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Abstract: For identifying each vessel from ship-radiated noises with only a very limited number of
data samples available, an approach based on the contrastive learning was proposed. The input was
sample pairs in the training, and the parameters of the models were optimized by maximizing the
similarity of sample pairs from the same vessel and minimizing that from different vessels. In practical
inference, the method calculated the distance between the features of testing samples and those of
registration templates and assigned the testing sample into the closest templates for it to achieve
the parameter-free classification. Experimental results on different sea-trial data demonstrated the
advantages of the proposed method. On the five-ship identification task based on the open-source
data, the proposed method achieved an accuracy of 0.68 when only five samples per vessel were
available, that was significantly higher than conventional solutions with accuracies of 0.26 and 0.48.
Furthermore, the convergence of the method and the behavior of its performance with increasing
data samples available for the training were discussed empirically.

Keywords: ship-radiated noises; ship identification; few-shot classification; contrastive learning;
convolutional neural networks

1. Introduction

Classifying vessels of interest from the received ship-radiated noises is a key task in
underwater acoustical signal processing [1–3]. Many approaches have been proposed for
it, some of them focused on the physical feature extraction from the noise [2,4,5], while
in recent years, others tried to deal with it in the data-driven manner with the help of
popular deep learning methods [6–9]. After optimizing the parameters of the models
on the training set, deep-learning-like methods automatically extracted abstract features
beneficial to the final task from the raw signal waveform or time-frequency spectrogram.
And massive impressive improvements on the testing set can be achieved by such trained
models compared to conventional feature extraction approaches [3,10].

In current research, it was common practice to first assign involved vessels into several
coarse categories artificially based on a certain attribute (such as the purpose of the vessel),
and then, the effective methods were expected to automatically and accurately classify
underlying vessels to one of the above categories (e.g., cargo ships, tankers, etc.) according
to the received ship-radiated noise. The decision foundations for an automatic method were
the differences in the physical or statistical characteristics of radiated noises, which came
from the differences in the engines carried and the hull structure itself. But the division of
ship-categories was usually based on practical attributes (such as the purpose as mentioned
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above). The potential inconsistency between the two led to the large variances between
different individual vessels within the same category. For example, the assigned cargo ships
category might include original cargo ships and those converted from passenger ships,
whose radiated noises were obviously different. Thus, it could be considered that there was
the large intra-class variances problem in the classification of ship-radiated noises [11,12]. A
possible solution to this issue is to divide the categories in a fine-grained manner that could
decrease the intra-class variances. Based on the received ship-radiated noises, the task of
identifying the individual IDs of vessels (named as ship identification) rather than classifying
into the coarse categories (named as ship classification) was therefore considered in this
work. The task of this type might be interesting for some practical applications as well, such
as area maritime security, harbor verification for entry and departure of vessels, etc. [13].
However, to the best of our knowledge, the existing literature has paid less attention to
this task.

Ship identification could be understood as a fine-grained setting of the conventional
classification, but the fine-grained categories bring not only the conceptual extensions but
also some non-trivial changes into the ship identification setting. Obviously, the outputs
of methods for the identification problem would be in a higher-dimensional state space
because the number of vessel individuals is much greater than that of vessel categories.
It increases the difficulty of the task and intensifies the data-hungriness of deep-learning-
like algorithms. However, it is difficult to obtain numerous real-world ship-radiated
noises from different targets, which has made classification tasks for ship-radiated noises
suffer from data scarcity, and such a scenario was called few-shot classification in existing
works [10,14,15]. The property of data scarcity is exacerbated by the fine-grained nature of
the ship identification problem since the increase of categories greatly dilutes the amount
of data in each category. Each vessel may only contain a few minutes or less of real-world
data (e.g., 2 min for each vessel), which means that only a few spectrograms may be
available after time-frequency analysis. Many existing studies in the classification task
of ship-radiated noise tried to cope with the limitation of the real-world data scarcity by
redesigning the network architecture. The attention mechanism was employed in [16]
to get the relationship between different low-frequency line spectra of the ship-radiated
noise; the recurrent-wavelet auto-encoder architecture was proposed in [17] to deal with
the effect of time-varying marine environments while extracting the periodic frequency
components of the ship-radiated noise; and [18] considered a spectrogram transformer
model to obtain the global information of the time-frequency spectrogram automatically.
Beyond the architectural design, reducing the need of real-world data for deep neural
networks in ship classification tasks by improving learning strategies has also attracted
much attention. [19] argued that the unsupervised pre-training can enable the deep long
short-term memory network to effectively address the lack of data; by augmenting the 3D
mel-spectrogram of ship-radiated noise in the time and frequency domains [20], it was
believed that the classification performance can be improved with limited real-world data;
and [21] considered that the performance of ship classification tasks would benefit from the
ensemble of conventional SoftMax loss and metric-based loss when optimizing the models.
However, the available training samples in existing works on classification of ship-radiated
noises were still more than hours even with limited real-world data, and the situation of
only a few available samples (e.g., <10 spectrograms for each vessel) that might be faced in
ship identification has not been fully discussed.

Moreover, since ship identification methods need to distinguish each individual of
vessels, a certain class (individual) of samples in the training set for methods could be
considered as templates for the individual in other soundscapes. This situation is also
different from conventional ship classification. The potential benefit of available individual
registration templates is less considered in the ship classification problem.

We proposed a contrastive-learning-based method to adapt the few-shot ship iden-
tification problem. It did not contain a parameterized classifier, and only employed the
convolutional neural networks (CNN) as the feature extractor to map the time-frequency
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spectrogram into the abstract feature space. In the training phase, the proposed method
constructed sample-pairs consisting of real-world samples, where the sample-pairs from
the same individual’s samples were called as positive pairs, while those from different
individuals’ samples were as negative pairs. And the optimization goal was to make the
features of positive pairs close, while making those of negative pairs far away, instead
of bringing the classifier output of a sample closer to its label. In the testing phase, it
treated the training samples as registration templates for each individual, and achieved
parameter-free classification by calculating the distance between the testing samples and all
templates and selecting the closest one as the discrimination result. The main contributions
of this paper are as follows,

• The contrastive-learning-based method was proposed for real-world few-shot ship
identification from the received noises. It optimized the parameters of the feature
extractor by making positive pairs close and negative pairs far away.

• The available samples were utilized as templates for comparison in addition to serving
as the training set. The parameter-free classifier was achieved by choosing the closest
distance between the testing samples and all templates in the feature space.

• The performance of the proposed method was verified on the sea-trial datasets, and
the role of the number of available samples was also discussed. The results confirmed
the advantages of our method in solving the few-shot ship identification problem.

2. Ship Identification from Recorded Noises

In this section, we formalized the ship identification task and illustrated how it differs
from the conventional ship classification problem. Furthermore, the general framework of
methods for solving classification or identification problems was also described here.

2.1. Problem Definition

Vessels radiated unavoidable noises during the sailing because of the activity of
engines, propellers and other components, and differences in hull and mechanical com-
ponents of each vessel brought the noises vary greatly in the time-frequency domain and
auditory perception [22,23]. The differences in ship-radiated noises allowed us to classify
them by analyzing the received copies when assuming that there was no serious impair-
ment brought by the propagation in marine environments. The different divisions for
categories in classification led to different settings of conventional ship classification and
ship identification discussed in this work (Figure 1). In the ship classification task, vessels
were usually divided into different categories according to a certain attribute such as their
purpose. But different individuals within the same category might vary widely in hull
sizes and mechanical parts carried, so there were significant intra-class variances in the
ship classification task [24]. If assuming that each individual ship was a category, then
the settings for the ship identification task here could be derived, which can play a role in
many practices such as area monitoring or maritime anti-smuggling.

Classes of ship identification were with more fine-grained compared with the ship
classification, which made the problem of limited availability of real-world samples for
each class in ship classification even more severe in ship identification. The realistic data
available for each individual vessel might only be a few minutes or less. To formalize
such a scenario, we introduced the N-way K-shot setting commonly employed in few-
shot learning [25,26], which assumed that there were N classes and each class contained
K samples (usually, K ≤ 10). The received noises available for training were with the
continuous time axis, and it was a routine to split the training data into frames [3,27], so the
above K referred to the number of these short frames (e.g., if the available training data for
each class lasted 1 min and was split into 2-s frames without overlapping, then K here was
30). Additionally, the number of classes in the ship identification (i.e., N) was usually much
larger than that in the ship classification (Figure 1) because finer distinctions were needed,
which increased the difficulty of the identification task. But there were also a potential
benefit because small intra-class variances brought by the finer classes made samples
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available in the training could be employed as registration templates for the comparison in
the testing, and gains might be obtained by considering this.

IV

I II

III

…

(a)

IVI II

III

…

V

VI

VII

VIII IX

X

XI
XII

(b)

Figure 1. Divisions for categories of source vessels in tasks of ship classification and ship identification
from the received noises: (a) Dividing noises to several categories (I–IV in the figure) based on the
purpose of source vessels in the ship classification. (b) Dividing noises to each source individual
(I–XII in the figure) in the ship identification.

Therefore, for the ship identification tasks under the N-way K-shot setting, the known
information is that there are N vessels and K frames of data for each of the vessels could be
provided. When another utterance of noise received in different soundscapes (or the source
vessel sails under different working conditions) is given, and the utterance is confirmed a
priori to come from the above N vessels, methods can be considered to work well if they
can utilize the known information to automatically and accurately identify which vessel
the utterance comes from.

2.2. General Framework of Methods

For the tasks of classifying ship-radiated noises automatically, the solutions mostly fol-
lowed the pipeline in Figure 2. After framing the received noise of long duration, methods
were fed with the short frames xi. Their spectrums Si were obtained by the preprocessing
of time-frequency analysis technologies. Deep neural networks such as CNN [28] or feature
extraction algorithms in classic machine learning such as principal component analysis
(PCA) [29] exploited information in the temporal and frequency dimensions for feature
modeling, and mapped spectrums Si to features hi. This part was called the feature extrac-
tor, which discarded the redundant information in the data for dimensional compression.
Finally, the classifier transformed features hi into the class vectors oi, whose dimensionality
depended on the tasks themselves (it would be N under the N-way K-shot settings). The
class vectors oi, although not well-calibrated [30], could be interpreted as approximations to
class-conditional probability distributions [31]. With the help of the maximum a posteriori
criterion [31], the prediction results for the category or ID of vessels corresponding to the
inputs xi (short frames of the received noises) could be returned.

Modern deep learning methods typically employed parameterized feature extractors
and classifiers in the pipeline. Their parameters needed to be optimized so that methods
can return the expected outputs in practice. Therefore, a portion of the data was taken
out separately to train the models. A common optimization objective in conventional
classification problems was to minimize the cross-entropy losses between the predicted
class vectors oi and the corresponding labels yi of the data [29]. With the help of gradient
backpropagation [32] and stochastic-gradient-descent-like algorithms (such as Adam opti-
mizer [33]), the parameters of the models were updated epoch by epoch to try to gradually
reduce the losses. After the parameters were optimized, the models were required to
make predictions on another portion of the real-world data and compare them with the
labels to evaluate the final performance of methods. It was worth noting that for ship
classification or identification tasks, the real-world data adopted for evaluation should be
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with the different soundscapes than that adopted to optimize the models to ensure that the
generalization was examined instead of overfitting [9]. These two parts could be from the
same vessel sailing at significantly different time-periods (or positions) or under different
working conditions.

Time-Frequency

Analysis
Feature Extractor Classifier

Inputs Spectrums Features Outputs

xi Si hi oi

Short-Time Fourier 

Transform

Wavelet Transform

Hilbert-Huang 

Transform

…

Convolutional 

Neural Networks

Transformer Models

Principal 

Component Analysis

…

Fully Connected 

Layers

Decision Tree

Support Vector 

Machines

…

Figure 2. Pipeline of machine-learning-based methods for solving tasks of ship classification or
identification from the received ship-radiated noises.

3. Proposed Methods

In this section, the paradigm of the proposed contrastive-learning-based methods
were first demonstrated. Next, the mechanism of the feature extractor, maximization and
minimization of similarity, and the classifier were described separately. Finally, the practical
training flow of the proposed approaches under the N-way K-shot settings were detailed.

3.1. Proposed Contrastive-Learning-Based Methods

The schematic diagram of our few-shot ship identification methods based on con-
trastive learning was shown in Figure 3. Unlike the conventional ship classification methods
introduced in Section 2.2, our strategy of optimizing the parameters of the feature extractors
(CNN employed in this work) was not to minimize the distance between the predicted
outputs of the classifiers on the data and the labels of the data, but to make the features
outputted from the CNN close for the positive pairs (from the same vessel) and distant
for the negative pairs (from different vessels). In addition, the parameter-free classifier
by comparing the distance in the embedding space between the features of samples to be
tested and those of available templates was achieved in the inference phase. Compared
with the conventional solutions, the proposed methods increased the cases available for
the learning phase from N · K to (N·K

2 ) in the scenario of few-shot ship identification. The
fully-connected (FC) layers were avoided in the classifier, which contained huge parameter
overhead and were highly susceptible to overfitting when the amount of training samples
was insufficient [34].

After the received noise utterances available for the training were split into short
frames xi with the length of 2 s, the time-frequency representations Si of these frames xi
were obtained by short-time Fourier transform (STFT), in which the STFT employed a
Hamming window with a length of 100 ms and a hopping length of 25 ms. The features in
the embedding space hi were generated after these representations Si were sequentially
passed through the weight-shared CNN and the L2 normalization operator. Assuming that
the CNN with trainable parameters θ was Fθ(·),

hi = ‖Fθ(Si)‖, (1)

where ‖ · ‖ represented the L2 normalization.
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Figure 3. Diagram of the proposed contrastive-learning-based methods for the task of few-shot ship
identification. The CNN was parameter-shared, while the classifier was parameter-free.

If the similarity measureM(·, ·) was chosen, the optimization objective in the training
phase was as

max
θ
M(hi, hj), (2)

when i and j were different indexes of the same vessel; and as

min
θ
M(hi, hk), (3)

when i and k were from different vessels.
During the practical inference, if the trained parameters of the CNN were θ̂ and the

spectrogram of the sample to be tested was S̃, then the corresponding ship ID identified by
the methods was as

argmax
v

∑
i∈Φv

M(‖Fθ̂(Si)‖, ‖Fθ̂(S̃)‖), (4)

where Φv was the set of indexes from the same ship ID of v. Under the N-way K-shot set-
tings, there were N sets, and different K indexes in a set. It could be seen from Equation (4)
that outputs of our method for the ship identification task depended on the architecture of
the feature extractor F , the similarity criterionM and the optimization of parameters θ
in F .

3.2. CNN Architecture

The popular ResNet-18 architecture [35] was employed in this work as the feature
extractor F and its details were shown in Figure 4. Its basic components were convolutional
layers and residual connections. For each convolutional layer, the 2D convolutional opera-
tor, the batch normalization and the nonlinear activation function (Rectified Linear Unit,
ReLU) were sequentially placed. Parameters to be optimized were mainly contained in the
2D convolutional operators of each layer. In the forward calculation of the CNN used, the
time-frequency representations Si of short frames from received noises first passed through
the first convolutional layer and then sequentially through four modules containing resid-
ual connections, where the kernel size of the first convolutional layer was 7× 7 and that
of the convolutional layers involved in those residual modules was 3× 3. In the residual
modules, the input could optionally skip the next two convolutional layers and connect
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directly to the output after two layers, which helped prevent the degradation of deep neural
networks [35]. During the layer-by-layer processing of the CNN, the channel numbers of
data gradually increased while its own size was gradually decreasing, and the size for each
channel was reduced to 1 by the final average pooling. Thus, when the time-frequency
representations Si were input, the above CNN returned the 512-dimensional vectors, and
these vectors were then normalized (following Equation (1)) to be the features hi adopted
for the downstream identification tasks. With such the layer-by-layer nested parametric
models, the raw representations Si were de-redundant and mapped to a low-dimensional
feature space (the dimensionality here was 512). The following similarity calculation and
identification were considered in the feature space constructed in this way.

Conv, 7×7, 64, /2

Stage-1, 3×3, 64

Stage-2, 3×3, 128, /2

Stage-3, 3×3, 256, /2

Stage-4, 3×3, 512, /2

MaxPooling

AvgPooling

Conv, 3×3, 128, /2

Conv, 3×3, 128

Conv, 3×3, 128

Conv, 3×3, 128

Convolutional Layers

Residual Modules

Spectrums Si

Features

Figure 4. Architecture of ResNet-18 employed in the proposed methods, where each stage consisted
of 4 convolutional layers (with the same kernel size and channel number) and 2 residual connections.
“Conv, 7× 7, 64, /2” meant that a 2D convolutional operator with the kernel size of 7× 7, the output
channel number of 64, and the stride of 2 (the default stride was 1) was employed in the layer.

3.3. Maximization and Minimization of Similarity

In our contrastive-learning-based methods, the parameters θ of the feature extractor
F needed to be optimized on the training set for accurate inference in practice. The
optimization objective was to make the features hi from the same ship ID close to each
other on the hypersphere of the abstract feature space, while making those from different
ship IDs away from each other (Figure 5). Driven by the objective, the feature extractor
was aspired to return features that were more separable in the feature space, and after the
optimization, these features could even be distinguished by a simple linear classifier [36].
The property was desirable for the few-shot ship identification, since there was no more
data available for training the classifier in our task.

To measure the similarity between two features (512-dimensional vectors), the cosine
similarity was employed, which could be expressed as

M(hi, hj) =
hT

i · hj

‖hi‖ · ‖hj‖
, (5)

whereM(hi, hj) was normalized, and ranged from −1 to 1.
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hj

hi

hk

Hypersphere

Vessel I

Vessel II

…

Keeping Away

Keeping Close

Figure 5. Illustration of increasing and decreasing of similarity in the feature space for our contrastive-
learning-based methods.

According to Equations (2) and (3), the multi-objective optimization was involved
in the methods. For ease of solving it numerically in the framework of gradient back-
propagation, the maximization and minimization of similarity were re-written into the
minimization of a single loss via the InfoNCE loss [37]. This loss L could be denoted as

L = − 1
B

B

∑
i=1

log
∑B

j=1 1[j 6= i&j ∈ Φi] exp(M(hi, hj)/τ)

∑B
j=1 1[j 6= i] exp(M(hi, hj)/τ)

, (6)

where B was the size of a mini-batch, 1[condition] was the indicator function that equaled 1
when condition held and 0 otherwise, and Φi was the set of indexes with the same ship ID
as the index i. In addition, τ was a hyperparameter that was responsible for scaling the
similarity (ranging from 0 to 1).

For analyzing the behavior of the loss, L could be re-written as the mean of the
contrastive losses l(i) at each anchor i, i.e., L = 1

B ∑B
i=1 l(i) with

l(i) = log
∑B

j=1 1[j 6= i] exp(M(hi, hj)/τ)

∑B
j=1 1[j 6= i&j ∈ Φi] exp(M(hi, hj)/τ)

. (7)

For l(i), it could be interpreted as the ratio of the sum of the similarities of all positive
and negative pairs for the anchor i in a mini-batch to the sum of the similarities of positive
pairs for the anchor i there. B− 1 positive and negative pairs would be constructed for the
anchor i in a mini-batch, so the numerator of the above ratio was the sum of B− 1 items,
and the denominator was the sum of B− 1− Bn items if there were Bn negative pairs in
the mini-batch. During the optimization, the decreasing loss meant that in a mini-batch,
the sum of similarities of positive pairs was increasing compared to those of negative pairs.
This was exactly what was expected in Figure 5.

When τ approached 0,

lim
τ→0+

l(i) = lim
τ→0+

log(1 +
∑B

j=1 1[j /∈ Φi] exp(M(hi, hj)/τ)

∑B
j=1 1[j 6= i&j ∈ Φi] exp(M(hi, hj)/τ)

)

= lim
τ→0+

log(1 + exp(
1
τ
· (max

j/∈Φi
M(hi, hj)− max

j 6=i&j∈Φi
M(hi, hj)))),

(8)
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let the maximum similarity in the positive pairs maxj 6=i&j∈ΦiM(hi, hj) be Mp and the
maximum one in the negative pairs maxj/∈Φi

M(hi, hj) beMn, and then,

lim
τ→0+

l(i) = lim
τ→0+

log(1 + exp(
1
τ
· (Mn −Mp))) = lim

τ→0+

1
τ

max(Mn −Mp, 0). (9)

From Equation (9), it could be found that when τ was set small, the loss tended to
only focus on the negative pairs if there was an indistinguishable negative pairs (meaning
that Mn was even larger than Mp). Because there were possible labeling errors, and
the feature extractor has not yet converged in the early epochs of training, such indistin-
guishable negative pairs were almost guaranteed to exist, which in turn led to difficulty in
converging or poor generalization [38]. Furthermore, the loss in the perfect convergence
lc (the similarities were 1 for all positive pairs and −1 for negative ones) was equal to
log(1 + Bn

(B−1−Bn)
· exp(−2/τ)), and that in the perfect misclassification lm (the opposite

situation) was equal to log(1 + Bn
(B−1−Bn)

· exp(2/τ)) from Equation (7). It showed that
larger τ made it troublesome for the model to distinguish between positive pairs and
negative pairs, and the small gap available for the convergence (from lm to lc) led to the
difficulty for the methods to update the parameters θ. Therefore, it could be considered
that the role of the hyperparameter τ in Equation (6) was to control the attention of models
to the negative pairs; and when τ was reduced from 1 to 0, the models tended to focus
more on the hard negative pairs. The hyperparameter τ was 0.2 in follow-up experiments
if not specified.

3.4. Distance-Based Classifier

Typically, classifiers were implemented with FC layers [29]. But FC layers contained
numerous parameters and were prone to overfitting [34]. As a result, it was difficult
to train a classifier composed of FC layers with good performance under our few-shot
ship identification task. Fortunately, as our optimization objective showed (Figure 5 and
Equation (6)), after the training, the outputs of the feature extractor were similar for vessels
with the same ID, and dissimilar from each other for those with different IDs. So the
distance-based classification for the outputs of the feature extractor could be considered
(Figure 6).

Templates

Testing Case

Figure 6. Mechanism of the distance-based classifier. It provided the classification results of testing
samples by utilized the registration templates in the feature space without the parameterized FC
layers or logistic regression.

The expression of such a classifier was shown in Equation (4). During the inference,
it treated all samples in the training set as registration templates; the well-trained feature
extractor applied the forward calculation on these templates and the samples to be tested,
and compared the similarities between them in the feature space defined by the trained
model. Samples to be tested were finally assigned into the ship ID of the registration
templates with the greatest sum of similarities. The distance-based classifier was like to
the k-nearest neighbors (KNN) classifier, but it did not require a given hyperparameter k a
priori as in KNN.
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3.5. Training for the Proposed Methods

For contrastive-learning-like methods, the key to making them work was to prevent
the feature extractors from falling into a collapse solution, where the models mapped all
inputs to near the same point on the hypersphere of the feature space [39]. The role of
the negative pairs in the InfoNCE loss function (Equation (6)) was to prevent the feature
extractors from collapse, and enough negative pairs helped the models stay away from the
collapse solution [36]. In our work with the N-way K-shot setting, NK− 1 sample-pairs
could be constructed for each anchor sample, of which there were K − 1 positive pairs
and (N − 1)K negative pairs. During the training, we filled a batch with all positive and
negative pairs of an anchor sample. The batch size was thus NK− 1, and a batch contained
(N − 1)K negative pairs. For example, if the three-ship identification was concerned and
there were five real-world samples available for each vessel (i.e., N = 3 and K = 5), the
total number of samples for developing models would be 15. The number of sample-
pairs constructed for each sample in the method was 14, including 4 positive pairs and
10 negative pairs. During a full training epoch, the construction on sample-pairs was
applied for each sample and sample-pairs corresponding to a sample were put into a batch,
so there are 15 batches and a total of 210 sample-pairs involved in an epoch for the case.

Since the values of N and K in our task were usually not large, the proportion of
negative pairs in a batch cannot completely prevent the feature extractors from converging
to a collapse solution during the optimization. Beyond the utilization of negative pairs,
stopping gradient flow was also beneficial to prevent the model collapse during the update
of parameters in the optimization [40]. The trick was also implemented in the training
pipeline of our methods. When it computed the gradient of the loss for the backpropagation,
all but the anchor sample were stripped from the computational graph. It meant that for the
weight-shared CNN, only the partial derivative of the loss to the weights of the CNN at the
anchor sample was computed; and then, the backpropagation was applied by calculating
the gradient with this partial derivative; and finally, the weights of the CNN were updated.
Because all samples acted as the anchor sample by turns in different mini-batches of an
epoch of the training, the optimization problem of fixing one and solving the other was
computed alternately in an epoch, which facilitated the models to stay away from the
collapse solution.

The pseudocode of the parameter update for neural networks in the proposed method
was described in Algorithm 1, which encapsulated the major details of the training strategy.

Algorithm 1: The training algorithm of neural networks in the proposed method.
Input : Number of vessels to be identified: N; number of samples available in the

training for each vessel: K; spectrums of available samples: Si; network
architecture: Fθ ; similarity measure:M; hyperparameter: τ; epochs: E

Output : The trained parameters: θnew

1 Initialize parameters θ in Fθ

2 for e = 1, . . . , E do
3 for i = 1, . . . , NK do
4 Construct the set of sample-pairs {(Si, Sj)}NK

j=1 where j 6= i
5 Obtain the feature hi under enabling gradient via Equation (1)
6 Obtain the features hj under stopping gradient via Equation (1)
7 Calculate the loss L on similarity for the set of sample-pairs via Equation (6)
8 Update θ by backpropagation and gradient-descent-like algorithms
9 end

10 end
11 θnew ← θ
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4. Experiments, Results and Discussion

In this section, we verified and discussed the performance of the proposed methods
for the ship identification task via the sea-trial datasets. Firstly, the sea-trial datasets and
settings of identification tasks were presented, and the implementation of the methods was
detailed; the advantages of the proposed methods were then revealed by comparing with
the baselines under different identification settings; and finally, the target-wise performance,
the convergence of the methods and the role on performance of the number of samples
available in training were analyzed by empirical studies.

4.1. Sea-Trial Experiments and Datasets

There were two publicly accessible datasets, ShipsEar [41] and DeepShip [42], in the
ship classification tasks. DeepShip dataset did not disclose the auxiliary information about
the vessels in addition to the data itself and labels on categories. Hence, the dataset cannot
be used for our ship identification tasks because it was not possible to know the details
about ship IDs of the same category of data. For the ShipsEar dataset, we constructed a ship
identification dataset, SID1, based on the provided information on vessels and receiving
time of the hydrophone. The selected data IDs [41] were shown in Table 1, and they were
all from the passenger boats. Thus, methods developed on the SID1 needed to identify five
different passenger boats. Each selected vessel included at least two utterances with the
significant separation in the receiving time (more than four hours apart), one of which was
employed for training and the others for testing. Its purpose was to expose the training and
testing samples in significantly different soundscapes, in order that the obtained results
during the testing were exactly related to the generalization of the methods instead of
the overfitting.

Table 1. Data IDs employed in the training and testing in SID1, which was built based on ShipsEar.

Vessels Categories Data for Training Data for Testing 1

i Passenger Boats ID-7 ID-62
ii Passenger Boats ID-9 ID-63
iii Passenger Boats ID-11 ID-65
iv Passenger Boats ID-14 ID-67
v Passenger Boats ID-17 ID-59

1 Since the lengths of these utterances in the testing set varied, the first 160 s of them were uniformly intercepted
for the evaluation.

Beyond the open-source datasets, sea trials were carried out in the northern South
China Sea during 2022 (Figure 7), in which the hydrophone received the radiated noises
from vessels passing in its vicinity (with the sampling rate of 5000 Hz), and the average
ocean depth of the experimental area was about 70 m. The corresponding ship IDs were
confirmed by the automatic identification system (AIS). For avoiding the potential interfer-
ence, an utterance of received noise was considered as the effective utterance when the source
vessel was within 0.5 nautical miles near the hydrophone and there were no other oceanic
vehicles within 2 nautical miles during this period. In addition, as in the construction
of SID1, the selected vessels were required to have more than two temporal-separated
effective utterances for splitting the training and testing sets. With the filtering of the above
two conditions, the real-world data on radiated noises was obtained, and it was called as
VOS (Vessel Observation by Single-hydrophone) data. There were 27 different individual
vessels with a total of 67 utterances of the uniform length of 6 min. These vessels fell into
6 known categories based on the purpose; and they were assigned into 3 types according to
their sizes, where vessels with the area (a product of length and width) greater than 900 m2

were defined as large vessels, those smaller than 300 m2 were defined as small vessels and the
rest were medium vessels. Examples of the time-frequency spectrums and other details on
VOS data could be found in Figure 8.
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Figure 7. Details of the sea trials in the northern South China Sea: (a) Schematic sketch of the sea
trials. (b) A sound speed profile case in the experimental sea area.
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Figure 8. Graphical representation on the composition of VOS data and some examples of the
time-frequency spectrums of utterances.

Two datasets, SID2 and SID3, were established for the ship identification tasks based
on the above VOS data (Table 2). Three individual fishing boats with different sizes (large,
medium and small) were selected to form SID2, and all available vessels were selected
to form SID3. This meant that the methods developed on SID2 were asked to identify
3 different fishing boats, whereas those developed on SID3 had to identify 27 different
targets. Obviously, SID3 was more difficult than other counterparts. Under the N-way
K-shot setting, the number of vessels here was the value of N, and for emphasizing the
property of few-shot scenarios, K was set to 5 in this work if not specified.

Table 2. Description of three datasets, SID1, SID2 and SID3, for the ship identification tasks.

Dataset Description

SID1 5 different passenger boats from the ShipsEar dataset
SID2 3 different fishing boats (with sizes of large/medium/small) from the VOS data
SID3 27 different vessels from the VOS data
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4.2. Implementation of Methods

In order to verify the effectiveness of the proposed method in the few-shot ship
identification tasks, two baseline methods were implemented for comparison. The first
baseline utilized an FC layer to map features into class vectors and trained the CNN by
minimizing the cross-entropy loss between the class vectors and their labels, which was
a conventional strategy in ship classification tasks, and we called it as SCNet. We tried
to argue the superiority of the framework of contrastive learning and the mechanism of
parameter-free classification in the proposed method by empirical comparisons with this
baseline on the concern tasks.

The second baseline was from a classical Siamese network architecture [40,43], which
also adopted the contrastive learning strategy, but when solving the multi-objective opti-
mization in Equations (2) and (3) via the single-objective loss, the contrastive loss as following
was employed instead of the InfoNCE loss in Equation (6):

L′ =
1
B

B

∑
i=1

(y ·M′(hi, hj)
2 + (1− y)max(D−M′(hi, hj), 0)2)

=
1
B

B

∑
i=1

(y · ‖hi − hj‖2 + (1− y)max(D− ‖hi − hj‖, 0)2),

(10)

where y was 1 for positive pairs and 0 for negative pairs, and D was a hyperparameter
representing the expected distance between samples for negative pairs. The baseline was
marked as SiamNet, and the advantages of our training strategy in the few-shot scenarios
were shown by comparing with it.

The baselines and our method were implemented with the PyTorch framework [44]
and accelerated by an NVIDIA GeForce RTX 3090 Ti graphics card. During the optimization,
the Adam optimizer [33] was employed to update the weights of CNN. For the fair com-
parison, the baselines adopted the same architecture of CNN as our method in Section 3.2,
and the initialization of CNN weights and hyperparameters in optimization followed the
default settings of PyTorch version 1.12.1. Moreover, for the baselines, utterances were
preprocessed in the same way in Section 3.1 to obtain spectrums Si for further identification.
Other settings about the training in this work were presented in Table 3.

Table 3. Details of the training pipeline during the implementation.

Batch Size Data Loader Learning
Rate Scheduler Maximum

Epochs
Epoch for
Early Stop

NK− 1 Not Shuffle 0.001 ×0.95 every
20 epochs 200 50

When evaluating the performance of the methods, we picked one utterance for each
vessel to be identified for the training and tested the methods by using the utterances in
other soundscapes that were different from the training one due to the receiving time of the
hydrophone or working conditions of vessels. To quantify the identification performance,
we employed the precision p, recall r, F1-score F1 and accuracy Acc, which were commonly
used in the ship classification tasks. They were defined as in Equations (11) and (12):

p =
TP

TP + FP
, r =

TP
TP + FN

, F1 =
2 · p · r
p + r

, (11)

Acc =
TP + TN

TP + FP + TN + FN
, (12)

where true positive (TP) represented the utterances that were predicted to be the ship IDs of
1, and their actual IDs were also 1; false positive (FP) represented those that were predicted
to be the ship IDs of 1, but their actual IDs were 0; false negative (FN) represented those
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that were predicted to be the ship IDs of 0, but their actual IDs were 1; while true negative
(TN) represented those that were predicted to be the ship IDs of 0, and their actual IDs were
also 0. For the multi-class identification, we calculated the macro average of these metrics
by treating all classes equally. Moreover, we reported the confusion matrices on different
identification tasks for the proposed method, which presented the rich information about
the behavior of our method.

4.3. Performance for Different Settings of Ship Identification

The proposed method and the baselines were compared under the N-way K-shot
framework with K = 5. For the dataset SID1, 5 different passenger boats were required to
be identified, so N was 5. The performance of these methods was shown in Table 4. It could
be seen that the performance of the conventional SCNet, which was usually used in the ship
classification tasks, was limited because the available training samples were not enough. It
was only slightly more accurate than the random guessing (with the accuracy of 0.26 versus
0.20). The performance of SiamNet adopting the contrastive learning strategy has been
greatly improved (with the accuracy of 0.49), but it was still not as good as our proposed
method (with the accuracy of 0.68). The confusion matrix of the proposed method was also
visualized in Figure 9a. The bright spots (with the high proportion) in the confusion matrix
were almost along the diagonal of matrix, which showed that our method did work on the
identification dataset, even though only 5 samples (10 s in total) were available.
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Figure 9. The results on the confusion matrices for the proposed method: (a) on the SID1. (b) on the
SID2. (c) on the SID3.
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Table 4. Performance results of methods on the SID1.

Methods Macro-p Macro-r Macro-F1 Acc

SCNet 0.392 0.258 0.224 0.258
SiamNet 0.511 0.485 0.467 0.485
Proposed 0.695 0.683 0.677 0.683

Furthermore, in order to make the arguments more solid, we implemented the pro-
posed method and the baselines on other identification datasets, SID2 and SID3, constructed
from a completely independent sea trial data (VOS data) to discuss and compare their
performance. The average results of precision, recall, F1-score and accuracy were listed
in Tables 5 and 6, and the results on confusion matrices were shown in Figure 9b,c. The
performance metrics of all methods were improved when the task difficulty dropped from
5-vessel identification to 3-vessel identification. However, SCNet still didn’t work due to
limited training samples, its accuracy was almost the same as random guessing (0.34 versus
0.33). The proposed method had the best performance on the SID2 regardless of which
evaluation metric was focused. When the number of vessels to be identified increased from
5 to 27, the performance of all methods obviously decreased. This was reasonable since the
ID pool of vessels was significantly enlarged and the methods needed to face more choices
when classifying. On the SID3, accuracies of both SCNet and SiamNet dropped below 0.35,
while the proposed method achieved the accuracy over 0.5 even on this challenging dataset.
The diagonal distribution of bright spots in the confusion matrix also confirmed that the
proposed method was still trustworthy under the 27-vessel identification task.

Table 5. Performance results of methods on the SID2.

Methods Macro-p Macro-r Macro-F1 Acc

SCNet 0.445 0.343 0.186 0.343
SiamNet 0.710 0.680 0.677 0.680
Proposed 0.794 0.785 0.786 0.785

Table 6. Performance results of methods on the SID3.

Methods Macro-p Macro-r Macro-F1 Acc

SCNet 0.140 0.151 0.131 0.151
SiamNet 0.408 0.330 0.328 0.330
Proposed 0.600 0.534 0.539 0.534

4.4. Target-Wise Performance of the Proposed Method

Next, the performance on each individual vessel of the proposed method in the ship
identification task was discussed via the metrics of precision, recall and F1-score. And
the high-dimensional features of each individual learned by our method were reduced in
dimensionality by the t-SNE method [45] and then visualized. The discussions were based
on numerical experiments carried out on the dataset, SID1, composed of the open-source
real-world data.

The vessel-wise results of the proposed method on the SID1 were shown in Table 7. It
could be found that the identification performance of our method was varying for each
vessel. The method identified vessels iii, iv and v very well, and the F1-scores for them were
all above 0.7. Comparatively, there were the poor performance for the proposed method
when vessels i and ii were focused Even if the average metrics on the identification was
close to 0.7, the F1-scores for these two vessels were still below 0.6.
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Table 7. Precision, recall and F1-score of each vessel of the proposed method on the SID1.

Vessels Precision Recall F1-Score

i 0.649 0.463 0.540
ii 0.620 0.550 0.583
iii 0.656 0.788 0.716
iv 0.628 0.888 0.736
v 0.921 0.725 0.811

The visualization of the high-dimensional features in Figure 10 might be helpful
to analyze the reasons behind the performance inconsistency on different vessels. With
our training strategies, the feature extractor extracted the more discriminative features
of vessels iii, iv and v, while for vessels i and ii, the obtained features were aliased with
those of other vessel individuals (Figure 10a). Discrimination or not at the feature level led
to differences in the behavior when identifying each vessel. Moreover, comparing with
the features obtained from the conventional SCNet (Figure 10b) and the Siamese network
SiamNet (Figure 10c), the proposed method was superiority in the training strategy of
the feature extractor F with the same architecture, which prompted the model to put the
features of the same vessel in different soundscapes together and keep those of the different
vessels apart. SiamNet was also with the same intention, but it did not do this well from the
visualized results, while the strategy of training the feature extractor with FC layers and
the cross-entropy loss obviously failed in the few-shot scenario.
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Figure 10. Visualization for the high-dimensional features in different methods via the t-SNE:
(a) SCNet. (b) SiamNet. (c) Proposed.

4.5. Convergence under Varying Hyperparameter τ

As analyzed theoretically in Section 3.3, different values of the hyperparameter τ
in Equation (6) affected the convergence of the proposed method during the training.
The difference in convergence led to varying in the generalization performance of the
model on the testing set. We empirically studied the difference in the convergence of the
method caused by τ on the SID1 dataset. τ was set to 0.05, 0.8, and 0.2, which represented
undersized τ, oversized τ, and our default value, respectively. The loss of the method on
the training set and the accuracy on the testing set were presented in Figure 11 with the
increasing number of epochs in the training.

The convergence of the method was accelerated when τ increased, but the optimization
for parameters in CNN also became unstable; meanwhile, too large τ also made the method
converge on a high platform. For the generalization on the testing set, the different values
of τ had little effect on the final performance of accuracy, and the best results that were
achieved by the three τ showed almost no difference. However, a too small τ increased the
number of epochs required for the method to achieve the good generalization, while a too
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large τ made it difficult to select a suitable number of epochs due to the unstable training.
They could have an impact on how the proposed method behaved in practice.
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Figure 11. Convergence and generalization of the proposed method with varying τ: (a) Loss on the
training set of SID1. (b) Accuracy on the testing set of SID1.

4.6. Performance versus the Number of Training Samples

Finally, we empirically discussed the changes brought by different values of K under
the N-way K-shot setting to the ship identification task on the SID1. The performance on
accuracy of the proposed method and baselines with K = 5 and K = 30 was shown in
Figure 12. It could be found that more samples available for the training (caused by the
increasing of K) improved the performance of all three methods, with the improvement on
performance of SCNet being more significant than that of the contrastive learning methods.
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Figure 12. Accuracies of methods with different numbers of data samples available for the training
(K = 5 and K = 30 under the N-way K-shot setting).

The underlying reason might be that the classifier in SCNet consisting of FC layers
was more sensitive to the increase in the number of data samples, while there were not
the parameterized classifiers in the SiamNet and the proposed method, and therefore the
performance gains from the increase in the available data were not as great for the latter
two. The diversity brought by more real-world data allowed the methods to face more
construction cases of sample-pairs during the training, and resulted in the improvement of
feature extraction, which also promoted the final identification performance. Visualization
of features learned by different methods when K = 30 was also provided in Figure 13.
Compared to Figure 10, the features learned by all methods were more discriminative than
their own counterparts previously when the data available for the training was increased.
Therefore, it could be argued that the performance gain brought to SCNet by the increase in
training samples came from the coupling of both more distinguishable features and the
more powerful classifier, while that brought to SiamNet and the proposed method was
mainly from the first one. As a result, the performance gains of the latter two were smaller
than that of the former.
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Figure 13. Visualization for the features learned by different methods when the number K of training
samples was 30: (a) SCNet. (b) SiamNet. (c) Proposed.

4.7. Limitations and Future Works

In practice, port access verification or maritime security usually need to accurately
identify whether the ship ID is a registered ID to provide a basis for the further response,
where the limited data issue for each registered vessel should be considered as a major
challenge. These tasks fit well with the few-shot ship identification discussed in this
work, and the proposed method deals with it via adjusting the optimization objective
of the training pipeline. There are some limitations for the practical application of the
proposed method:

1. Busy seas make multi-vessel interference almost inevitable, and the problem is simpli-
fied in this work by manually picking the interference-free moments of the vessels.

2. The dataset constructed in this work employs the noises from near-field vessels, and
how the acoustical distortion of noises from far-field vessels affect the identification
performance needs further study.

3. The evaluation in this work ensures generalization of the proposed method to both
time- and space-variation in the same ocean because the constructed datasets in
Section 4.1 are with temporal-separated utterances. However, it needs further inves-
tigation whether the method is still generalizable and what features can be re-used
under the large-scale environmental changes caused by different target ocean.

5. Conclusions

In this work, we focused on the few-shot ship identification scenario, which aimed to
utilize only a very few data samples (usually, smaller than 10 for each class) to develop a
system that can automatically and accurately identify each vessel individuals that might be
in different soundscapes. We made it well-defined with the N-way K-shot setting and pro-
posed a contrastive-learning-based method for it. When training the model, it transformed
the loss minimization between the prediction of samples with their labels into the maxi-
mization of similarity between positive pairs and minimization of that between negative
pairs by constructing sample-pairs; and translated this multi-objective optimization into
a solvable single-objective optimization via the InfoNCE loss. In the practical inference, a
distance-based classifier was employed instead of the FC layers with numerous parameters;
it avoided the training of the classifier that was difficult in few-shot applications by com-
paring the distance between the testing samples and the available registration templates on
the feature space and assigning a testing sample as the ship ID of the registration templates
closest to it.

The advantages of our method were validated on different sea-trial data. On the
real-world tasks of 5-ship identification, 3-ship identification and 27-ship identification,
the proposed method achieved the best performance with accuracies of 0.68, 0.79 and 0.53;
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whereas the SCNet with conventional classification strategies only achieved accuracies of
0.26, 0.34 and 0.15, and the SiamNet with classical contrastive strategies achieved accuracies
of 0.49, 0.68 and 0.33. The method was discussed in more detail on the 5-ship identification
task. It was considered that the performance of our method on the identification of each
individual vessel was inconsistent by the feature visualization and the vessel-wise analysis
of identification results of the method. Furthermore, we also empirically studied the effect
on convergence of the hyperparameter τ in our method and the potential gains for the
methods from the increase of data samples available for the training. In conclusion, it could
be argued that the proposed contrastive-learning-based ship identification method worked
well in the real-world few-shot applications.
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