Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel
Abstract
:1. Introduction
- (1)
- This paper discusses ICP and NDT algorithms and their variants. A single-frame point cloud registration scheme based on PCL is built. Considering the accuracy and registration time, the appropriate parameters are selected for the algorithm, and 10 common registration algorithms are tested and analyzed on ASV data.
- (2)
- Secondly, a continuous-frame point cloud registration module based on ROS is built. The results are compared with RTK and IMU values, and the performance of the algorithm is analyzed from multiple perspectives. In addition, the problem of large local errors of roll and pitch obtained by the continuous-frame registration module is studied, and the causes of errors are analyzed from many aspects.
- (3)
- Finally, the registration algorithm is verified by an experiment with real ASV, and the single-frame and continuous-frame scanning registration schemes suitable for marine environments are obtained.
2. ICP and NDT
2.1. ICP
1: Input: Source Point Cloud |
2: 3: Initial Transformation |
4: Output: matching 5: |
6: While the result does not converge Do 7: 8: 9: then 10: ; 11: else 12: ; |
13: end if |
14: end for |
15: 16: end while |
2.2. NDT
1: Input: Source Point Cloud |
2: Target Point Cloud 3: Initial Transformation |
4: Output: Correct transformation matrix matching and 5: |
6: 7: 8: 9: 10: end for 11: to 12: |
13: if then |
14: delete // Delete grid cells with too few elements |
15: else 16: 17: 18: end if 19: end for 20: |
3. Point Cloud Registration Method
3.1. ICP-Based Variants
3.2. NDT-Based Variants
4. Experiments
4.1. Experimental Environment and Equipment Configuration
4.2. Experimental Design
4.3. Evaluation Indicators
4.3.1. RMSE
4.3.2. ATE and RPE
4.4. Experimental Results
4.4.1. Single Frame Experimental Comparison
4.4.2. Continuous Frame Experiment Comparison
5. Discussion
5.1. Accuracy and Real-Time of Scan Matching Algorithm
5.2. Discuss the Scan-to-Scan and Scan-to-Map
5.3. Point Cloud Registration at Ship Turning
5.4. Differences of Scan Matching at Sea and on Road
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Z.; Wang, J.; Wang, D.; Han, Q.-L. An Overview of Recent Advances in Coordinated Control of Multiple Autonomous Surface Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 732–745. [Google Scholar] [CrossRef]
- Bejarano, G.; N-Yo, S.; Orihuela, L. Velocity and Disturbance Robust Nonlinear Estimator for Autonomous Surface Vehicles Equipped with Position Sensors. IEEE Trans. Control. Syst. Technol. 2022, 30, 2235–2242. [Google Scholar] [CrossRef]
- Luis, S.Y.; Reina, D.G.; Marín, S.L.T. A Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous Surface Vehicles: The Ypacaraí Lake Patrolling Case. IEEE Access 2021, 9, 17084–17099. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned Surface Vehicles: An Overview of Developments and Challenges. Annu. Rev. Control. 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Jiang, X.; Xia, G. Sliding Mode Formation Control of Leaderless Unmanned Surface Vehicles with Environmental Disturbances. Ocean. Eng. 2022, 244, 110301. [Google Scholar] [CrossRef]
- Jones, D.O.B.; Gates, A.R.; Huvenne, V.A.I.; Phillips, A.B.; Bett, B.J. Autonomous Marine Environmental Monitoring: Application in Decommissioned Oil Fields. Sci. Total Environ. 2019, 668, 835–853. [Google Scholar] [CrossRef]
- Luis, S.Y.; Reina, D.G.; Marin, S.L.T. A Deep Reinforcement Learning Approach for the Patrolling Problem of Water Resources Through Autonomous Surface Vehicles: The Ypacarai Lake Case. IEEE Access 2020, 8, 204076–204093. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Han, Q.-L. Network-Based Modelling and Dynamic Output Feedback Control for Unmanned Marine Vehicles in Network Environments. Automatica 2018, 91, 43–53. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, J.; Zhang, G.; Gu, F.; He, Y. Flooding Disaster Oriented USV & UAV System Development & Demonstration. In Proceedings of the OCEANS 2016, Shanghai, China, 19–22 September 2016; pp. 1–4. [Google Scholar]
- Rätsep, M.; Parnell, K.E.; Soomere, T.; Kruusmaa, M.; Ristolainen, A.; Tuhtan, J.A. Surface Vessel Localization from Wake Measurements Using an Array of Pressure Sensors in the Littoral Zone. Ocean. Eng. 2021, 233, 109156. [Google Scholar] [CrossRef]
- Ng, H.-F.; Zhang, G.; Yang, K.-Y.; Yang, S.-X.; Hsu, L.-T. Improved Weighting Scheme Using Consumer-Level GNSS L5/E5a/B2a Pseudorange Measurements in the Urban Area. Adv. Space Res. 2020, 66, 1647–1658. [Google Scholar] [CrossRef]
- Zhu, N.; Marais, J.; Bétaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef]
- Al Borno, M.; O’Day, J.; Ibarra, V.; Dunne, J.; Seth, A.; Habib, A.; Ong, C.; Hicks, J.; Uhlrich, S.; Delp, S. OpenSense: An Open-Source Toolbox for Inertial-Measurement-Unit-Based Measurement of Lower Extremity Kinematics over Long Durations. J. NeuroEngineering Rehabil. 2022, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Bonin-Font, F.; Burguera, A. Towards Multi-Robot Visual Graph-SLAM for Autonomous Marine Vehicles. JMSE 2020, 8, 437. [Google Scholar] [CrossRef]
- Callmer, J.; Törnqvist, D.; Gustafsson, F.; Svensson, H.; Carlbom, P. Radar SLAM Using Visual Features. EURASIP J. Adv. Signal Process. 2011, 2011, 71. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y. Estimation of Ship Berthing Parameters Based on Multi-LiDAR and MMW Radar Data Fusion. Ocean. Eng. 2022, 266, 113155. [Google Scholar] [CrossRef]
- Li, C.; Dai, B.; Wu, T. Vision-Based Precision Vehicle Localization in Urban Environments. In Proceedings of the 2013 Chinese Automation Congress, Changsha, China, 7–8 November 2013; pp. 599–604. [Google Scholar]
- Vivet, D.; Gérossier, F.; Checchin, P.; Trassoudaine, L.; Chapuis, R. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of Two Approaches. Int. J. Adv. Robot. Syst. 2013, 10, 307. [Google Scholar] [CrossRef]
- Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM Algorithms: A Survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 16. [Google Scholar] [CrossRef]
- Sugiura, K.; Matsutani, H. A Universal LiDAR SLAM Accelerator System on Low-Cost FPGA. IEEE Access 2022, 10, 26931–26947. [Google Scholar] [CrossRef]
- Kumar, G.A.; Patil, A.K.; Patil, R.; Park, S.S.; Chai, Y.H. A LiDAR and IMU Integrated Indoor Navigation System for UAVs and Its Application in Real-Time Pipeline Classification. Sensors 2017, 17, 1268. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm. Sensors 2015, 15, 23286–23302. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y. Motion Pose Estimation of Inshore Ships Based on Point Cloud. Measurement 2022, 205, 112189. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for Registration of 3-D Shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 12–15 November 1992; SPIE: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–606. [Google Scholar]
- Biber, P.; Strasser, W. The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2743–2748. [Google Scholar]
- Ren, R.; Fu, H.; Xue, H.; Li, X.; Hu, X.; Wu, M. LiDAR-based Robust Localization for Field Autonomous Vehicles in Off-road Environments. J. Field Robot. 2021, 38, 1059–1077. [Google Scholar] [CrossRef]
- Ji, Z.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-Time. In Proceedings of the Robotics: Science and Systems Conference, Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–9. [Google Scholar]
- Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, 18–22 October 2010; pp. 2155–2162. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- You, B.; Chen, H.; Li, J.; Li, C.; Chen, H. Fast Point Cloud Registration Algorithm Based on 3DNPFH Descriptor. Photonics 2022, 9, 414. [Google Scholar] [CrossRef]
- Zováthi, Ö.; Nagy, B.; Benedek, C. Point Cloud Registration and Change Detection in Urban Environment Using an Onboard Lidar Sensor and MLS Reference Data. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102767. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Zhang, X. A Tutorial Review on Point Cloud Registrations: Principle, Classification, Comparison, and Technology Challenges. Math. Probl. Eng. 2021, 2021, e9953910. [Google Scholar] [CrossRef]
- Bash, E.A.; Wecker, L.; Rahman, M.M.; Dow, C.F.; McDermid, G.; Samavati, F.F.; Whitehead, K.; Moorman, B.J.; Medrzycka, D.; Copland, L. A Multi-Resolution Approach to Point Cloud Registration without Control Points. Remote Sens. 2023, 15, 1161. [Google Scholar] [CrossRef]
- Guevara, D.J.; Gené-Mola, J.; Gregorio, E.; Torres-Torriti, M.; Reina, G.; Cheein, F.A.A. Comparison of 3D Scan Matching Techniques for Autonomous Robot Navigation in Urban and Agricultural Environments. JARS 2021, 15, 024508. [Google Scholar] [CrossRef]
- Wang, G.; Wu, X.; Jiang, S.; Liu, Z.; Wang, H. Efficient 3D Deep LiDAR Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 14, 1–17. [Google Scholar] [CrossRef]
- Clunie, T.; DeFilippo, M.; Sacarny, M.; Robinette, P. Development of a Perception System for an Autonomous Surface Vehicle Using Monocular Camera, LIDAR, and Marine RADAR. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14112–14119. [Google Scholar]
- Jing, Q.; Wang, H.; Hu, B.; Liu, X.; Yin, Y. A Universal Simulation Framework of Shipborne Inertial Sensors Based on the Ship Motion Model and Robot Operating System. J. Mar. Sci. Eng. 2021, 9, 900. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Li, Y.; Xi, M.; Li, T.; Wang, Y. Point Cloud Registration Based on MCMC-SA ICP Algorithm. IEEE Access 2019, 7, 73637–73648. [Google Scholar] [CrossRef]
- Li, P.; Wang, R.; Wang, Y.; Tao, W. Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access 2020, 8, 68030–68048. [Google Scholar] [CrossRef]
- Lu, J.; Wang, W.; Shao, H.; Su, L. Point Cloud Registration Algorithm Fusing of Super 4PCS and ICP Based on the Key Points. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 4439–4444. [Google Scholar]
- Shi, X.; Liu, T.; Han, X. Improved Iterative Closest Point(ICP) 3D Point Cloud Registration Algorithm Based on Point Cloud Filtering and Adaptive Fireworks for Coarse Registration. Int. J. Remote Sens. 2020, 41, 3197–3220. [Google Scholar] [CrossRef]
- Censi, A. An ICP Variant Using a Point-to-Line Metric. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25. [Google Scholar]
- Chen, Y.; Medioni, G. Object Modelling by Registration of Multiple Range Images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Segal, A.; Hhnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems V, University of Washington, Seattle, WA, USA, 28 June–1 July 2009; Volume 2, p. 435. [Google Scholar]
- Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11054–11059. [Google Scholar]
- Sharp, G.C.; Lee, S.W.; Wehe, D.K. Invariant Features and the Registration of Rigid Bodies. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 2, pp. 932–937. [Google Scholar]
- Minguez, J.; Montesano, L.; Lamiraux, F. Metric-Based Iterative Closest Point Scan Matching for Sensor Displacement Estimation. IEEE Trans. Robot. 2006, 22, 1047–1054. [Google Scholar] [CrossRef]
- Serafin, J.; Grisetti, G. NICP: Dense Normal Based Point Cloud Registration. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 742–749. [Google Scholar]
- Granger, S.; Pennec, X. Multi-Scale EM-ICP: A Fast and Robust Approach for Surface Registration. In Computer Vision, Proceedings of the ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; Heyden, A., Sparr, G., Nielsen, M., Johansen, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 418–432. [Google Scholar]
- Hong, S.; Ko, H.; Kim, J. VICP: Velocity Updating Iterative Closest Point Algorithm. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1893–1898. [Google Scholar]
- Alismail, H.; Baker, L.D.; Browning, B. Continuous Trajectory Estimation for 3D SLAM from Actuated Lidar. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 6096–6101. [Google Scholar]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef]
- Han, J.; Yin, P.; He, Y.; Gu, F. Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study. Sensors 2016, 16, 228. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, M.; Yurick, M. Approximate K-d Tree Search for Efficient ICP. In Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling, Banff, AB, Canada, 6–10 October 2003; pp. 442–448. [Google Scholar]
- Nuchter, A.; Lingemann, K.; Hertzberg, J. Cached K-d Tree Search for ICP Algorithms. In Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), Montreal, QC, Canada, 21–23 August 2007; pp. 419–426. [Google Scholar]
- Fitzgibbon, A.W. Robust Registration of 2D and 3D Point Sets. Image Vis. Comput. 2003, 21, 1145–1153. [Google Scholar] [CrossRef]
- Pavlov, A.L.; Ovchinnikov, G.W.; Derbyshev, D.Y.; Tsetserukou, D.; Oseledets, I.V. AA-ICP: Iterative Closest Point with Anderson Acceleration. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 3407–3412. [Google Scholar]
- Zhang, J.; Yao, Y.; Deng, B. Fast and Robust Iterative Closest Point. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3450–3466. [Google Scholar] [CrossRef]
- Bouaziz, S.; Tagliasacchi, A.; Pauly, M. Sparse Iterative Closest Point. Comput. Graph. Forum 2013, 32, 113–123. [Google Scholar] [CrossRef]
- Agamennoni, G.; Fontana, S.; Siegwart, R.Y.; Sorrenti, D.G. Point Clouds Registration with Probabilistic Data Association. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016. [Google Scholar]
- Dong, J.; Peng, Y.; Ying, S.; Hu, Z. LieTrICP: An Improvement of Trimmed Iterative Closest Point Algorithm. Neurocomputing 2014, 140, 67–76. [Google Scholar] [CrossRef]
- Rusinkiewicz, S. A Symmetric Objective Function for ICP. ACM Trans. Graph. 2019, 38, 85. [Google Scholar] [CrossRef]
- Du, S.; Xu, G.; Zhang, S.; Zhang, X.; Gao, Y.; Chen, B. Robust Rigid Registration Algorithm Based on Pointwise Correspondence and Correntropy. Pattern Recognit. Lett. 2020, 132, 91–98. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Du, S.; Fu, M.; Zhou, N.; Zheng, N. Correntropy Based Scale ICP Algorithm for Robust Point Set Registration. Pattern Recognit. 2019, 93, 14–24. [Google Scholar] [CrossRef]
- Dellenbach, P.; Deschaud, J.-E.; Jacquet, B.; Goulette, F. CT-ICP: Real-Time Elastic LiDAR Odometry with Loop Closure. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5580–5586. [Google Scholar]
- Magnusson, M.; Lilienthal, A.; Duckett, T. Scan Registration for Autonomous Mining Vehicles Using 3D-NDT. J. Field Robot. 2007, 24, 803–827. [Google Scholar] [CrossRef]
- Magnusson, M.; Nuchter, A.; Lorken, C.; Lilienthal, A.J.; Hertzberg, J. Evaluation of 3D Registration Reliability and Speed—A Comparison of ICP and NDT. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3907–3912. [Google Scholar]
- Koide, K.; Miura, J.; Menegatti, E. A Portable Three-Dimensional LIDAR-Based System for Long-Term and Wide-Area People Behavior Measurement. Int. J. Adv. Robot. Syst. 2019, 16, 172988141984153. [Google Scholar] [CrossRef]
- Zaganidis, A.; Magnusson, M.; Duckett, T.; Cielniak, G. Semantic-Assisted 3D Normal Distributions Transform for Scan Registration in Environments with Limited Structure. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4064–4069. [Google Scholar]
- Jun, L.; Wei, L.; Donglai, D.; Qiang, S. Point Cloud Registration Algorithm Based on NDT with Variable Size Voxel. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 3707–3712. [Google Scholar]
- Hong, H.; Lee, B. A Method of Generating Multi-Scale Disc-Like Distributions for NDT Registration Algorithm. Int. J. Mech. Eng. Robot. Res. 2016, 5, 52. [Google Scholar] [CrossRef]
- Ulas, C.; Temeltas, H. A 3D Scan Matching Method Based on Multi-Layered Normal Distribution Transform. IFAC Proc. Vol. 2011, 44, 11602–11607. [Google Scholar] [CrossRef]
- Ulas, C.; Temeltas, H. A Fast and Robust Feature-Based Scan-Matching Method in 3D SLAM and the Effect of Sampling Strategies. Int. J. Adv. Robot. Syst. 2013, 10, 396. [Google Scholar] [CrossRef]
- Hong, H.; Lee, B.H. Key-Layered Normal Distributions Transform for Point Cloud Registration. Electron. Lett. 2015, 51, 1986–1988. [Google Scholar] [CrossRef]
- Hong, H.; Lee, B.H. Probabilistic Normal Distributions Transform Representation for Accurate 3D Point Cloud Registration. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3333–3338. [Google Scholar]
- Zaganidis, A.; Zerntev, A.; Duckett, T.; Cielniak, G. Semantically Assisted Loop Closure in SLAM Using NDT Histograms. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4562–4568. [Google Scholar]
- Lee, S.; Kim, C.; Cho, S.; Myoungho, S.; Jo, K. Robust 3-Dimension Point Cloud Mapping in Dynamic Environment Using Point-Wise Static Probability-Based NDT Scan-Matching. IEEE Access 2020, 8, 175563–175575. [Google Scholar] [CrossRef]
- Deng, Q.; Sun, H.; Chen, F.; Shu, Y.; Wang, H.; Ha, Y. An Optimized FPGA-Based Real-Time NDT for 3D-LiDAR Localization in Smart Vehicles. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3167–3171. [Google Scholar] [CrossRef]
- Zhong, K.; Liu, Y.; Yang, J.; Lu, M.; Zhang, J. A Factor Graph Optimization Mapping Based on Normaldistributions Transform. Turk. J. Electr. Eng. Comput. Sci. 2022, 30, 1127–1141. [Google Scholar] [CrossRef]
- Hu, B.; Liu, X.; Jing, Q.; Lyu, H.; Yin, Y. Estimation of Berthing State of Maritime Autonomous Surface Ships Based on 3D LiDAR. Ocean. Eng. 2022, 251, 111131. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Z.; Zhang, Q. A Fast and Robust Local Descriptor for 3D Point Cloud Registration. Inf. Sci. 2016, 346, 163–179. [Google Scholar] [CrossRef]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
Case | μ/σ | F1-F2 | F2-F3 | F3-F4 | F4-F5 |
---|---|---|---|---|---|
1 | μ | 3.29155 | 5.59733 | 5.90157 | 2.33137 |
σ | 18.6138 | 33.5996 | 34.2802 | 14.5016 | |
2 | μ | 1.39014 | 2.39899 | 2.35713 | 2.19866 |
σ | 15.1237 | 24.6198 | 20.1098 | 19.4458 | |
3 | μ | 0.252314 | 0.266688 | 0.541945 | 0.217449 |
σ | 3.85721 | 3.53274 | 10.5645 | 6.2222 | |
4 | μ | 0.084555 | 0.085174 | 0.424403 | 0.15355 |
σ | 1.67186 | 2.38434 | 18.0619 | 2.93024 |
Evo Evaluation | FastGICP | FastVGICP | PTPLOMPICP | NDT | NDTOMP7 | |
---|---|---|---|---|---|---|
RMSE | 2.199127 | 1.862248 | 2.677981 | 3.565329 | 3.394351 | |
APE | Mean | 1.934627 | 1.67735 | 2.207614 | 2.885509 | 2.754741 |
Median | 1.680057 | 1.511793 | 1.757098 | 2.44847 | 2.298347 | |
RMSE | 1.340868 | 1.242829 | 1.330651 | 1.299537 | 1.283601 | |
RPE | Mean | 1.078858 | 0.982106 | 1.089126 | 1.013066 | 1.002319 |
Median | 0.861822 | 0.854125 | 0.928976 | 0.812974 | 0.796367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yin, Y.; Jing, Q. Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel. J. Mar. Sci. Eng. 2023, 11, 840. https://doi.org/10.3390/jmse11040840
Wang H, Yin Y, Jing Q. Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel. Journal of Marine Science and Engineering. 2023; 11(4):840. https://doi.org/10.3390/jmse11040840
Chicago/Turabian StyleWang, Haichao, Yong Yin, and Qianfeng Jing. 2023. "Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel" Journal of Marine Science and Engineering 11, no. 4: 840. https://doi.org/10.3390/jmse11040840
APA StyleWang, H., Yin, Y., & Jing, Q. (2023). Comparative Analysis of 3D LiDAR Scan-Matching Methods for State Estimation of Autonomous Surface Vessel. Journal of Marine Science and Engineering, 11(4), 840. https://doi.org/10.3390/jmse11040840