Reconstruction of the Sound Speed Profile in Typical Sea Areas Based on the Single Empirical Orthogonal Function Regression Method
Abstract
:1. Introduction
2. Material and Methods
2.1. Oceanic Datasets
2.2. SSP Reconstruction Based on the sEOF-R Method
2.3. Reconstruction Errors
2.4. Study Areas
- Area A: The SSP structure is stable, with the thin mixed layer (ML) existing throughout the year. The range is between 0.04 m and 0.16 m; the range is between 0.23 °C and 1.22 °C
- Area B: The oceanic fronts and mesoscale eddies are common phenomena all year round in this area. Thus, the fluctuations of SLA and SSTA are both intense, with the corresponding ranging between 0.06 m and 0.44 m and ranging between 0.52 °C and 2.54 °C.
- Area C: As Area C and Area B are located in the same latitude range, changes in the SSP structure and ML in these two areas follow the same rules. However, the range in Area C is much smaller than that in Area B, with the ranging between 0.035 m and 0.12 m and ranging between 0.46 °C and 2.9 °C.
3. Results
3.1. The SSP Reconstruction
3.2. Effect Analysis of the sEOF-R Method in SSP Reconstruction
3.3. The Vertical Characteristics of RMSE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brock, H.K.; Buchal, R.N.; Spofford, C.W. Modifying the sound-speed profile to improve the accuracy of the parabolic-equation technique. J. Acoust. Soc. Am. 1977, 62, 543–552. [Google Scholar] [CrossRef]
- Buckingham, M.J. Sound speed and void fraction profiles in the sea surface bubble layer. Appl. Acoust. 1997, 51, 225–250. [Google Scholar] [CrossRef]
- Xu, W.; Schmidt, H. System-orthogonal functions for sound velocity profile perturbation. J. Acoust. Soc. Am. 2002, 112, 2392. [Google Scholar] [CrossRef]
- Vagle, S.; Burch, H. Acoustic measurements of the sound-speed profile in the bubbly wake formed by a small motor boat. J. Acoust. Soc. Am. 2005, 117, 153–163. [Google Scholar] [CrossRef]
- Heimann, D.; Bakermans, M.; Defrance, J.; Kühner, D. Vertical Sound Speed Profiles Determined from Meteorological Measurements Near the Ground. Acta Acust. United Acust. 2007, 93, 228–240. [Google Scholar]
- Chen, C.; Ma, Y.; Liu, Y. Reconstructing Sound speed profiles worldwide with Sea surface data. Appl. Ocean Res. 2018, 77, 26–33. [Google Scholar] [CrossRef]
- Miyake, M.; Emery, W.J.; Lovett, J. An Evaluation of Expendable Salinity-Temperature Profilers in the Eastern North Pacific. J. Phys. Oceanogr. 1981, 11, 1159–1165. [Google Scholar] [CrossRef]
- Fuda, J.L.; Millot, C.; Taupier-Letage, I.; Send, U.; Bocognano, J.M. XBT monitoring of a meridian section across the western Mediterranean Sea. Deep Sea Res. Part I 2000, 47, 2191–2218. [Google Scholar] [CrossRef]
- Candy, J.V.; Sullivan, E.J. Sound velocity profile estimation: A system theoretic approach. IEEE J. Ocean. Eng. 1993, 18, 240–252. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Liu, Y.; Ma, L.; Wang, H.; Ren, K.; Chen, S. Parametric Model for Eddies-Induced Sound Speed Anomaly in Five Active Mesoscale Eddy Regions. J. Geophys. Res. Oceans 2022, 127, e2022JC018408. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Dong, C. Anatomy of a Cyclonic Eddy in the Kuroshio Extension Based on High-Resolution Observations. Atmosphere 2019, 10, 553. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, Y.; Liu, Y.; Wu, Y.; Zhang, Y.; Ren, K. Observation of a mesoscale warm eddy impacts acoustic propagation in the slope of the South China Sea. Front. Mar. Sci. 2022, 9, 1086799. [Google Scholar] [CrossRef]
- Ivanov, E.; Capet, A.; Barth, A.; Delhez, E.J.M.; Soetaert, K.; Grégoire, M. Hydrodynamic variability in the Southern Bight of the North Sea in response to typical atmospheric and tidal regimes. Benefit of using a high resolution model. Ocean Modell. 2020, 154, 101682. [Google Scholar] [CrossRef]
- Gettelman, A.; Geer, A.J.; Forbes, R.M.; Carmichael, G.R.; Feingold, G.; Posselt, D.J.; Stephens, G.L.; van den Heever, S.C.; Varble, A.C.; Zuidema, P. The future of Earth system prediction: Advances in model-data fusion. Sci. Adv. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Dong, R.; Leng, H.; Zhao, J.; Song, J.; Liang, S. A Framework for Four-Dimensional Variational Data Assimilation Based on Machine Learning. Entropy 2022, 24, 264. [Google Scholar] [CrossRef] [PubMed]
- Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data assimilation in the geosciences: An overview of methods, issues, and perspectives. WIREs Clim. Chang. 2018, 9, e535. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Majda, A.J. State estimation and prediction using clustered particle filters. Proc. Natl. Acad. Sci. USA 2016, 113, 14609–14614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Xu, F.; Zhou, W.; Wang, D.; Wright, J.S.; Liu, Z.; Lin, Y. Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Ocean. 2017, 122, 866–889. [Google Scholar] [CrossRef]
- Fox, D.N.; Teague, W.J.; Barron, C.N.; Carnes, M.R.; Lee, C.M. The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Ocean. Technol. 2002, 19, 240–252. [Google Scholar] [CrossRef]
- Helber, R.W.; Townsend, T.L.; Barron, C.N.; Dastugue, J.M.; Carnes, M.R. Validation Test Report for the Improved Synthetic Ocean Profile (ISOP) System, Part I: Synthetic Profile Methods and Algorithm; Naval Research Lab.: Hancock County, MS, USA, 2013. [Google Scholar]
- Park, J.C.; Kennedy, R.M. Remote sensing of ocean sound speed profiles by a perceptron neural network. IEEE J. Ocean. Eng. 1996, 21, 216–224. [Google Scholar] [CrossRef]
- Carnes, M.R.; Teague, W.J.; Mitchell, J.L. Inference of Subsurface Thermohaline Structure from Fields Measurable by Satellite. J. Atmos. Ocean. Technol. 1994, 11, 551–566. [Google Scholar] [CrossRef]
- Yan, H.Q.; Zhang, R.; Wang, H.Z.; Bao, S.L.; Chen, J.; Wang, G.J. A Surface Quasi-Geostrophic-Based Dynamical-Statistical Framework to Retrieve Interior Temperature/Salinity from Ocean Surface. J. Geophys. Res. Ocean. 2021, 126, 10. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Yang, Y.; Chen, C. Comprehensive Study of Inversion Methods for Sound Speed Profiles in the South China Sea. J. Ocean Univ. China 2022, 21, 1487–1494. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Z.; Li, H.; Li, Z.; Wu, X.; Sun, C.; Xu, J. Manual of Global Ocean Argo Gridded Data Set (BOA_Argo) (Version 2019); China Argo Real-Time Data Center: Hangzhou, China, 2020; 14p. [Google Scholar]
- Porter, M.B. The BELLHOP Manual and User’s Guide PRELIMINARY DRAFT. 2011. Available online: http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf (accessed on 9 January 2023).
- Liu, C.; Han, K.; Zhang, W.; Chen, W. An Optimization Method for Sound Speed Profile Inversion Using Empirical Orthogonal Function Analysis. In Proceedings of the 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 12–15 September 2020. [Google Scholar]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3.27 | −0.26 | −2.31 | −0.10 | 3.98 | 4.26 | 4.68 | 6.12 | 5.03 | 1.62 | 5.24 | 7.73 | |
0.3 | 0.82 | −0.81 | −0.7 | 2.93 | 0.49 | 1.94 | −1.36 | 0.71 | −0.42 | −0.19 | −0.56 | |
14.36 | 14.07 | 14.21 | 16.15 | 16.11 | 16 | 12.93 | 12.07 | 14.42 | 13.2 | 14.44 | 14.37 | |
2.15 | 2.4 | 2.23 | 1.04 | −0.19 | −0.09 | 2.55 | 2.92 | 1.81 | 2.64 | 2.22 | 2.85 | |
−2.17 | 4.7 | 6.34 | −7.11 | 1.41 | 12.44 | 8.82 | 4.76 | 16.48 | 3.41 | 5.37 | 6.65 | |
0.17 | 0.43 | 0.30 | 0.47 | 0.45 | 0.38 | 0.32 | 0.36 | 1.27 | 0.25 | 0.42 | 0.36 |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area A | SLA | 0.33 | 0.92 | 0.21 | 0.95 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.54 | 0.05 | 0.07 |
SSTA | 0.93 | 0.06 | 0.18 | 0.17 | 0.24 | 0.27 | 0.07 | 0.02 | 0.00 | 0.43 | 0.87 | 0.44 | |
Area B | SLA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SSTA | 0.00 | 0.00 | 0.00 | 0.06 | 0.79 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Area C | SLA | 0.51 | 0.27 | 0.16 | 0.26 | 0.84 | 0.03 | 0.01 | 0.04 | 0.00 | 0.04 | 0.03 | 0.02 |
SSTA | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Areas | A | B | C |
---|---|---|---|
(m/s) | 0.15~12.39 | 0.15~14.03 | 0.11~10.08 |
RMSE (m/s) | 1.17~3.01 | 1.21~7.32 | 1.06~3.33 |
Median of (m/s) | 0.58 | 1.59 | 0.49 |
Median of RMSE (m/s) | 1.73 | 3.68 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Ren, K.; Zhang, Y.; Liu, Y.; Chen, Y.; Ma, L.; Chen, S. Reconstruction of the Sound Speed Profile in Typical Sea Areas Based on the Single Empirical Orthogonal Function Regression Method. J. Mar. Sci. Eng. 2023, 11, 841. https://doi.org/10.3390/jmse11040841
Chen W, Ren K, Zhang Y, Liu Y, Chen Y, Ma L, Chen S. Reconstruction of the Sound Speed Profile in Typical Sea Areas Based on the Single Empirical Orthogonal Function Regression Method. Journal of Marine Science and Engineering. 2023; 11(4):841. https://doi.org/10.3390/jmse11040841
Chicago/Turabian StyleChen, Wen, Kaijun Ren, Yongchui Zhang, Yuyao Liu, Yu Chen, Lina Ma, and Silin Chen. 2023. "Reconstruction of the Sound Speed Profile in Typical Sea Areas Based on the Single Empirical Orthogonal Function Regression Method" Journal of Marine Science and Engineering 11, no. 4: 841. https://doi.org/10.3390/jmse11040841
APA StyleChen, W., Ren, K., Zhang, Y., Liu, Y., Chen, Y., Ma, L., & Chen, S. (2023). Reconstruction of the Sound Speed Profile in Typical Sea Areas Based on the Single Empirical Orthogonal Function Regression Method. Journal of Marine Science and Engineering, 11(4), 841. https://doi.org/10.3390/jmse11040841