Assessing the Prospect of Joint Exploitations of Offshore Wind, Wave, and Tidal Stream Energy in the Adjacent Waters of China
Abstract
:1. Introduction
2. Data and Methods
C1 | C2 | C1 | C2 | ||
---|---|---|---|---|---|
Scenario 1 | 0.25 | 1 | Scenario 16 | 1 | 6 |
Scenario 2 | 0.25 | 2 | Scenario 17 | 1 | 8 |
Scenario 3 | 0.25 | 4 | Scenario 18 | 1 | 10 |
Scenario 4 | 0.25 | 6 | Scenario 19 | 2 | 1 |
Scenario 5 | 0.25 | 8 | Scenario 20 | 2 | 2 |
Scenario 6 | 0.25 | 10 | Scenario 21 | 2 | 4 |
Scenario 7 | 0.5 | 1 | Scenario 22 | 2 | 6 |
Scenario 8 | 0.5 | 2 | Scenario 23 | 2 | 8 |
Scenario 9 | 0.5 | 4 | Scenario 24 | 2 | 10 |
Scenario 10 | 0.5 | 6 | Scenario 25 | 4 | 1 |
Scenario 11 | 0.5 | 8 | Scenario 26 | 4 | 2 |
Scenario 12 | 0.5 | 10 | Scenario 27 | 4 | 4 |
Scenario 13 | 1 | 1 | Scenario 28 | 4 | 6 |
Scenario 14 | 1 | 2 | Scenario 29 | 4 | 8 |
Scenario 15 | 1 | 4 | Scenario 30 | 4 | 10 |
3. Results
3.1. Output from Single Energy Exploitations
3.2. Output from Joint Exploitations for the Least Possible
3.3. Output from Joint Exploitations for Enlarging
3.4. Joint Exploitation Performance in the Diurnal Band
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Robertson, B.; Dunkle, G.; Gadasi, J.; Garcia-Medina, G.; Yang, Z. Holistic marine energy resource assessments: A wave and offshore wind perspective of metocean conditions. Renew. Energy 2021, 170, 286–301. [Google Scholar] [CrossRef]
- Choi, K.-R.; Kim, J.-H.; Yoo, S.-H. The public willingness to pay for the research and demonstration of tidal stream energy in South Korea. Mar. Policy 2022, 138, 104981. [Google Scholar] [CrossRef]
- Global Wind Energy Council, G. Global Offshore Wind Report 2022; Global Wind Energy Council: Brussels, Belgium, 2022. [Google Scholar]
- Liu, Y.; Li, Y.; He, F.; Wang, H. Comparison study of tidal stream and wave energy technology development between China and some Western Countries. Renew. Sustain. Energy Rev. 2017, 76, 701–716. [Google Scholar] [CrossRef]
- Lamy, J.V.; Azevedo, I.L. Do tidal stream energy projects offer more value than offshore wind farms? A case study in the United Kingdom. Energy Policy 2018, 113, 28–40. [Google Scholar] [CrossRef]
- Chen, H.; Li, Q.; Benbouzid, M.; Han, J.; Aït-Ahmed, N. Development and Research Status of Tidal Current Power Generation Systems in China. J. Mar. Sci. Eng. 2021, 9, 1286. [Google Scholar] [CrossRef]
- Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renew. Sustain. Energy Rev. 2021, 135, 110162. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Selvanathan, V.; Nuthammachot, N.; Suklueng, M.; Mostafaeipour, A.; Habib, A.; Akhtaruzzaman, M.; Amin, N.; Techato, K. Current trends and prospects of tidal energy technology. Environ. Dev. Sustain. 2021, 23, 8179–8194. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, T.; Li, H. Ocean Wave Energy Converters: Status and Challenges. Energies 2018, 11, 1250. [Google Scholar] [CrossRef] [Green Version]
- Liu, C. Current Research Status and Challenge for Direct-Drive Wave Energy Conversions. IETE J. Res. 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Kempton, W.; Pimenta, F.M.; Veron, D.E.; Colle, B.A. Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA 2010, 107, 7240–7245. [Google Scholar] [CrossRef] [Green Version]
- Vigueras-Rodríguez, A.; Sørensen, P.; Cutululis, N.A.; Viedma, A.; Donovan, M.H. Wind model for low frequency power fluctuations in offshore wind farms. Wind Energy 2010, 13, 471–482. [Google Scholar] [CrossRef]
- West, C.G.; Smith, R.B. Global patterns of offshore wind variability. Wind Energy 2021, 24, 1466–1481. [Google Scholar] [CrossRef]
- Astariz, S.; Perez-Collazo, C.; Abanades, J.; Iglesias, G. Co-located wind-wave farm synergies (Operation & Maintenance): A case study. Energy Convers. Manag. 2015, 91, 63–75. [Google Scholar] [CrossRef]
- Lande-Sudall, D.; Stallard, T.; Stansby, P. Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation. Renew. Sustain. Energy Rev. 2019, 104, 492–503. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, K.; Wang, D.; Ye, J.; Liang, F. A comprehensive review of ocean wave energy research and development in China. Renew. Sustain. Energy Rev. 2019, 113, 109271. [Google Scholar] [CrossRef]
- Chen, X.; Wang, K.; Zhang, Z.; Zeng, Y.; Zhang, Y.; O'Driscoll, K. An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea. Energy 2017, 134, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Nie, B.; Li, J. Technical potential assessment of offshore wind energy over shallow continent shelf along China coast. Renew. Energy 2018, 128, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Dong, S.; Wang, Z.; Guedes Soares, C. Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids. Renew. Energy 2019, 136, 275–295. [Google Scholar] [CrossRef]
- Zheng, C.-w.; Pan, J.; Li, J.-x. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Eng. 2013, 65, 39–48. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Si, Y.; Qian, P.; Wu, H.; Cui, L.; Zhang, D. A review of tidal current energy resource assessment in China. Renew. Sustain. Energy Rev. 2021, 145, 111012. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, J.; Zhang, J.; Zhang, T. Potential Assessment of Tidal Stream Energy Around Hulu Island, China. Procedia Eng. 2015, 116, 871–879. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Kammen, D.M. Where, when and how much wind is available? A provincial-scale wind resource assessment for China. Energy Policy 2014, 74, 116–122. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, J.; Chen, X.; Zhao, Y. China in global wind power development: Role, status and impact. Renew. Sustain. Energy Rev. 2020, 127, 109881. [Google Scholar] [CrossRef]
- Sherman, P.; Chen, X.; McElroy, M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy economy. Sci. Adv. 2020, 6, eaax9571. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Wang, J.; Xia, J.; Dai, Y.; Sheng, Y.; Yue, J. Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China. Renew. Energy 2012, 43, 234–241. [Google Scholar] [CrossRef]
- Azzellino, A.; Lanfredi, C.; Riefolo, L.; De Santis, V.; Contestabile, P.; Vicinanza, D. Combined Exploitation of Offshore Wind and Wave Energy in the Italian Seas: A Spatial Planning Approach. Front. Energy Res. 2019, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E.; Onea, F. A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments. Renew. Energy 2019, 143, 1594–1607. [Google Scholar] [CrossRef]
- Ferrari, F.; Besio, G.; Cassola, F.; Mazzino, A. Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea. Energy 2020, 190, 116447. [Google Scholar] [CrossRef]
- Lande-Sudall, D.; Stallard, T.; Stansby, P. Co-located offshore wind and tidal stream turbines: Assessment of energy yield and loading. Renew. Energy 2018, 118, 627–643. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Karathanasi, F.E.; Zaragkas, D.K. Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data. Energy Convers. Manag. 2021, 237, 114092. [Google Scholar] [CrossRef]
- Wan, Y.; Fan, C.; Dai, Y.; Li, L.; Sun, W.; Zhou, P.; Qu, X. Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea. Energies 2018, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Kamranzad, B.; Lin, P. Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China. Energy 2022, 249, 123710. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Ghassemi, H.; Razminia, A. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset. Energy 2019, 187, 115991. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Kardakaris, K.; Boufidi, I.; Soukissian, T. Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data. Atmosphere 2021, 12, 1360. [Google Scholar] [CrossRef]
- Gil Ruiz, S.A.; Barriga, J.E.C.; Martínez, J.A. Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data. Renew. Energy 2021, 172, 158–176. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; Chan, P.W. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Appl. Energy 2015, 156, 362–373. [Google Scholar] [CrossRef]
- Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program; No. NREL/SR-440-22223; ON: DE97000250; National Renewable Energy Lab.: Golden, CO, USA; AWS Scientific, Inc.: Albany, NY, USA, 1997.
- Kamranzad, B.; Lin, P.; Iglesias, G. Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology. Renew. Energy 2021, 172, 697–713. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Annual and seasonal variabilities in the performances of wave energy converters. Energy 2018, 165, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Rusu, E.; Soares, C.G. Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore. Energies 2013, 6, 1344–1364. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Thomas, B.; Sewell, P.; Khan, Z.; Balmain, S.; Gillman, J. Current tidal power technologies and their suitability for applications in coastal and marine areas. J. Ocean Eng. Mar. Energy 2016, 2, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; O’Hara Murray, R.; Fredriksson, S.; Maskell, J.; de Fockert, A.; Neill, S.P.; Robins, P.E. A standardised tidal-stream power curve, optimised for the global resource. Renew. Energy 2021, 170, 1308–1323. [Google Scholar] [CrossRef]
- Gao, Q.; Ding, B.; Ertugrul, N.; Li, Y. Impacts of mechanical energy storage on power generation in wave energy converters for future integration with offshore wind turbine. Ocean Eng. 2022, 261, 112136. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
Province | OW Power GW | WA Power MW | Marginal Sea | TS Power GW |
---|---|---|---|---|
Liaoning | 60.6 | 184.6 | Bohai and Yellow Sea | ~1.1 |
Hebei | 24.1 | 99.5 | ||
Tianjin | 5.6 | 13.7 | ||
Shandong | 76.5 | 483.8 | ||
Jiangsu | 107.6 | 94.3 | ||
Shanghai | 24.3 | 160.1 | East China Sea | ~4.6 |
Zhejiang | 53.8 | 1916.0 | ||
Fujian | 28.1 | 2910.7 | ||
Guangdong | 51.7 | 4557.2 | South China Sea | ~0.4 |
Guangxi | 26.6 | 81.1 | ||
Hainan | 10.4 | 4204.9 |
Description | |
---|---|
OW-WA | 1 WA converter with 4 OW turbines in most regions |
OW-TS | 1 OW turbine with 10 TS turbines |
Triple-energy | Mixture of the above two strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Z.; Yu, W.; Du, J. Assessing the Prospect of Joint Exploitations of Offshore Wind, Wave, and Tidal Stream Energy in the Adjacent Waters of China. J. Mar. Sci. Eng. 2023, 11, 529. https://doi.org/10.3390/jmse11030529
Lian Z, Yu W, Du J. Assessing the Prospect of Joint Exploitations of Offshore Wind, Wave, and Tidal Stream Energy in the Adjacent Waters of China. Journal of Marine Science and Engineering. 2023; 11(3):529. https://doi.org/10.3390/jmse11030529
Chicago/Turabian StyleLian, Zhan, Weiye Yu, and Jianting Du. 2023. "Assessing the Prospect of Joint Exploitations of Offshore Wind, Wave, and Tidal Stream Energy in the Adjacent Waters of China" Journal of Marine Science and Engineering 11, no. 3: 529. https://doi.org/10.3390/jmse11030529
APA StyleLian, Z., Yu, W., & Du, J. (2023). Assessing the Prospect of Joint Exploitations of Offshore Wind, Wave, and Tidal Stream Energy in the Adjacent Waters of China. Journal of Marine Science and Engineering, 11(3), 529. https://doi.org/10.3390/jmse11030529