A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields
Abstract
:1. Introduction
2. Recycling Processes of FRP Materials
2.1. Chemical Recycling
2.1.1. Supercritical and Subcritical Solvolysis
2.1.2. Electrochemical Recycling Process
2.1.3. Acid Digestion
2.2. Thermal Recycling
2.2.1. Pyrolysis
2.2.2. Fluidised Bed
2.3. Mechanical Recycling
3. Conclusions and Future Perspectives
- Chemical and thermal recycling processes require high energy consumption and appropriate laboratory apparatus and are affected by severe environmental impacts;
- The mechanical recycling method, even if it leads to composite materials reinforced with short fibres, appears to be an appealing method to recycle CFs as it allows the above-mentioned aspects to be overcome;
- GFs are strongly affected by chemical and thermal methods as a severe reduction in the overall mechanical properties was observed as a consequence of the recycling processes. This aspect makes these recycling processes unattractive for the recovery of GFs;
- The mechanical methods for GFRPs, even if they produce recycled composite materials reinforced with short fibres and are characterised by reduced properties, they do not lead to a drastic collapse of the mechanical properties because the recovered fibres are not affected by thermal alteration;
- Among the recycling methods treated in this review, the mechanical ones, such as shredding, hammer milling, milling and grinding, are the more appreciable recycling processes to recover GFs;
- Chemical and thermal processes are more prone to industrial scalability thanks to the high volume of recycling material processed; however, there are critical aspects to be considered about energy consumption and environmental impacts;
- Further advances in these recycling processes are not expected in the imminent future as the optimised parameters in terms of chemical solutions (in the case of chemical recycling) and oxygen amount (in the case of thermal recycling) are largely affirmed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling Glass Fiber Thermoplastic Composites from Wind Turbine Blades. J. Clean. Prod. 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Hadigheh, S.A.; Ke, F.; Kashi, S. 3D Acid Diffusion Model for FRP-Strengthened Reinforced Concrete Structures: Long-Term Durability Prediction. Constr. Build. Mater. 2020, 261, 120548. [Google Scholar] [CrossRef]
- Pinto, F.; Boccarusso, L.; De Fazio, D.; Cuomo, S.; Durante, M.; Meo, M. Carbon/Hemp Bio-Hybrid Composites: Effects of the Stacking Sequence on Flexural, Damping and Impact Properties. Compos. Struct. 2020, 242, 112148. [Google Scholar] [CrossRef]
- Clark, E.; Clark, E.; Bleszynski, M.; Valdez, F.; Kumosa, M. Recycling Carbon and Glass Fiber Polymer Matrix Composite Waste into Cementitious Materials. Resour. Conserv. Recycl. 2020, 155, 104659. [Google Scholar] [CrossRef]
- Pan, Y.; Yan, D. Study on the Durability of GFRP Bars and Carbon / Glass Hybrid Fi Ber Reinforced Polymer (HFRP) Bars Aged in Alkaline Solution. Compos. Struct. 2021, 261, 113285. [Google Scholar] [CrossRef]
- Guo, R.; Li, C.; Xian, G. Water Absorption and Long-Term Thermal and Mechanical Properties of Carbon/Glass Hybrid Rod for Bridge Cable. Eng. Struct. 2023, 274, 115176. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C.; Hong, B. Mechanical Properties of Carbon/Glass Fiber Reinforced Polymer Plates with Sandwich Structure Exposed to Freezing-Thawing Environment: Effects of Water Immersion, Bending Loading and Fiber Hybrid Mode. Mech. Adv. Mater. Struct. 2023, 30, 814–834. [Google Scholar] [CrossRef]
- Lin, L.; Schlarb, A.K. Recycled Carbon Fibers as Reinforcements for Hybrid PEEK Composites with Excellent Friction and Wear Performance. Wear 2019, 432–433, 202928. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current Status of Carbon Fibre and Carbon Fibre Composites Recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- He, D.; Soo, V.K.; Kim, H.C.; Compston, P.; Doolan, M. Comparative Life Cycle Energy Analysis of Carbon Fibre Pre-Processing, Processing and Post-Processing Recycling Methods. Resour. Conserv. Recycl. 2020, 158, 104794. [Google Scholar] [CrossRef]
- Lin, G. Global Carbon Fibre Composite Market Report. 2016. Available online: https://www.compositesworld.com/suppliers/ata-carbon-fiber-tech-co-ltd (accessed on 12 December 2022).
- Melendi-Espina, S.; Morris, C.; Turner, T.; Pickering, S.J. Recycling of Carbon Fibre Composites. In Proceedings of the Carbon 2016, State College, PA, USA, 10–15 July 2016. [Google Scholar]
- Pickering, S.J.; Turner, T.A. Research and Development in Support of Carbon Fibre Recycling. In Proceedings of the CAMX 2014-Composite and Advanced Materials Expo: Combined Strength, Unsurpassed Innovation, Orlando, FL, USA, 13–16 October 2014. [Google Scholar]
- Markets and Markets. Carbon Fiber Market by Raw Material (PAN, Pitch, Rayon), Fibre Type (Virgin, Recycled), Product Type, Modulus, Application (Composite, Non-Composite), End-Use Industry (A & D, Automotive, Wind Energy), and Region-Global Forecast to 2029. 2019. Available online: https://www.marketresearch.com/MarketsandMarkets-v3719/Carbon-Fiber-Raw-Material-PAN-12674277/ (accessed on 13 December 2022).
- Research and Markets. CF & CFRP Market by End-Use Industry (A & D, Wind Energy, Automotive, Sports, Civil Engineering, Pipe & Tank, Marine, Medical, E & D), Resin Type (Thermosetting, Thermoplastic), Manufacturing Process, Raw Material, and Region-Global Forecast to 2022. 2017. Available online: https://markets.businessinsider.com/news/stocks/cf-cfrp-market-expected-to-reach-37-1-billion-by-2022-1010627492?miRedirects=1 (accessed on 13 December 2022).
- Meng, F.; Olivetti, E.A.; Zhao, Y.; Chang, J.C.; Pickering, S.J.; McKechnie, J. Comparing Life Cycle Energy and Global Warming Potential of Carbon Fiber Composite Recycling Technologies and Waste Management Options. ACS Sustain. Chem. Eng. 2018, 6, 9854–9865. [Google Scholar] [CrossRef]
- ETIPWind Executive Committee. HowWind Is Going Circular: Blade Recycling. Available online: https://etipwind.eu/files/reports/ETIPWind-How-wind-is-going-circular-blade-recycling (accessed on 16 December 2022).
- Witten, E.; Mathes, V. The Market for Glass Fibre Reinforced Plastics (GRP) in 2020; AVK: Berlin, Germany, 2020. [Google Scholar]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical Review on Recycling of End-of-Life Carbon Fibre/Glass Fibre Reinforced Composites Waste Using Pyrolysis towards a Circular Economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef]
- Rademacker, T. Challenges in CFRP Recycling. In Breaking & Sifting-Expert Exchange on the End-of-Life of Wind Turbines; Federal Ministry for Economic Affairs and Energy: Washington, DC, USA, 2018; pp. 24–25. [Google Scholar]
- McConnell, V.P. Launching the Carbon Fibre Recycling Industry. Reinf. Plast. 2010, 54, 33–37. [Google Scholar] [CrossRef]
- Morin, C.; Loppinet-Serani, A.; Cansell, F.; Aymonier, C. Near- and Supercritical Solvolysis of Carbon Fibre Reinforced Polymers (CFRPs) for Recycling Carbon Fibers as a Valuable Resource: State of the Art. J. Supercrit. Fluids 2012, 66, 232–240. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R.; Gutowski, T.G. Life Cycle Energy Analysis of Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1257–1265. [Google Scholar] [CrossRef]
- Meng, F.; McKechnie, J.; Turner, T.A.; Pickering, S.J. Energy and Environmental Assessment and Reuse of Fluidised Bed Recycled Carbon Fibres. Compos. Part A Appl. Sci. Manuf. 2017, 100, 206–214. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, R.; Wu, J.K.; Yang, C.C. Waste E-Glass Particles Used in Cementitious Mixtures. Cem. Concr. Res. 2006, 36, 449–456. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 2008. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed on 9 January 2023).
- Directive 2000/53/EC of the European Parliament and of the Council on End-of-Life Vehicles. European Council. 2000; pp. 34–269. Available online: https://www.legislation.gov.uk/eudr/2000/53 (accessed on 9 January 2022).
- La Rosa, A.D.; Banatao, D.R.; Pastine, S.J.; Latteri, A.; Cicala, G. Recycling Treatment of Carbon Fibre/Epoxy Composites: Materials Recovery and Characterization and Environmental Impacts through Life Cycle Assessment. Compos. Part B Eng. 2016, 104, 17–25. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the Circular Economy, Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2013; pp. 21–34. [Google Scholar]
- Shuaib, N.A.; Mativenga, P.T.; Kazie, J.; Job, S. Resource Efficiency and Composite Waste in UK Supply Chain. Procedia CIRP 2015, 29, 662–667. [Google Scholar] [CrossRef]
- Hagnell, M.K.; Åkermo, M. The Economic and Mechanical Potential of Closed Loop Material Usage and Recycling of Fibre-Reinforced Composite Materials. J. Clean. Prod. 2019, 223, 957–968. [Google Scholar] [CrossRef]
- Rybicka, J.; Tiwari, A.; Alvarez Del Campo, P.; Howarth, J. Capturing Composites Manufacturing Waste Flows through Process Mapping. J. Clean. Prod. 2015, 91, 251–261. [Google Scholar] [CrossRef]
- Hall, S. End-of-Life Recycling Options for Glass Fibre Reinforced Polymers. Plymouth Stud. Sci. 2016, 9, 68–94. [Google Scholar]
- Ferrari, K.; Gamberini, R.; Rimini, B. The Waste Hierarchy: A Strategic, Tactical and Operational Approach for Developing Countries. the Case Study of Mozambique. Int. J. Sustain. Dev. Plan. 2016, 11, 759–770. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling Technologies for Thermoset Composite Materials—Current Status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Liu, Y.; Farnsworth, M.; Tiwari, A. A Review of Optimisation Techniques Used in the Composite Recycling Area: State-of-the-Art and Steps towards a Research Agenda. J. Clean. Prod. 2017, 140, 1775–1781. [Google Scholar] [CrossRef]
- Wang, S.; Xing, X.; Zhang, X.; Wang, X.; Jing, X. Room-Temperature Fully Recyclable Carbon Fibre Reinforced Phenolic Composites through Dynamic Covalent Boronic Ester Bonds. J. Mater. Chem. A 2018, 6, 10868–10878. [Google Scholar] [CrossRef]
- García, D.; Vegas, I.; Cacho, I. Mechanical Recycling of GFRP Waste as Short-Fiber Reinforcements in Microconcrete. Constr. Build. Mater. 2014, 64, 293–300. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F. Materials for Wind Turbine Blades: An Overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef]
- Yang, Y.; Boom, R.; Irion, B.; van Heerden, D.-J.; Kuiper, P.; de Wit, H. Recycling of Composite Materials. Chem. Eng. Process. Process Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Ribeiro, M.; Fiúza, A.; Ferreira, A.; Dinis, M.; Castro, A.; Meixedo, J.; Alvim, M. Recycling Approach towards Sustainability Advance of Composite Materials’ Industry. Recycling 2016, 1, 178–193. [Google Scholar] [CrossRef]
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine Application of Fiber Reinforced Composites: A Review. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind Turbine Blade Waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- EECI. Accelerating Wind Turbine Blade Circularity. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Accelerating-wind-turbine-blade-circularity (accessed on 11 January 2023).
- Hill, C.; Norton, A. LCA Database of Environmental Impacts to Inform Material Selection Process; DACOMAT: Paris, France, 2018; pp. 1–32. [Google Scholar]
- Karuppannan Gopalraj, S.; Deviatkin, I.; Horttanainen, M.; Kärki, T. Life Cycle Assessment of a Thermal Recycling Process as an Alternative to Existing CFRP and GFRP Composite Wastes Management Options. Polymers. 2021, 13, 4430. [Google Scholar] [CrossRef] [PubMed]
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Shuaib, N. Energy Efficient Fibre Reinforced Composite Recycling; The University of Manchester: Manchester, UK, 2016. [Google Scholar]
- Khalil, Y.F. Comparative Environmental and Human Health Evaluations of Thermolysis and Solvolysis Recycling Technologies of Carbon Fiber Reinforced Polymer Waste. Waste Manag. 2018, 76, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Rybicka, J.; Tiwari, A.; Leeke, G.A. Technology Readiness Level Assessment of Composites Recycling Technologies. J. Clean. Prod. 2016, 112, 1001–1012. [Google Scholar] [CrossRef]
- Gharde, S.; Kandasubramanian, B. Mechanothermal and Chemical Recycling Methodologies for the Fibre Reinforced Plastic (FRP). Environ. Technol. Innov. 2019, 14, 100311. [Google Scholar] [CrossRef]
- Buggy, M.; Farragher, L.; Madden, W. Recycling of Composite Materials. J. Mater. Process. Technol. 1995, 55, 448–456. [Google Scholar] [CrossRef]
- Oliveux, G.; Bailleul, J.-L.; Salle, E.L.G.L. Chemical Recycling of Glass Fibre Reinforced Composites Using Subcritical Water. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1809–1818. [Google Scholar] [CrossRef]
- Patel, S.H.; Gonsalves, K.E.; Stivala, S.S.; Reich, L.; Trivedi, D.H. Alternative Procedures for the Recycling of Sheet Molding Compounds. Adv. Polym. Technol. 1993, 12, 35–45. [Google Scholar] [CrossRef]
- Job, S.; Leeke, G.; Mativenga, P.; Oliveux, G.; Pickering, S.; Shuaib, N. Composites Recycling–Where Are We Now? 2016. Available online: https://www.researchgate.net/publication/329399859_Composites_Recycling_-_Where_are_we_now (accessed on 13 January 2023).
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current Status of Recycling of Fibre Reinforced Polymers: Review of Technologies, Reuse and Resulting Properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; García-Serna, J.; Dodds, C.; Hyde, J.; Poliakoff, M.; Cocero, M.J.; Kingman, S.; Pickering, S.; Lester, E. Chemical Recycling of Carbon Fibre Composites Using Alcohols under Subcritical and Supercritical Conditions. J. Supercrit. Fluids 2008, 46, 83–92. [Google Scholar] [CrossRef]
- Goto, M. Chemical Recycling of Plastics Using Sub- and Supercritical Fluids. J. Supercrit. Fluids 2009, 47, 500–507. [Google Scholar] [CrossRef]
- Kim, Y.N.; Kim, Y.-O.; Kim, S.Y.; Park, M.; Yang, B.; Kim, J.; Jung, Y.C. Application of Supercritical Water for Green Recycling of Epoxy-Based Carbon Fiber Reinforced Plastic. Compos. Sci. Technol. 2019, 173, 66–72. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.; Lester, E.; Turner, T.; Wong, K.; Warrior, N. Characterisation of Carbon Fibres Recycled from Carbon Fibre/Epoxy Resin Composites Using Supercritical n-Propanol. Compos. Sci. Technol. 2009, 69, 192–198. [Google Scholar] [CrossRef]
- Recycling, E.; Composites, T. Recycling Thermoset Composites of the SST The EURECOMP Consortium. 1–15 July 2012. Available online: https://trimis.ec.europa.eu/project/recycling-thermoset-composites-sst (accessed on 16 January 2023).
- Zabihi, O.; Ahmadi, M.; Liu, C.; Mahmoodi, R.; Li, Q.; Ghandehari Ferdowsi, M.R.; Naebe, M. A Sustainable Approach to the Low-Cost Recycling of Waste Glass Fibres Composites towards Circular Economy. Sustainability 2020, 12, 641. [Google Scholar] [CrossRef]
- Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H.J. Recycling of Epoxy Thermoset and Composites via Good Solvent Assisted and Small Molecules Participated Exchange Reactions. ACS Sustain. Chem. Eng. 2018, 6, 9189–9197. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Jiang, Z.; Tang, T. Chemical Recycling of Carbon Fibre Reinforced Epoxy Resin Composites in Subcritical Water: Synergistic Effect of Phenol and KOH on the Decomposition Efficiency. Polym. Degrad. Stab. 2012, 97, 214–220. [Google Scholar] [CrossRef]
- Leißner, T.; Hamann, D.; Wuschke, L.; Jäckel, H.-G.; Peuker, U.A. High Voltage Fragmentation of Composites from Secondary Raw Materials—Potential and Limitations. Waste Manag. 2018, 74, 123–134. [Google Scholar] [CrossRef]
- Roux, M.; Eguémann, N.; Dransfeld, C.; Thiébaud, F.; Perreux, D. Thermoplastic Carbon Fibre-Reinforced Polymer Recycling with Electrodynamical Fragmentation. J. Thermoplast. Compos. Mater. 2017, 30, 381–403. [Google Scholar] [CrossRef]
- Bru, K.; Touzé, S.; Auger, P.; Dobrusky, S.; Tierrie, J.; Parvaz, D.B. Investigation of Lab and Pilot Scale Electric-Pulse Fragmentation Systems for the Recycling of Ultra-High Performance Fibre-Reinforced Concrete. Miner. Eng. 2018, 128, 187–194. [Google Scholar] [CrossRef]
- Mativenga, P.T.; Shuaib, N.; Howarth, J.; Pestalozzi, F. High Voltage Fragmentation and Mechanical Recycling of Glass Fibre Thermoset Composite. CIRP Ann. Manuf. Technol. 2016, 65, 45–48. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Chen, P.; Su, M.; Pei, C.; Xing, F. Recycling of Carbon Fibre Reinforced Plastics by Electrically Driven Heterogeneous Catalytic Degradation of Epoxy Resin. Green Chem. 2019, 21, 1635–1647. [Google Scholar] [CrossRef]
- Oshima, K.; Matsuda, S.; Hosaka, M.; Satokawa, S. Rapid Removal of Resin from a Unidirectional Carbon Fiber Reinforced Plastic Laminate by a High-Voltage Electrical Treatment. Sep. Purif. Technol. 2020, 231, 115885. [Google Scholar] [CrossRef]
- Oshima, K.; Hosaka, M.; Matsuda, S.; Satokawa, S. Removal Mechanism of Epoxy Resin from CFRP Composites Triggered by Water Electrolysis Gas Generation. Sep. Purif. Technol. 2020, 251, 117296. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, M.; Goh, M. Enhanced and Eco-Friendly Recycling of Carbon-Fiber-Reinforced Plastics Using Water at Ambient Pressure. ACS Sustain. Chem. Eng. 2020, 8, 2433–2440. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Guo, X.; Liu, C.; Liu, T.; Xin, J.; Zhang, J. Mild Chemical Recycling of Aerospace Fiber/Epoxy Composite Wastes and Utilization of the Decomposed Resin. Polym. Degrad. Stab. 2017, 139, 20–27. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Ge, H.; Yang, Y.; Wang, Y.; Zhang, C.; Li, J.; Deng, T.; Qin, Z.; Hou, X. Chemical Recycling of Carbon Fiber Reinforced Epoxy Resin Composites via Selective Cleavage of the Carbon–Nitrogen Bond. ACS Sustain. Chem. Eng. 2015, 3, 3332–3337. [Google Scholar] [CrossRef]
- Rani, M.; Choudhary, P.; Krishnan, V.; Zafar, S. Resources, Conservation & Recycling Development of Sustainable Microwave-Based Approach to Recover Glass Fibers for Wind Turbine Blades Composite Waste. Resour. Conserv. Recycl. 2022, 179, 106107. [Google Scholar] [CrossRef]
- Xu, P.; Li, J.; Ding, J. Chemical Recycling of Carbon Fibre/Epoxy Composites in a Mixed Solution of Peroxide Hydrogen and N,N-Dimethylformamide. Compos. Sci. Technol. 2013, 82, 54–59. [Google Scholar] [CrossRef]
- Zabihi, O.; Ahmadi, M.; Liu, C.; Mahmoodi, R.; Li, Q.; Naebe, M. Development of a Low Cost and Green Microwave Assisted Approach towards the Circular Carbon Fibre Composites. Compos. Part B Eng. 2020, 184, 107750. [Google Scholar] [CrossRef]
- Petterson, J.; Nilsson, P. Recycling of SMC and BMC in Standard Process Equipment. J. Thermoplast. Compos. Mater. 1994, 7, 56–63. [Google Scholar] [CrossRef]
- Overcash, M.; Twomey, J.; Asmatulu, E.; Vozzola, E.; Griffing, E. Thermoset Composite Recycling—Driving Forces, Development, and Evolution of New Opportunities. J. Compos. Mater. 2018, 52, 1033–1043. [Google Scholar] [CrossRef]
- Gastelu, N.; Lopez-Urionabarrenechea, A.; Solar, J.; Acha, E.; Caballero, B.; López, F.; de Marco, I. Thermo-Catalytic Treatment of Vapors in the Recycling Process of Carbon Fiber-Poly (Benzoxazine) Composite Waste by Pyrolysis. Catalysts 2018, 8, 523. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Williams, P.T. Characterisation of Products from the Recycling of Glass Fibre Reinforced Polyester Waste by Pyrolysis. Fuel 2003, 82, 2223–2230. [Google Scholar] [CrossRef]
- López, F.A.; Rodríguez, O.; Alguacil, F.J.; García-Díaz, I.; Centeno, T.A.; García-Fierro, J.L.; González, C. Recovery of Carbon Fibres by the Thermolysis and Gasification of Waste Prepreg. J. Anal. Appl. Pyrolysis 2013, 104, 675–683. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Meira-Castro, A.C.; Silva, F.G.; Santos, J.; Meixedo, J.P.; Fiúza, A.; Dinis, M.L.; Alvim, M.R. Re-Use Assessment of Thermoset Composite Wastes as Aggregate and Filler Replacement for Concrete-Polymer Composite Materials: A Case Study Regarding GFRP Pultrusion Wastes. Resour. Conserv. Recycl. 2015, 104, 417–426. [Google Scholar] [CrossRef]
- de Marco, I.; Legarreta, J.A.; Laresgoiti, M.F.; Torres, A.; Cambra, J.F.; Chomón, M.J.; Caballero, B.; Gondra, K. Recycling of the Products Obtained in the Pyrolysis of Fibre-Glass Polyester SMC. J. Chem. Technol. Biotechnol. 1997, 69, 187–192. [Google Scholar] [CrossRef]
- Nahil, M.A.; Williams, P.T. Recycling of Carbon Fibre Reinforced Polymeric Waste for the Production of Activated Carbon Fibres. J. Anal. Appl. Pyrolysis 2011, 91, 67–75. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Miskolczi, N.; Nagy, T.; Lipóczi, G. Recovery of Glass Fibre and Carbon Fibres from Reinforced Thermosets by Batch Pyrolysis and Investigation of Fibre Re-Using as Reinforcement in LDPE Matrix. Compos. Part B Eng. 2016, 91, 154–161. [Google Scholar] [CrossRef]
- Mazzocchetti, L.; Benelli, T.; D’Angelo, E.; Leonardi, C.; Zattini, G.; Giorgini, L. Validation of Carbon Fibers Recycling by Pyro-Gasification: The Influence of Oxidation Conditions to Obtain Clean Fibers and Promote Fiber/Matrix Adhesion in Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2018, 112, 504–514. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Liu, W.; Wang, J.; Tang, T. Recycling of Carbon Fibre Reinforced Epoxy Resin Composites under Various Oxygen Concentrations in Nitrogen–Oxygen Atmosphere. J. Anal. Appl. Pyrolysis 2015, 112, 253–261. [Google Scholar] [CrossRef]
- Kim, K.-W.; Lee, H.-M.; An, J.-H.; Chung, D.-C.; An, K.-H.; Kim, B.-J. Recycling and Characterization of Carbon Fibers from Carbon Fiber Reinforced Epoxy Matrix Composites by a Novel Super-Heated-Steam Method. J. Environ. Manag. 2017, 203, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Åkesson, D.; Foltynowicz, Z.; Christéen, J.; Skrifvars, M. Microwave Pyrolysis as a Method of Recycling Glass Fibre from Used Blades of Wind Turbines. J. Reinf. Plast. Compos. 2012, 31, 1136–1142. [Google Scholar] [CrossRef]
- Jiang, L.; Ulven, C.A.; Gutschmidt, D.; Anderson, M.; Balo, S.; Lee, M.; Vigness, J. Recycling Carbon Fiber Composites Using Microwave Irradiation: Reinforcement Study of the Recycled Fiber in New Composites. J. Appl. Polym. Sci. 2015, 132, 42658. [Google Scholar] [CrossRef]
- Karuppannan Gopalraj, S.; Kärki, T. A Review on the Recycling of Waste Carbon Fibre/Glass Fibre-Reinforced Composites: Fibre Recovery, Properties and Life-Cycle Analysis. SN Appl. Sci. 2020, 2, 433. [Google Scholar] [CrossRef]
- Pickering, S.J.; Kelly, R.M.; Kennerley, J.R.; Rudd, C.D.; Fenwick, N.J. A Fluidised-Bed Process for the Recovery of Glass Fibres from Scrap Thermoset Composites. Compos. Sci. Technol. 2000, 60, 509–523. [Google Scholar] [CrossRef]
- Kennerley, J.R.; Kelly, R.M.; Fenwick, N.J.; Pickering, S.J.; Rudd, C.D. The Characterisation and Reuse of Glass Fibres Recycled from Scrap Composites by the Action of a Fluidised Bed Process. Compos. Part A Appl. Sci. Manuf. 1998, 29, 839–845. [Google Scholar] [CrossRef]
- Pickering, S.J.; Turner, T.A.; Meng, F.; Morris, C.N.; Heil, J.P.; Wong, K.H.; Melendi, S. Developments in the Fluidised Bed Process for Fibre Recovery from Thermoset Composites. In Proceedings of the CAMX 2015-Composites and Advanced Materials Expo, Dallas, TX, USA, 27–29 October 2015; pp. 2384–2394. [Google Scholar]
- Vincent, G.A.; de Bruijn, T.A.; Wijskamp, S.; Abdul Rasheed, M.I.; van Drongelen, M.; Akkerman, R. Shredding and Sieving Thermoplastic Composite Scrap: Method Development and Analyses of the Fibre Length Distributions. Compos. Part B Eng. 2019, 176, 107197. [Google Scholar] [CrossRef]
- Heibeck, M.; Rudolph, M.; Modler, N.; Reuter, M. Characterizing Material Liberation of Multi-Material Lightweight Structures from Shredding Experiments and Finite Element Simulations. Miner. Eng. 2021, 172, 107142. [Google Scholar] [CrossRef]
- Vincent, G.; De Bruijn, T.A.; Iqbal, M.; Rasheed, A.; Akkerman, R.; Distribution, F.L. Fibre Length Distribution of Shredded Thermoplastic Composite Scrap. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Anane-Fenin, K.; Akinlabi, E.T. Recycling of Fibre Reinforced Composites: A Review of Current Technologies. In Proceedings of the DII-2017 Conference on Infrastructure Development and Investment Strategies for Africa, Livingstone, Zambia, 30 August–1 September 2017. [Google Scholar]
- Shuaib, N.A.; Mativenga, P.T. Energy Demand in Mechanical Recycling of Glass Fibre Reinforced Thermoset Plastic Composites. J. Clean. Prod. 2016, 120, 198–206. [Google Scholar] [CrossRef]
- Howarth, J.; Mareddy, S.S.R.; Mativenga, P.T. Energy Intensity and Environmental Analysis of Mechanical Recycling of Carbon Fi Bre Composite. J. Clean. Prod. 2014, 81, 46–50. [Google Scholar] [CrossRef]
- Shuaib, N.A.; Mativenga, P.T. Effect of Process Parameters on Mechanical Recycling of Glass Fibre Thermoset Composites. Procedia CIRP 2016, 48, 134–139. [Google Scholar] [CrossRef]
- Beauson, J.; Madsen, B.; Toncelli, C.; Brøndsted, P.; Ilsted Bech, J. Recycling of Shredded Composites from Wind Turbine Blades in New Thermoset Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 390–399. [Google Scholar] [CrossRef]
- Palmer, J.; Ghita, O.R.; Savage, L.; Evans, K.E. Successful Closed-Loop Recycling of Thermoset Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Colucci, G.; Ostrovskaya, O.; Frache, A.; Martorana, B.; Badini, C. The Effect of Mechanical Recycling on the Microstructure and Properties of PA66 Composites Reinforced with Carbon Fibers. J. Appl. Polym. Sci. 2015, 132, 42275. [Google Scholar] [CrossRef]
- Pietroluongo, M.; Padovano, E.; Frache, A.; Badini, C. Mechanical Recycling of an End-of-Life Automotive Composite Component. Sustain. Mater. Technol. 2020, 23, e00143. [Google Scholar] [CrossRef]
- Palmer, J.; Savage, L.; Ghita, O.R.; Evans, K.E. Sheet Moulding Compound (SMC) from Carbon Fibre Recyclate. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1232–1237. [Google Scholar] [CrossRef]
- Thomas, C.; Borges, P.H.R.; Panzera, T.H.; Cimentada, A.; Lombillo, I. Epoxy Composites Containing CFRP Powder Wastes. Compos. Part B Eng. 2014, 59, 260–268. [Google Scholar] [CrossRef]
- Durante, M.; Boccarusso, L.; De Fazio, D.; Formisano, A.; Langella, A. Investigation on the Mechanical Recycling of Carbon Fiber-Reinforced Polymers by Peripheral Down-Milling. Polymers 2023, 15, 854. [Google Scholar] [CrossRef]
Material | Solution | Process Parameters | Process Efficiency | Mechanical Characteristics | Ref. |
---|---|---|---|---|---|
GF—Polyester | Subcritical water-based | 200–374 °C 22 MPa | Good matrix removal | Mechanical strength 50–60% reduction | Oliveux et al. [53] |
GF—Epoxy | Subcritical H2O2 solution, microwave-assisted | 70 °C | Good matrix removal | Tensile strength −7% | Zabihi et al. [62] |
GF—Epoxy | Subcritical mixture of solvents, EG/NMP 10% EG | 170 °C atmospheric pressure | 95% matrix removal | Tensile strength −10% | Kuang et al. [63] |
CF—Epoxy | Supercritical H2O2 solution with KOH catalyst | 250–400 °C 2–28 MPa | Up to 95.4% matrix removal | Mechanical properties 2–10% reduction | Pinero-Hernanz et al. [57] |
CF—Epoxy | Supercritical water-based with KOH and phenol | 315–325 °C | Fibre recovery 95.2–100% | Comparable with virgin fibres | Liu et al. [64] |
CF—Epoxy | Supercritical water-based | 400 °C 28 MPa | 99.5% matrix removal | Tensile strength 18–36% reduction | Kim et al. [59] |
Material | Solution | Process Efficiency | Mechanical Characteristics | Ref. |
---|---|---|---|---|
CF—Epoxy | Chemical solution with NaCl with KOH catalyst | Total matrix removal | Tensile strength −10% and interfacial shear strength +20% | Zhou et al. [69] |
CF—Epoxy | Water-based solution with NaCl, KCl, NaOH, KOH and Na2CO3 | Delamination, matrix cracks and pieces of matrix that peel off from the laminate | Fibre fragmentation | Oshima et al. [70] |
CF—Epoxy | Phosphoric acid | Pieces of matrix that peel off from the laminate | Fibre fragmentation | Oshima et al. [71] |
Material | Solution | Process Efficiency | Mechanical Characteristics | Ref. |
---|---|---|---|---|
GF—Epoxy | Microwave-assisted H2O2 with 30% acetic acid | 97.2% matrix removal | Tensile strength −2.4% and Young’s modulus −8.6% | Rani et al. [75] |
CF—Epoxy | H2O2 solution with acetic acid | 99.1% matrix removal | Mechanical properties reduction 2–10% | Xu et al. [76] |
CF—Epoxy | H2O2 solution with pre-treatment with tartaric acid | 95% matrix removal | Tensile strength −8% | Zabihi et al. [77] |
Material | Process Parameters | Process Efficiency | Mechanical Characteristics | Ref. |
---|---|---|---|---|
GF—Epoxy | 400–500 °C 30 min | Total matrix removal | Flexural strength −19% | de Marco et al. [84] |
CF—Epoxy | 500 °C and post-pyrolysis 500 °C 60 min | Total matrix removal | Tensile strength −7% and Young’s modulus −4% | Nahil and Williams [85] |
CF—Epoxy | 500 °C 60 min | Total matrix removal | Tensile strength +6.4% and Young’s modulus +5% | Mazzocchetti et al. [87] |
CF—Epoxy | 650 °C 45 min 5% oxygen | Total matrix removal | Tensile strength −20% | Yang et al. [88] |
CF—Epoxy | Water stream 550 °C 30 min Post-pyrolysis 550 °C 60 min | Almost total matrix removal | Tensile strength −10% | Kim et al. [89] |
GF—Epoxy | Microwave-assisted pyrolysis 300–600 °C 90 min | Residues of matrix on the treated fibres | Flexural strength −68% and flexural modulus −39% | Akesson et al. [90] |
CF—Epoxy | Microwave-assisted pyrolysis 400–600 °C 30 min | Residues of matrix on the treated fibres | Flexural strength −14% and flexural modulus −25% | Jiang et al. [91] |
Material | Process Parameters | Process Efficiency | Mechanical Characteristics | Ref. |
---|---|---|---|---|
GF—Polyester | 450 °C Airflow 1.3 m/s | Good matrix removal | Flexural strength −50% | Pickering et al. [93] |
CF—Polyester | 450 °C Airflow 1.3–1.7 m/s | Good matrix removal | Flexural strength −50%; no appreciable variation in flexural modulus | Kennerley et al. [94] |
CF—Epoxy | 500 °C | Good matrix removal | Tensile strength −18% | Pickering et al. [95] |
Material | Recycling Method | Fibre Dimension | Mechanical Characteristics | Ref. |
---|---|---|---|---|
GF—PA66 | Hammer milling | Short fibres–length reduction of 31% after the first recycle, reduction of 15% after further recycles | Tensile strength −29% and Young’s modulus −23% Flexural strength 28% and flexural modulus 24% reduction after the first recycle | Pietroluongo et al. [106] |
GF—Polyester | Shredding | Coarse fibres Fine fibres Powder | Flexural strength −41% and −69% as function of the fibre percentage | Beauson et al. [103] |
CF—Epoxy | Hammer milling | Coarse fibres Fine fibres Powder | Flexural strength −9%, flexural modulus −3% and impact strength +7% | Palmer et al. [107] |
CF—Epoxy | Grinding | Powder | Flexural strength 30% and compression strength 20% improvement in comparison with pure resin | Thomas et al. [108] |
CF—Epoxy | Peripheral down-milling | Coarse fibres Fine fibres Powder | Flexural strength −15% (fine fibres), +45% (coarse fibres) flexural modulus +80% and +160% (fine and coarse fibres, respectively) | Durante et al. [109] |
Material | Recycling Method | Fibre Dimension | Mechanical Characteristics | Ref. |
---|---|---|---|---|
GF—Polyester | Subcritical solvolysis | Long fibres | Mechanical strength 50–60% reduction | Oliveux et al. [53] |
GF—Epoxy | Microwave-assisted subcritical solvolysis | Long fibres | Tensile strength −7% | Zabihi et al. [62] |
GF—Epoxy | Subcritical solvolysis | Long fibres | Tensile strength −10% | Kuang et al. [63] |
CF—Epoxy | Supercritical solvolysis | Long fibres | Mechanical properties 2–10% reduction | Pinero-Hernanz et al. [57] |
CF—Epoxy | Supercritical solvolysis | Long fibres | Comparable with virgin fibres | Liu et al. [64] |
CF—Epoxy | Supercritical solvolysis | Long fibres | Tensile strength 18–36% reduction | Kim et al. [59] |
CF—Epoxy | Electrochemical | Long fibres | Tensile strength −10% and +20% interfacial shear strength | Zhou et al. [69] |
CF—Epoxy | Electrochemical | Long fibres | Fibre fragmentation | Oshima et al. [70] |
CF—Epoxy | Electrochemical | Long fibres | Fibre fragmentation | Oshima et al. [71] |
GF—Epoxy | Microwave-assisted acid digestion | Long fibres | Tensile strength −2.4% and Young’s modulus −8.6% | Rani et al. [75] |
CF—Epoxy | Acid digestion | Long fibres | Mechanical properties reduction 2–10% | Xu et al. [76] |
CF—Epoxy | Acid digestion | Long fibres | Tensile strength −8% | Zabihi et al. [77] |
GF—Epoxy | Pyrolysis | Long fibres | Flexural strength −19% | de Marco et al. [84] |
CF—Epoxy | Pyrolysis and post-pyrolysis | Long fibres | Tensile strength −7% and Young’s modulus −4% | Nahil and Williams [85] |
CF—Epoxy | Pyrolysis | Long fibres | Tensile strength +6.4% and Young’s modulus +5% | Mazzocchetti et al. [87] |
CF—Epoxy | Pyrolysis | Long fibres | Tensile strength −20% | Yang et al. [88] |
CF—Epoxy | Water stream-assisted pyrolysis | Long fibres | Tensile strength −10% | Kim et al. [89] |
GF—Epoxy | Microwave-assisted pyrolysis | Long fibres | Flexural strength −68% and flexural modulus −39% | Akesson et al. [90] |
CF—Epoxy | Microwave-assisted pyrolysis | Long fibres | Flexural strength −14% and flexural modulus −25% | Jiang et al. [91] |
GF—Polyester | Fluidised bed | Short fibres | Flexural strength −50% | Pickering et al. [93] |
CF—Polyester | Fluidised bed | Short fibres | Flexural strength 50% reduction–no appreciable variation in flexural modulus | Kennerley et al. [94] |
CF—Epoxy | Fluidised bed | Short fibres | Tensile strength −18% | Pickering et al. [95] |
GF—PA66 | Mechanical–hammer milling | Short fibres | Tensile strength −29% and Young’s modulus −23% Flexural strength −28% and flexural modulus −24% after the first recycle | Pietroluongo et al. [106] |
GF—Polyester | Mechanical–shredding | Coarse fibres Fine fibres Powder | Flexural strength 41–69% reduction as function of the fibre percentage | Beauson et al. [103] |
CF—Epoxy | Mechanical–hammer milling | Coarse fibres Fine fibres Powder | Flexural strength −9% and flexural modulus −3% and impact strength +7% | Palmer et al. [107] |
CF—Epoxy | Mechanical–grinding | Powder | Flexural strength +30% and compression strength +20% in comparison with pure resin | Thomas et al. [108] |
CF—Epoxy | Peripheral down-milling | Coarse fibres Fine fibres Powder | Flexural strength −15% (fine fibres), +45% (coarse fibres) flexural modulus +80% and +160% (fine and coarse fibres, respectively) | Durante et al. [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Fazio, D.; Boccarusso, L.; Formisano, A.; Viscusi, A.; Durante, M. A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. J. Mar. Sci. Eng. 2023, 11, 851. https://doi.org/10.3390/jmse11040851
De Fazio D, Boccarusso L, Formisano A, Viscusi A, Durante M. A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. Journal of Marine Science and Engineering. 2023; 11(4):851. https://doi.org/10.3390/jmse11040851
Chicago/Turabian StyleDe Fazio, Dario, Luca Boccarusso, Antonio Formisano, Antonio Viscusi, and Massimo Durante. 2023. "A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields" Journal of Marine Science and Engineering 11, no. 4: 851. https://doi.org/10.3390/jmse11040851
APA StyleDe Fazio, D., Boccarusso, L., Formisano, A., Viscusi, A., & Durante, M. (2023). A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. Journal of Marine Science and Engineering, 11(4), 851. https://doi.org/10.3390/jmse11040851