turbine blade.

The two turbine blades rotate reversely at the same rotating speed for rotational
balance. Under the current velocity V = 2 m/s, the velocity field around the fixed convertor
with rotating blade at the tip speed ratio TSR = 3.5 is calculated by using Star CCM+ and
shown in Figure 8. It is observed that the current flows through the turbine blade along the
guide tunnel. It will increase the flow velocity through the blade and the power generation.
Moreover, the flow field around the two turbine blades will not disturbs each other. Figure 9
shows the effect of the TSR on the power coefficient of the turbine, CP = power/

(
1
2 ρAV3

)
,

at the current velocity V = 2 m/s. The maximum power coefficient CP of the proposed
turbine is 0.43 at TSR = 3.5.
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Further, Figure 10 shows the relation between the current velocity V and the output
power at TSR = 3.5. It is determined that when the current velocity V = 1.6 m/s, the power
of each turbine Peach = 197 kW and the total output power of the two turbines is 394 kW. It
is close to the nominal power of 400 kW.
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5.2.2. Hydrodynamic Damping Parameter of Convertor

Because the hydrodynamic force and moment due to the motion of the convertor
are expressed in Taylor series, its hydrodynamic damping parameters can be determined
as follows:

Firstly, given (V,
.
x2d,

.
y2d,

.
z2d, ϕ2x, ϕ2y, ϕ2z,

.
ϕ2x,

.
ϕ2y,

.
ϕ2z, TSR) = (V, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.5),

0 < V< 2.5 m/s, and by using the commercial STAR-CCM+ software, the hydrodynamic
forces and moments are fTx = fTz = mTx = mTy = mTz = 0, because of the symmetry of
the convertor. The hydrodynamic drag is

fTys(V, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.5) = CT f y
1
2

ρAT f yV2, (83)

where the cross-sectional area of the convertor AT f y = 1034 m2 . According to the numerical
hydrodynamic drag with different current velocity V, the drag coefficient CT f y = 0.50. The
flow field around the convertor is shown in Figure 8 with V = 2 m/s.

Secondly, considering the condition,
(

V,
.
x2d,

.
y2d,

.
z2d, ϕ2x, ϕ2y, ϕ2z,

.
ϕ2x,

.
ϕ2y,

.
ϕ2z, TSR

)
=
(
V,

.
x2d, 0, 0, 0, 0, 0, 0, 0, 0, 3.5), 0 < V < 2.5 m/s, −1.5 <

.
x2d < 0, the numerical hydro-

dynamic forces and moments are calculated.
Finally, based on the formula

fTj
(
V,

.
x2d, 0, 0, 0, 0, 0, 0, 0, 0, 3.5

)
= fTj(V, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.5) +

∂ fTj

∂
.
x2d

.
x2d,

mTj
(
V,

.
x2d, 0, 0, 0, 0, 0, 0, 0, 0, 3.5

)
= mPj(V, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.5) +

∂mTj

∂
.
x2d

.
x2d, j = x, y, z (84)

one can determine the hydrodynamic parameters
{

∂mTj/∂
.
x2d, ∂mTj/∂

.
x2d
}

, j = x, y, z.
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Similarly, other hydrodynamic parameters are obtained and listed in Appendix C.

6. Solution Method
6.1. Dynamic Displacement

Multiplying Equation (78) by the inverse matrix of mass M−1, one obtains

..
xd + M−1C

.
xd + M−1Kxd = M−1Fd = Fdc cos Ωt + Fds sin Ωt. (85)

Assume the solution of Equation (85),

zd = zdc cos Ωt + zds sin Ωt, (86)

where

zdc =
[

x1dc y1dc z1dc x2dc y2dc z2dc x3dc y3dc z3dc x4dc y4dc z4dc ϕTxc ϕTyc ϕTzc ϕPxc ϕPyc ϕPzc
]T

zds =
[

x1ds y1ds z1ds x2ds y2ds z2ds x3ds y3ds z3ds x4ds y4ds z4ds ϕTxs ϕTys ϕTzs ϕPxs ϕPys ϕPzs
]T .

Substituting the solution (86) into Equation (85), one obtains

−Ω2I(zdc cos Ωt + zds sin Ωt) + M−1C(−Ωzdc sin Ωt + Ωzds cos Ωt)
+M−1K(zdc cos Ωt + zds sin Ωt) = Fds sin Ωt + Fdc cos Ωt

. (87)

By using the balanced method for Equation (87), one obtains

zdc = −ΩA−1
(

M−1C
)

zds + A−1Fdc (88)

and
Azds −ΩM−1Czdc = Fds, (89)

where A =
(
M−1K−Ω2I

)
. Substituting Equation (88) into (89), one obtains

zds =
(

A + Ω2
(

M−1C
)

A−1
(

M−1C
))−1{

Fds + Ω
(

M−1C
)

A−1Fdc

}
. (90)

Based on Equation (90), the frequency equation is obtained:∣∣∣A + Ω2
(

M−1C
)

A−1
(

M−1C
)∣∣∣ = 0. (91)

6.2. Dynamic Tensions of Ropes

Under regular wave, the dynamic tensions of Ropes A, B, C, D are

TAd = TAdc cos Ωt + TAds sin Ωt, |TAd| =
√

T2
Adc + T2

Ads, (92)

where TAdc = KAd

(
x1s
LA

x1dc +
y1s
LA

y1dc

)
, TAds = KAd

(
x1s
LA

x1ds +
y1s
LA

y1ds

)
.

TBd = TBdc cos Ωt + TBds sin Ωt, |TBd| =
√

T2
Bdc + T2

Bds, (93)

where TBdc = KBd

[
x2s−x1s

LB
(x2dc − x1dc) +

y2s−y1s
LB

(y2dc − y1dc)
]
,

TBds = KBd

[
x2s−x1s

LB
(x2ds − x1ds) +

y2s−y1s
LB

(y2ds − y1ds)
]
.

.

TCd = TCdc cos Ωt + TCds sin Ωt, |TCd| =
√

T2
Cdc + T2

Cds, (94)

where TCdc = KCd(x3dc − x1dc), TCds = KCd(x3ds − x1ds).

TDd = TDdc cos Ωt + TDds sin Ωt, |TDd| =
√

T2
Ddc + T2

Dds, (95)
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where TDdc = KDd(x4dc − x2dc), TDds = KDd(x4ds − x2ds).

7. Numerical Results and Discussion

Consider the conditions: (1) Hbed = 1300 m, (2) ABX = 4 m2, (3) ABT = 4 m2, (4) HSPE
rope: EPE = 100 GPa, wPE = 16.22 kg/m, DPE = 154 mm, APE = 0.0186 m2,
Tfracture = 759 tons, (5) LC = LD = 60 m, (6) LE = 150 m, (7) θA = 30◦, (8) V = 1.6 m/s,
(9) Hwave = 16 m and λ = 156 m. (10) M1 = 300 tons , M2 = 538 tons , M3 = M4 = 250 tons,
(11) ITx = 8.940× 1010 kg −m2, ITy = 2.712× 1010 kg −m2, ITz = 8.940× 1010 kg −m2;
IPx = 3.0× 108 kg − m2 , IPy = 5.0× 106 kg − m2, IPz = 3.0× 108 kg − m2, (12) the hy-

drodynamic damping and stiffness parameters
(

∂ fki/∂skj

)
0
and

(
∂mki/∂skj

)
0

are listed in
Section 5, (13) the performance of convertor is presented in Section 5, (14) TAS = 78.07 tons,
TBs = 67.53 tons, TCs = 80 tons, and TDs = 80 tons, (15) α = 30◦.

Figure 11a demonstrates the spectrum of dynamic tension of rope. It is determined that
the resonant frequency is 0.110 Hz. The resonant dynamic tension of ropes: TAd = 84.56 tons.
TBd = 68.04 tons TCd = 32.18 tons, and TDd = 32.13 tons. These are greatly smaller than
the fracture strength of rope Tfracture = 759 tons. Figure 11b demonstrates the translational
displacements of the platform, the convertor, the pontoons 3 and 4. It is observed that
the resonant surge displacements of the pontoons y3d and y4d are very significant. The
sway displacements z1d and z2d are very small. The maximum heave, surge and sway
displacements x2d, y2d, and z2d of the convertor are 3.21, 4.29 and 0.292 m, respectively.
It is observed from Figure 11c that the maximum yawing, rolling and pitching angles
of the platform ϕPx, ϕPy, and ϕPz are 0.26◦, 5.83◦ and 54.4◦, respectively. The maximum
yawing, rolling and pitching angles of the convertor ϕTx, ϕTy, and ϕTz are 0.005◦, 0.322◦ and
0.283◦, respectively.
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According to Figure 11b,c, the displacement of the platform is obviously larger than
that of the convertor. Because the translational and rotational displacements of the convertor
are small under the wave impact, the efficiency of power generation of convertor can be
maintained to be high.

Obviously, the hydrodynamic damping parameters of the convertor and platform
significantly depend on their configuration design. The dynamic performance of the system
is decided by the corresponding hydrodynamic damping parameters or the configuration
design. For clarity, the relationship between the hydrodynamic damping and the rope
tension is investigated here. The hydrodynamic damping and stiffness parameters of some
convertor and platform different to the proposed ones are assumed to be

∂ fki
∂skj

= βk

(
∂ fki
∂skj

)
0

, and
∂mki
∂skj

= βk

(
∂mki
∂skj

)
0

, (96)

where the parameters with subscript ‘0′ are those presented in Section 5 and Figure 11.
βk, k = P, T are the hydrodynamic parameter ratio of different convertors and platforms to
those presented in Section 5.

In Figure 12, the hydrodynamic parameter ratios are assumed to be βP = βT = 0.1.
Other parameters are the same as those in Figure 11. The effects of the small hydrodynamic
parameters and the typhon wave frequency on the dynamic tensions of the ropes, TAd,
TBd, TCd, and TDd, are studied. It is determined that the resonant frequencies are 0.032 and
0.160 Hz. The maximum resonant dynamic tension of ropes A, B, C, and D: TAd = 294.4 tons,
TBd = 165.0 tons, TCd = 113.9 tons, and TDd = 48.9 tons. These are significantly larger than
those in Figure 11a. Further, if the hydrodynamic damping and stiffness parameters of
the convertor are neglected, i.e., βP = 0.1 and βT = 0. The dynamic tension spectrum
is presented in Figure 13. It is observed from Figure 13 that without the hydrodynamic
damping of the convertor, the resonant tensions are significantly increased. The resonant
dynamic tensions are greatly larger than the fracture strength of rope Tfracture = 759 tons.
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Figure 14a demonstrates the dynamic tension spectrum with LC = 140 m and
LD = 60 m. In Figure 11a, with the rope lengths LC = LD = 60 m, the maximum dynamic ten-
sion TAd = 84.56 tons. In Figure 14a, with the rope lengths LC = 140 m,
LD = 60 m, the maximum dynamic tension TCd = 171.8 tons. It is because the surge
and heave displacements of the pontoon 3 and platform at the resonance in Figure 14b are
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significantly larger than those in Figure 11b. Moreover, the pitch angle of the platform in
Figure 14c is significantly larger than that in Figure 11c.
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Figure 14. Spectrums of displacement and tension (LC = 140 m, LD = 60 m βP = βT = 1).
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Figure 15a demonstrates the dynamic tension spectrum with LC = 60 m and
LD = 140 m. In Figure 11a, with LC = LD = 60 m, the maximum dynamic tension was
TAd = 84.56 tons. In Figure 15a, the maximum dynamic tension TAd = 64.06 tons and
TCd = 60.06 tons. It is observed from Figure 15b that the maximum resonance displacement
is the surge of the pontoon 4. However, it is observed from Figure 11b that the maximum
resonance displacement is the surge of the pontoon 3. In Figure 15c, the maximum yaw, roll
and pitch angles of the platform ϕ1x, ϕ1y, and ϕ1z are 1.3◦, 2.5◦ and 21◦, respectively. The
maximum yaw, roll and pitch angles of the convertor ϕ2x, ϕ2y, and ϕ2z are 0.01◦, 0.104◦ and
0.027◦, respectively. The maximum pitch angle of the platform in Figure 15c is significantly
smaller than that in Figure 11c.
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Figure 15. Spectrums of displacement and tension (LC = 60 m, LD = 140 m, βP = βT = 1).

Figure 16 demonstrates the effect of the length LC on the maximum dynamic tensions
of ropes under 0.01 Hz < wave frequency f < 0.91 Hz and LD = 60 m. It is observed that if
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50 m < LC < 130 m, all the dynamic tensions are under 130 tons. The maximum tension
of rope C changes with the length LC. It is because if the length LC approaches 150 m,
rope A and rope B are nearly in line and it results in the instability of the platform and the
pontoon 3.
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Figure 17 demonstrates the relation between the length LD and the maximum dynamic
tensions of ropes under 0.01 Hz < wave frequency f < 0.91 Hz and LC = 60 m. It is
determined that all dynamic tensions are under 90 tons. For 90 m < LD < 130 m, all dynamic
tensions are under 50 tons.
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Figure 17. Effect of length of rope D on the dynamic tension (βP = βT = 1).

Figure 18 demonstrates the relation among the rope angle θA, the wave frequency f
and the total tensions of ropes. It is observed that the angle θA will increase the resonant
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frequency; this is because if the angle θA is increased, the stiffness of system is increased.
Moreover, if the angle θA is over critical, the dynamic tension TA increases with the angle θA.
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8. Conclusions

This paper presents the mathematical model of the coupled translational–rotational
motions of the mooring system for an ocean energy convertor operating under the typhoon
wave impact. The configurations of the convertor and the floating platform are designed.
The hydrodynamic damping and stiffness parameters under the fluid–structure interaction
are calculated. The performance of the mooring system under typhon wave impact and
with different parameters is investigated and discovered as follows:

(1) The translational displacements of pontoons 3 and 4 are more obvious than those of
the platform and convertor.

(2) The angular displacement in pitch motion of the platform is greatly larger than those
of the yaw and roll motions.

(3) The translational and angular displacements of the platform are obviously higher
than those of the convertor.

(4) For this proposed mooring system, all the displacements of the convertor are kept
small under the significant wave impact. Therefore, the relative flow velocity and
direction of the convertor to the current are almost constant such that the power
efficiency of convertor can maintain to be stable and high.

(5) If there is a mooring system without the hydrodynamic damping of the convertor,
the resonant tensions are significantly increased and greatly over than the rope frac-
ture strength.

(6) The resonant frequency of the mooring system and the total tension TA increases with
the setting angle θA of rope A.
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Nomenclature

ABX, ABT = cross-sectional area of surfaced cylinder of pontoons 3 and 4, respectively
ABY, ATY = damping area of platform and convertor under current, respectively
C = matrix of damping
CDFy, CDTy = damping coefficient of floating platform and convertor
Ei = Young’s modulus of rope i, i = A, B, C, D
F = vector of force
FB = buoyance
fw = wave frequency
fkj = hydrodynamic force of element k in the j-direction
fPys, fTys = the drag of the floating platform and the convertor under steady current
Hbed = depth of seabed
Hs = significant wave height
HW0 = amplitude frequency of wave
ITj, IPj = mass moment of inertia of the convertor and the platform about the j-axis
g = gravity
K = matrix of stiffness
Kid = effective spring constant of rope i, Ei Ai/Li
→
K i = wave vector of the i-th regular wave
Li, = length of rope i, i = A, B, C, D

LE, = horizontal distance between the convertor and platform,
√

L2
B − (LC − LD)

2

M = matrix of mass
Mi = mass of element i
Me f f ,i = effective mass of rope A in the i-direction
mki = hydrodynamic moment of convertor or platform about the i-axis
→
R = coordinate
Rblade = radius of blade
Ti = tension force of rope i
t = time variable
TSR = tip speed ratio, ωRblade/V
V = ocean current velocity
Wi = weight of component i
wPE = weight per unit length of HSPE
xi, yi, zi = displacements of component i
xw = sea surface elevation
α = relative angle between the directions of wave and current
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β
= hydrodynamic parameter ratio of different convertors and platforms to
those presented in Section 5

ρ = density of sea water
Ω = angular frequency of wave
ω = angular speed of turbine
ϕkj = angular displacement of convertor or platform about the j-axis
φ = phase delay of wave, φ = 2πLE cos α/λ
θi = angles of rope i
λ = length of wave
δi = elongation of rope i
Subscript:

0~4
= mooring foundation, floating platform, convertor, and
two pontoons, respectively

A, B, C, D = ropes A, B, C, and D, respectively
s, d = static and dynamic, respectively
PE = PE dyneema rope
P = platform
T = convertor

Appendix A. Effective Masses {Me f f ,x, Me f f ,y, Me f f ,z}
For the longitudinal vibration of a rope, the governing equation is

EA
∂2us

∂s2 = ρA
∂2us

∂t2 , s ∈ (0, Ls), s = x, y. (A1)

The boundary conditions are:
At s = 0,

us = 0. (A2)

At s = Ls,
∂us

∂s
= 0. (A3)

The solution of Equation (A1) is assumed:

us(s, t) = U(s) sin ωt. (A4)

Substituting Equation (A4) into Equation (A1), one obtains

E
d2U
ds2 + ρω2U = 0, s ∈ (0, Ls). (A5)

The transformed boundary conditions are:
At s = 0,

U = 0. (A6)

At s = Ls,
dU
ds

= 0. (A7)

The solution of Equation (A5) is assumed:

U(s) = eλs. (A8)

Substituting Equation (A8) into Equations (A5)–(A7), the mode shape and frequency
are obtained [8]:

Un(s) = sin
(2n− 1)πs

2Ls
, n = 1, 2, 3, ..., (A9)
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ωn =
(2n− 1)π

2Ls

√
E
ρ

, n = 1, 2, 3, ..., (A10)

For simplicity, the rope system is simulated by an effective mass–spring model. Its
equation of motion is [22]

Me f f ,s
d2uLs

dt2 + ke f f ,suLs = 0, (A11)

where uLs is the displacement at the free end. The effective spring constant ke f f ,s = EA
Ls

.
Meff,s is the effective mass. The natural frequency is

ω1 =

√
ke f f ,s

Me f f ,s
. (A12)

The first natural frequency in the effective mass–spring model is the same as that in
the distributed model. Equating Equations (A10)–(A12), the effective mass is obtained:

Me f f ,s =
4 fgLAs

π2 , s = x, y, z, (A13)

where the mass per unit length of rope A fg = ρA. The component of rope A in the x, y,
and z axis are LAx = LA sin θA, LAy = LA cos θA and LAz = 0. The corresponding effective
masses are

Me f f ,x =
4ρALA sin θA

π2 , Me f f ,y =
4ρALA cos θA

π2 , Me f f ,z = 0. (A14)

Appendix B. Hydrodynamic Damping and Stiffness Parameters of Platform

Appendix B.1. Hydrodynamic Damping Parameters of Platform

C11 = −∂ fPx

∂
.
x1d

= 5800
N

m/s
, C21 = −

∂ fPy

∂
.
x1d

= 121.4
N

m/s
, C31 = − ∂ fPz

∂
.
x1d

= 0.

C16,1 = −∂mPx

∂
.
x1d

= 0, C17,1 = −
∂mPy

∂
.
x1d

= 0, C18,1 = −∂mPz

∂
.
x1d

= 8.654× 104 N −m
m/s

.

C12 = −∂ fPx

∂
.
y1d

= 0, C22 = −
∂ fPy

∂
.
y1d

= 768.4
N

m/s
, C32 = −∂ fPz

∂
.
y1d

= 0.

C16,2 = −∂mPx

∂
.
y1d

= 0, C17,2 = −
∂mPy

∂
.
y1d

= 0, C18,2 = −∂mPz

∂
.
y1d

= 0.

C13 = −∂ fPx

∂
.
z1d

= 0, C23 = −
∂ fPy

∂
.
z1d

= 108.5
N

m/s
, C33 = −∂ fPz

∂
.
z1d

= 5756
N

m/s
.

C16,3 = −∂mPx

∂
.
z1d

= 8.671× 104 N −m
m/s

, C17,3 = −
∂mPy

∂
.
z1d

= 0, C18,3 = −∂mPz

∂
.
z1d

= 0.

C1,16 = − ∂ fPx

∂
.
ϕ1x

= 0, C2,16 = −
∂ fPy

∂
.
ϕ1x

= 7.375× 104N − s, C3,16 = − ∂ fPz

∂
.
ϕ1x

= −3.1174× 104N − s.

C16,16 = −∂mPx

∂
.
ϕ1x

= 1076N −m− s, C17,16 = −
∂mPy

∂
.
ϕ1x

= 0, C18,16 = −∂mPz

∂
.
ϕ1x

= 0.

C1,17 = − ∂ fPx

∂
.
ϕ1y

= 0, C2,17 = −
∂ fPy

∂
.
ϕ1y

= 0, C3,17 = − ∂ fPz

∂
.
ϕ1y

= 0.
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C16,17 = −∂mPx

∂
.
ϕ1y

= 0, C17,17 = −
∂mPy

∂
.
ϕ1y

= 0, C18,17 = −∂mPz

∂
.
ϕ1y

= 0.

C1,18 = − ∂ fPx

∂
.
ϕ1z

= 3.065× 104N − s, C2,18 = −
∂ fPy

∂
.
ϕ1z

= 7.374× 104N − s, C3,18 = − ∂ fPz

∂
.
ϕ1z

= 0.

C16,18 = −∂mPx

∂
.
ϕ1z

= 0, C17,18 = −
∂mPy

∂
.
ϕ1z

= 0, C18,18 = −∂mPz

∂
.
ϕ1z

= 5.951× 104N −m− s.

Appendix B.2. Hydrodynamic Stiffness Parameters of Platform

∂mPx
∂ϕ1x

= 1.038× 105N −m, K16,17 = −∂mPx
∂ϕ1y

= 0, K16,18 = −∂mPx
∂ϕ1z

= 0,

K17,16 = −
∂mPy

∂ϕ1x
= 0, K18,16 = −∂mPz

∂ϕ1x
= 0, K1,17 = − ∂ fPx

∂ϕ1y
= 0.

K2,17 = −
∂ fPy

∂ϕ1y
= 0, K3,17 = − ∂ fPz

∂ϕ1y
= 0, K16,17 = −∂mPx

∂ϕ1y
= 0.

∂mPy

∂ϕ1y
= 0, K17,16 = −

∂mPy

∂ϕ1x
= 0, K17,18 = −

∂mPy

∂ϕ1z
= 0,

K18,17 = −∂mPz
∂ϕ1y

= 0, K1,18 = − ∂ fPx
∂ϕ1z

= 6508.5N, K2,18 = −
∂ fPy

∂ϕ1z
= 2043.5N.

K3,18 = − ∂ fPz
∂ϕ1z

= 0, K16,18 = −∂mPx
∂ϕ1z

= 0, K17,18 = −
∂mPy

∂ϕ1z
= 0.

∂mPz
∂ϕ1z

= 1.010× 105N −m, K18,16 = −∂mPz
∂ϕ1x

= 0, K18,17 = −∂mPz
∂ϕ1y

= 0.

Appendix C. Hydrodynamic Damping and Stiffness Parameters of Convertor

Appendix C.1. Hydrodynamic Damping Parameters

C44 = −∂ fTx

∂
.
x2d

= 1.465× 106 N
m/s

, C54 = −
∂ fTy

∂
.
x2d

= 2.085× 105 N
m/s

, C64 = − ∂ fTz

∂
.
x2d

= 0.

C13,4 = −∂mTx

∂
.
x2d

= 0, C14,4 = −
∂mTy

∂
.
x2d

= 0, C15,4 = −∂mTz

∂
.
x2d

= 7.453× 106N − s,

C45 = −∂ fTx

∂
.
y2d

= 0, C55 = −
∂ fTy

∂
.
y2d

= 9.802× 105 N
m/s

, C65 = −∂ fTz

∂
.
y2d

= 0,

C13,5 = −∂mTx

∂
.
y2d

= 0, C14,5 = −
∂mTy

∂
.
y2d

= 0, C15,5 = −∂mTz

∂
.
y2d

= 0,

C46 = −∂ fTx

∂
.
z2d

= 0, C56 = −
∂ fTy

∂
.
z2d

= 1.256× 105 N
m/s

, C66 = −∂ fTz

∂
.
z2d

= 7.000× 105 N
m/s

,

C13,6 = −∂mTx

∂
.
z2d

= −4.440× 106N − s, C14,6 = −
∂mTy

∂
.
z2d

= 0, C15,6 = −∂mTz

∂
.
z2d

= 0,

C4,13 = − ∂ fTx

∂
.
ϕ2x

= 0, C5,13 = −
∂ fTy

∂
.
ϕ2x

= 0, C6,13 = − ∂ fTz

∂
.
ϕ1x

= 0.



J. Mar. Sci. Eng. 2023, 11, 518 29 of 34

C13,13 = −∂mTx

∂
.
ϕ2x

= 13150N −m− s, C14,13 = −
∂mTy

∂
.
ϕ2x

= 0, C15,13 = −∂mTz

∂
.
ϕ2x

= 0.

C4,14 = − ∂ fTx

∂
.
ϕ2y

= 0, C5,14 = −
∂ fTy

∂
.
ϕ2y

= 0, C6,14 = − ∂ fTz

∂
.
ϕ2y

= 0.

C13,14 = −∂mTx

∂
.
ϕ2y

= 0, C14,14 = −
∂mTy

∂
.
ϕTy

= 2.837× 108N −m− s, C15,14 = −∂mTz

∂
.
ϕ2y

= 0,

C4,15 = − ∂ fTx

∂
.
ϕ2z

= 0, C5,15 = −
∂ fTy

∂
.
ϕ2z

= 0, C6,15 = − ∂ fTz

∂
.
ϕTz

= 0,

C13,15 = −∂mTx

∂
.
ϕ2z

= 0, C14,15 = −
∂mTy

∂
.
ϕ2z

= 0, C15,15 = −∂mTz

∂
.
ϕ2z

= 2.894× 107N −m− s.

Appendix C.2. Hydrodynamic Stiffness Parameters

K4,13 =
∂ fTx
∂ϕ2x

= 0, K5,13 = −
∂ fTy

∂ϕ2x
= 2.349× 105N, K6,13 = − ∂ fTz

∂ϕ2x
= −5.880× 105N,

∂mTx
∂ϕ2x

= 4.866× 106N −m, , K14,13 = −
∂mTy

∂ϕ2x
= −9.537× 105N −m, K15,13 = −∂mTz

∂ϕ2x
= −5.022× 104N −m,

K4,14 = − ∂ fTx
∂ϕ2y

= 0, K5,14 = −
∂ fTy

∂ϕ2y
= 0, K6,14 = − ∂ fTz

∂ϕ2y
= 0,

K13,14 = −∂mTx
∂ϕ2y

= 0,
∂mTy

∂ϕ2y
= 0, K15,14 = −∂mTz

∂ϕ2y
= 0,

K4,15 = − ∂ fTx
∂ϕ2z

= 1.500× 106N, K5,15 = −
∂ fTy

∂ϕ2z
= 5.850× 105N, K6,15 = − ∂ fTz

∂ϕ2z
= 0,

K13,15 = −∂mTx
∂ϕ2z

= 0, K14,15 = −
∂mTy

∂ϕ2z
= 0,

∂mTz
∂ϕ2z

= 8.472× 106N −m.

Appendix D. Elements of the Mass Matrix M =
[
Mij
]

18×18

M11 =
(

M1 + Me f f ,x

)
, M1j = 0, j 6= 1; M22 =

(
M1 + Me f f ,y

)
, M2j = 0, j 6= 2;

M33 =
(

M1 + Me f f ,z

)
, M3j = 0, j 6= 3; M44 = M2, M4j = 0, j 6= 4;

M55 = M2, M5,j = 0, j 6= 5; M66 = M2, M6,j = 0, j 6= 6;

M77 = M3, M7j = 0, j 6= 7; M88 = M3, M8j = 0, j 6= 8;

M99 = M3, M9j = 0, j 6= 9; M10,10 = M4, M10,j = 0, j 6= 10;

M11,11 = M4, M11,j = 0, j 6= 11; M12,12 = M4, M12,j = 0, j 6= 12;

M13,13 = ITx, M13,j = 0, j 6= 13; M14,14 = ITy, M14,j = 0, j 6= 14;
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M15,15 = ITz, M15,j = 0, j 6= 15; M16,16 = IPx, M16,j = 0, j 6= 16;

M17,17 = IPy, M17,j = 0, j 6= 17; M18,18 = IPz, M18,j = 0, j 6= 18.

Appendix E. Elements of the Damping Matrix C =
[
Cij
]

18×18

C11 = −∂ fPx

∂
.
x1d

, C12 = −∂ fPx

∂
.
y1d

, C13 = −∂ fPx

∂
.
z1d

, C1,16 = − ∂ fPx

∂
.
ϕ1x

, C1,17 = − ∂ fPx

∂
.
ϕ1y

,

C1,18 = − ∂ fPx

∂
.
ϕ1z

, C1j = 0, j 6= 1, 2, 3, 16, 17, 18;

C21 = −
∂ fPy

∂
.
x1d

, C22 = −
∂ fPy

∂
.
y1d

, C23 = −
∂ fPy

∂
.
z1d

, C2,16 = −
∂ fPy

∂
.
ϕ1x

, C2,17 = −
∂ fPy

∂
.
ϕ1x

,

C2,18 = −
∂ fPy

∂
.
ϕ1z

, C2j = 0, j 6= 1, 2, 3, 16, 17, 18;

C31 = − ∂ fPz

∂
.
x1d

, C32 = −∂ fPz

∂
.
y1d

, C33 = −∂ fPz

∂
.
z1d

, C3,16 = − ∂ fPz

∂
.
ϕ1x

, C3,17 = − ∂ fPz

∂
.
ϕ1y

,

C3,18 = − ∂ fPz

∂
.
ϕ1z

, C3j = 0, j 6= 1, 2, 3, 16, 17, 18;

C44 = −∂ fTx

∂
.
x2d

, C45 = −∂ fTx

∂
.
y2d

, C46 = −∂ fTx

∂
.
z2d

, C4,13 = − ∂ fTx

∂
.
ϕ2x

, C4,14 = − ∂ fTx

∂
.
ϕ2y

,

C4,15 = − ∂ fTx

∂
.
ϕ2z

, C4j = 0, j 6= 4, 5, 6, 13, 14, 15;

C54 = −
∂ fTy

∂
.
x2d

, C55 = −
∂ fTy

∂
.
y2d

, C56 = −
∂ fTy

∂
.
z2d

, C5,13 = −
∂ fTy

∂
.
ϕ2x

, C5,14 = −
∂ fTy

∂
.
ϕ2y

,

C5,,15 = −
∂ fTy

∂
.
ϕ2z

, C5,j = 0, j 6= 4, 5, 6, 13, 14, 15;

C64 = − ∂ fTz

∂
.
x2d

, C65 = −∂ fTz

∂
.
y2d

, C66 = −∂ fTz

∂
.
z2d

, C6,13 = − ∂ fTz

∂
.
ϕ2x

, C6,14 = − ∂ fTz

∂
.
ϕ2y

,

C6,15 = − ∂ fTz

∂
.
ϕ2z

, C6,j = 0, j 6= 4, 5, 6, 13, 14, 15;

Cij = 0, i= 7, 8,..., 12; j = 1, 2, ..., 18

C13,4 = −∂mTx

∂
.
x2d

, C13,5 = −∂mTx

∂
.
y2d

, C13,6 = −∂mTx

∂
.
z2d

, C13,13 = −∂mTx

∂
.
ϕ2x

, C13,14 = −∂mTx

∂
.
ϕ2y

,

C13,15 = −∂mTx

∂
.
ϕ2z

, C13,j = 0, j 6= 4, 5, 6, 13, 14, 15;

C14,4 = −
∂mTy

∂
.
x2d

, C14,5 = −
∂mTy

∂
.
y2d

, C14,6 = −
∂mTy

∂
.
z2d

, C14,13 = −
∂mTy

∂
.
ϕ2x

, C14,14 = −
∂mTy

∂
.
ϕ2y

,

C14,15 = −
∂mTy

∂
.
ϕ2z

, C14,j = 0, j 6= 4, 5, 6, 13, 14, 15;
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C15,4 = −∂mTz

∂
.
x2d

, C15,5 = −∂mTz

∂
.
y2d

, C15,6 = −∂mTz

∂
.
z2d

, C15,13 = −∂mTz

∂
.
ϕ2x

, C15,14 = −∂mTz

∂
.
ϕ2y

,

C15,15 = −∂mTz

∂
.
ϕ2z

, C15,j = 0, j 6= 4, 5, 6, 13, 14, 15;

C16,1 = −∂mPx

∂
.
x1d

, C16,2 = −∂mPx

∂
.
y1d

, C16,3 = −∂mPx

∂
.
z1d

, C16,16 = −∂mPx

∂
.
ϕ1x

, C16,17 = −∂mPx

∂
.
ϕ1y

,

C16,18 = −∂mPx
∂ϕ1z

, C16,j = 0, j 6= 1, 2, 3, 16, 17, 18;

C17,1 = −
∂mPy

∂
.
x1d

, C17,2 = −
∂mPy

∂
.
y1d

, C17,3 = −
∂mPy

∂
.
z1d

, C17,16 = −
∂mPy

∂
.
ϕ1x

, C17,17 = −
∂mPy

∂
.
ϕ1y

,

C17,18 = −
∂mPy

∂
.
ϕ1z

, C17,j = 0, j 6= 1, 2, 3, 16, 17, 18;

C18,1 = −∂mPz

∂
.
x1d

, C18,2 = −∂mPz

∂
.
y1d

, C18,3 = −∂mPz

∂
.
z1d

, C18,16 = −∂mPz

∂
.
ϕ1x

, C18,17 = −∂mPz

∂
.
ϕ1y

,

C18,18 = −∂mPz

∂
.
ϕ1z

, C18,j = 0, j 6= 1, 2, 3, 16, 17, 18;

Appendix F. Elements of the Stiffness Matrix K =
[
Kij
]

18×18

K11 = −
(

KCd +
TAs cos θAs

LA
+

sin θAsKAdx1s
LA

− TBs cos θBs
LB

− sin θBsKBd
(x2s − x1s)

LB

)
,

K12 = −
(

sin θAsKAd
y1s
LA
− sin θBsKBd

(y2s − y1s)

LB

)
, K14 = −

(
TBs cos θBs

LB
− sin θBsKBd

(x2s − x1s)

LB

)
.

K15 = − sin θBsKBd
(y2s − y1s)

LB
, K17 = KCd, K1,16 = − ∂ fPx

∂ϕ1x
,

K1,17 = − ∂ fPx
∂ϕ1y

, K1,18 = − ∂ fPx
∂ϕ1z

, K1j = 0, j 6= 1, 2, 4, 5, 7, 16, 17, 18;

K21 =

(
KAd

x1s
LA

cos θAs − KBd
x1s − x2s

LB
cos θBs −

(
TAs sin θAs

LA
+

TBs sin θBs
LB

)
, ,
)

K22 =

(
KAd

y1s
LA

cos θAs − KBd
y1s − y2s

LB
cos θBs

)
, K24 =

(
KBd

x1s − x2s

LB
cos θBs +

TBs sin θBs
LB

)
,

K25 = KBd
y1s − y2s

LB
cos θBs, K2,16 = −

∂ fPy

∂ϕ1x
, K2,17 = −

∂ fPy

∂ϕ1y
,

K2,18 = −
∂ fPy

∂ϕ1z
, K2j = 0, j 6= 1, 2, 4, 5, 16, 17, 18;

K33 =

(
TAs
LA

+
TBs
LB

+
TCs
LC

)
, K36 = −TBs

LB
, K39 = −TCs

LC
, K3,16 = − ∂ fPz

∂ϕpx
,

K3,17 = − ∂ fPz
∂ϕ1y

, K3,18 = − ∂ fPz
∂ϕ1z

, K3j = 0, j 6= 3, 6, 9, 16, 17, 18;

K41 =

(
TBs cos θBs

LB
+ sin θBsKBd

(x2s − x1s)

LB

)
, K42 = sin θBsKBd

(y2s − y1s)

LB
,
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K44 =

(
KDd −

TBs cos θBs
LB

− sin θBsKBd
(x2s − x1s)

LB

)
, K45 = − sin θBsKBd

(y2s − y1s)

LB
, K4,10 = −KDd,

K4,13 = − ∂ fTx
∂ϕ2x

, K4,14 = − ∂ fTx
∂ϕ2y

, K4,15 = − ∂ fTx
∂ϕ2z

, K4j = 0, j 6= 1, 2, 4, 5, 10, 13, 14, 15;

K51 =

(
KBd

x1s − x2s

LB
cos θB

)
, K52 =

(
KBd

y1s − y2s

LB
cos θB

)
, K54 = −

(
KBd

x1s − x2s

LB
cos θB

)
,

K55 = −
(

KBd
y1s − y2s

LB
cos θB

)
, K5,13 = −

∂ fTy

∂ϕ2x
, K5,14 = −

∂ fTy

∂ϕ2y
,

K5,15 = −
∂ fTy

∂ϕ2z
, K5j = 0, j 6= 1, 2, 4, 5, 13, 14, 15;

K63 = −TBs
LB

, K66 =

(
TBs
LB

+
TDs
LD

)
, K6,12 = −TDs

LD
, K6,13 = − ∂ fTz

∂ϕ2x
,

K6,14 = − ∂ fTz
∂ϕ2y

, K6,15 = − ∂ fTz
∂ϕ2z

, K6,j = 0, j 6= 3, 6, 12, 13, 14, 15;

K71 = −KCd, K77 = (KCd + ABxρg), K7j = 0, j 6= 1, 7;

K88 =
TCs
LC

, K82 =
−TCs

LC
, K8j = 0, j 6= 2, 8;

K93 =
−TCs

LC
, K99 =

TCs
LC

, K9j = 0, j 6= 3, 9;

K10,4 = −KDd, K10,10 = (KDd + ABTρg), K10,j = 0, j 6= 4, 10;

K11,5 =
−TDs

LD
, K11,11 =

TDs
LD

, K11,j = 0, j 6= 5, 11;

K12,6 =
−TDs

LD
, K12,12 =

TDs
LD

, K12,j = 0, j 6= 6, 12;

K13,3 =
−TBsRTBx

LB
, K13,6 =

TBsRTBx
LB

, K13,13 =

(
TBs cos θBsRTBx −

∂mTx
∂ϕ2x

)
,

K13,14 = −∂mTx
∂ϕ2y

, K13,15 = −∂mTx
∂ϕ2z

, K13,j = 0, j 6= 3, 6, 13, 14, 15;

K14,6 =
TDsRTDy

LD
, K14,12 =

−TDsRTDy

LD
, K14,13 = −

∂mTy

∂ϕ2x
,

K14,14 = TDsRTDy −
∂mTy

∂ϕ2y
, K14,15 = −

∂mTy

∂ϕ2z
, K14,j = 0, j 6= 6, 12, 13, 14, 15;

K15,1 =
−TBsRTBz cos θB

LB
, K15,4 =

TBsRTBz cos θB
LB

, K15,13 = −∂mTz
∂ϕ2x

,

K15,14 = −∂mTz
∂ϕTy

, K15,15 = TBsRTBz cos θB −
∂mTz
∂ϕ2z

, K15,j = 0, j 6= 1, 4, 13, 14, 15;

K16,3 =
TBsRPBx

LB
− TAsRPAx

LA
, K16,6 =

−TBsRPBx
LB

, K16,16 = TAs cos θAsRPAx + TBs cos θBsRPBx −
∂mPx
∂ϕ1x

,
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K16,17 = −∂mPx
∂ϕ1y

, K16,18 = −∂mPx
∂ϕ1z

, K16,j = 0, j 6= 3, 6, 16, 17, 18;

K17,3 =
TAsRPAy

LA
+

TCsRPCy

LC
, K17,9 =

−TCsRPCy

LC
, K17,17 = TAs cos θAsRPAy + TCsRPCy −

∂mPy

∂ϕ1y

K17,16 = −
∂mPy

∂ϕ1x
, K17,18 = −

∂mPy

∂ϕ1z
, K17,j = 0, j 6= 3, 9, 16, 18;

K18,1 =
TAs cos θAsRPAz

LA
− TBs cos θBsRPBz

LB
, K18,2 =

−TCsRPCz
LC

, K18,4 =
TBs cos θBsRPBz

LB
,

K18,5 =
TCsRPBz

LC
, K18,18 = TAs cos θAsRPAz + TBs cos θBsRPBz + TCsRPCz −

∂mPz
∂ϕ1z

,

K18,16 = −∂mPz
∂ϕ1x

, K18,17 = −∂mPz
∂ϕ1y

, K18,j = 0, j 6= 1, 2, 4, 5, 16, 17, 18.
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