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Abstract: In the context of the rapid development of deep learning theory, predicting future motion
states based on time series sequence data of ship trajectories can significantly improve the safety of
the traffic environment. Considering the spatiotemporal correlation of AIS data, a trajectory time
window panning and smoothing filtering method is proposed for the abnormal values existing in the
trajectory data. The application of this method can effectively deal with the jump values and outliers
in the trajectory data, make the trajectory smooth and continuous, and ensure the temporal order and
integrity of the trajectory data. In this paper, for the features of spatiotemporal data of trajectories,
the LSTM structure is integrated on the basis of the deep learning Transformer algorithm framework,
abbreviated as TRFM-LS. The LSTM module can learn the temporal features of spatiotemporal data
in the process of computing the target sequence, while the self-attention mechanism in Transformer
can solve the drawback of applying LSTM to capture the sequence information weakly at a distance.
The advantage of complementarity of the fusion model in the training process of trajectory sequences
with respect to the long-range dependence of temporal and spatial features is realized. Finally, in the
comparative analysis section of the error metrics, by comparing with current state-of-the-art methods,
the algorithm in this paper is shown to have higher accuracy in predicting time series trajectory
data. The research in this paper provides an early warning information reference for autonomous
navigation and autonomous collision avoidance of ships in practice.

Keywords: AIS; Transformer; deep learning; spatiotemporal; trajectory prediction

1. Introduction

Maritime transport is the main means of transport for economic trade and goods
exchanges between countries and is characterized by high cargo-carrying capacity, low
costs, and wide coverage. Up to 85% of the world’s trade is transported by sea, but the
risks associated with this are greater than for other modes of transport. Ensuring the safest
possible navigation of transport vessels at sea is the most basic requirement for maritime
transport. In particular, when ships are navigating in and out of a channel, the density of
passing ships in the limited space is greater than in the outer sea, and even with the aid of
pilots, merchant ships still have a high navigational risk when entering and leaving the
channel. It is therefore essential to predict the trajectory of ships reasonably navigating in
the channel. The forecast can largely reduce navigational risk and ensure safe navigation.

Today, the marine industry is also undergoing a technological revolution known as
the Ship 4.0 era [1]. More and more sensors for data collection are being used in the
waterway transport system [2], among which the Automatic Identification System (AIS) is
an important data resource in the maritime transport system. The AIS can automatically
and regularly broadcast dynamic information such as real-time ship position, heading,
speed, and track direction as well as static information such as ship name, call sign, ship
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type, and ship scale via very high frequency (VHF). These data are automatically received
by ships or base stations with AIS equipment within the VHF coverage area (approximately
20 nautical miles). Further developments in real-time communications at sea and shipborne
data transmission [3] provide favorable data conditions and information for researchers
to obtain large amounts of vessel trajectory data and to explore further ship movement
characteristics. Ref. [4] combines the concept of TCR and a large AIS data source in a
large-scale and real-time maritime traffic environment to identify the ships with potential
for collision accidents.

Trajectory prediction of objects utilizes the historical trajectories and behaviors to
forecast their future motion, which to a certain extent can significantly improve the safety
of the traffic environment. Inspired by the Transformer algorithm model in deep learning,
we implement a method for predicting temporal sequence data, TRFM-LS, by architecting
the LSTM module in the decoder output layer. Transformer can be thought of as a deep
learning model based entirely on attentional mechanisms. The LSTM has the ability to
convey spatiotemporal properties of sequential data, while the complex internal structure
of the Transformer provides a powerful parallel computing capability. This combination of
LSTM and Transformer complements the weakness of the LSTM-based model prediction
algorithm in capturing information when predicting from a distance. Comparative experi-
ments also demonstrate that this paper’s method outperforms prediction methods that rely
entirely on recurrent neural networks in terms of performance and accuracy.

1.1. Related Work

Trajectory prediction has been widely studied in many fields [5], including vehicle
trajectory prediction, pedestrian trajectory prediction, and robot trajectory prediction.

Similarly, many scholars have conducted in-depth research on ship trajectory predic-
tion, which has evolved from traditional statistics-based prediction to machine learning-
based prediction and nowadays the popular deep learning-based prediction. There is also a
large body of literature on the application of historical AIS data combined with algorithmic
models for predicting ship trajectories. For example, in [6], a waypoint estimation algo-
rithm was presented to estimate the waypoints of the interpolated representative trajectory.
Ref. [7] considered the problem of prediction accuracy in constrained waterways and used
real-time estimation of system noise in the Kalman filter algorithm to predict ship trajecto-
ries in the state of insufficient AIS information of ships. Ref. [8] constructed a BP network
structure to predict the future trajectory of a ship by inputting historical trajectories and
current information from AIS data. Ref. [9] predicted traffic trajectories based on Bayesian
probability by introducing a bi-directional long short term memory mixed-density network
(BLSTM-MDN). Ref. [10] proposed a new bi-linear autoencoder method that uses clustering
of historical AIS trajectories to iteratively predict the entire trajectory of future states, and
the predictions rely on the effectiveness of the previous clustering.

With the development of deep neural networks, the long short-term memory (LSTM)
network has become the primary method for trajectory prediction. LSTM sequentially
processes time series data to characterize the position, direction, and speed of agents [11].
As a kind of time series data, the LSTM algorithm is also applicable to the time series
prediction of ship trajectories. The LSTM algorithm not only produces good predictions
when applied alone [12], but its deformed method also has good prediction performance,
e.g., Ref. [13] predicts the trajectory sequence of a ship including longitude, latitude, speed,
and heading characteristics for the next 5–20 min using a variational LSTM. GRU is similar
to LSTM as both are variants of the RNN and, in [14] a ship trajectory prediction model is
developed based on the combination of a multi-headed attention mechanism and GRU.

At the same time, the combination of LSTM and other algorithms has been successfully
applied in the study of trajectory sequence prediction. Many scholars have combined LSTM
models with other models as a new method for prediction, and these combined models have
certain feasibility and effectiveness, e.g., Ref. [15] combined the extended convolutional
network and LSTM algorithm to form the time series model DC-LSTM, and applied the
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extended convolutional network to extract the features of the predictor variables, and then
input them into the LSTM together with the historical data to obtain the desired multi-part
prediction effect. Ref. [16] combined the LSTM algorithm with the TPNet algorithm to
achieve a balance between the accuracy and complexity of trajectory prediction. Ref. [17]
fused LSTM into an encoder–decoder framework and formed a recurrent neural network
to predict sequence-to-sequence ship trajectories, which showed that sequence-to-sequence
neural network-based deep learning trajectory prediction outperformed linear regression
or feedforward networks.

In summary, most of the predictions of trajectories by LSTM algorithms are driven by
big data to learn the behavioral features of agents, which is common to almost all recurrent
networks. LSTMs can implicitly model the inherent dependency between the consecutive
observations of ships’ trajectories in an end-to-end fashion. Despite all this, LSTMs were
recently argued to be inefficient when it comes to modeling longer sequential data [18]. In
addition, LSTMs were also shown to be more sensitive to missing observations which is
typically the case with any data coming from real physical sensors [19].

As deep learning is increasingly researched within various specialized fields, recur-
rent networks (e.g., LSTM) show some weaknesses in big data prediction. Transformer
networks [20] were recently introduced and quickly became the preferred model when it
comes to sequential modeling tasks such as natural language translation and generaliza-
tion [21]. In [22], since the study of natural language processing does not involve temporal
properties, only one layer of LSTM is attached to the front end of masked multi-head atten-
tion (MHA) in Transformer, which provides a complementary historical representation for
attention-based representations.

The Transformer algorithm discards the traditional CNN and RNN, and the structure
mainly consists of a self-attention and feedforward neural network. Its advantage is that
it enables parallelized computation, and its prediction performance has achieved good
results within the field of natural language processing, and also promotes the possibility
of using Transformer for temporal data prediction in other fields. Ref. [23] constructs
the Transformer-XL model based on Transformer, which makes it possible to learn inde-
pendently beyond a fixed length. Ref. [24] constructed a Longformer model based on
Transformer, which predicts longer time series data series. Ref. [25] constructed the Traffic
Transformer model based on Transformer, which captures the continuity and periodicity of
time series according to the model. It is not difficult to find that, in time series prediction,
many prediction studies incorporate an attention mechanism into the algorithm [26,27],
which makes the model pay more attention to the features of data dimensions in predicting
time series data and the learning of the model is more purposeful and the output of the
predicted result is more in line with the real desired state. For example, Ref. [19] used
Transformer for the motion trajectory prediction of pedestrians. Compared with the LSTM
model, which processes sequential data in a step-by-step sequence, the Transformer model
learns sequential data features mainly based on the attentional memory mechanism and
achieves trajectory prediction of independent individuals’ actions in real scenes.

1.2. Contribution

1. A time window panning and smoothing filtering method is proposed. A fixed-step
time window is constructed based on the time interval of AIS trajectory data, and the data
within the time window are smoothed and filtered. The time window is panned along the
time axis on the trajectory so that the data distribution of each vessel history trajectory
tends to be homogenous and smooth. Such an operation not only corrects the trajectory
points that deviate from the actual movement pattern but also revises the wrong points in
the trajectory, further ensuring the global validity of the data.

2. Some deficiencies are improved when using LSTM to predict trajectories. In
the process of learning trajectory sequence data by LSTM, the hidden layer can only
generate and pass the intermediate information of fixed length to the input sequence and
cannot distinguish the importance of feature information of the sequence, which makes the
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operation long and unfavorable to the improvement of prediction accuracy. In this paper,
we apply the multi-headed attention mechanism in Transformer to focus on the weight of
feature information in the trajectory sequence and give more weight to the key information
in the input vector, to predict more accurate results and effectively improve the prediction
accuracy.

3. The structure of the Transformer model for sequence data prediction is improved.
The complementary nature of LSTM is added by combining the LSTM module with the
Transformer prediction framework. The LSTM module can learn the temporal character-
istics of the data in the process of computing the target sequence, and the self-attention
mechanism in Transformer solves the shortcoming of LSTM in capturing weak information
of the sequence at a distance.

The remainder of this paper is organized as follows: Section 2 focuses on the spatiotem-
poral pattern mining of vessel trajectory data and a new filtering method for trajectory
data. The third section is the main research method of this paper, the fourth section is the
experimental comparison analysis, and the fifth section is the conclusion.

2. Vessel Traffic Spatiotemporal Pattern Extraction and Data Processing

In the process of ship trajectory prediction, data processing and deep learning model
construction are the two keys to ensure the accuracy of ship trajectory prediction. The aim
of ship trajectory prediction is to predict the ship’s navigation dynamics in the future period
by establishing an accurate prediction model framework based on the multi-dimensional
characteristics of the ship’s historical trajectory big data. As a source of information that
reflects the real-time dynamics of a ship and its historical state and can be effectively stored,
AIS becomes the main information for predicting the spatiotemporal relationship of a ship
in the future period.

AIS plays an important role in identifying ships, tracking targets, and revealing the
state of maritime traffic. AIS data are multi-dimensional spatiotemporal data, which contain
a wealth of spatiotemporal information and correlations between the various attributes.
AIS information can reflect the busy state of maritime traffic and the pattern of connection
between different routes and ports. The most intuitive tool to reflect the state of maritime
traffic is the density map of traffic distribution as shown in Figure 1a, which shows the
density map of vessel AIS trajectory data distribution in Ningbo-Zhoushan waters off the
coast of China. From Figure 1a it can be seen that although there is a high density of ship
traffic in the water, the ships are not randomly distributed. There is a potentially regular
distribution of routes within the ship traffic flow, but the difference is that the density
varies with the location of the route and indirectly reflects how busy the route is. In the
historical data of traffic flows, when the starting and ending locations of the traffic flows
are defined, the AIS of the spatial distribution of traffic flows between two regions such
as (A, B), (B, C) or between a region and a port such as (Q, B) can be selected, as shown in
Figure 1b. Section 4 describes how these data were used as training for the deep learning
models in this paper.

However, the transmission of AIS data is based on time division multiple access
technology and the data are inevitably subject to signal interference during transmission.
In addition, human factors such as possible mishandling of the equipment make it difficult
to use the AIS data directly for model training and research. We need to preprocess the
data according to the mechanism of the model and the needs of the research objectives.
This paper proposes a smoothing and filtering method for the problems that appear in the
actual state of the ship’s AIS trajectory, which can make the AIS data more learnable in line
with the model.
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2.1. A Time Window Panning Filtering Method for Trajectories

Since there is a certain time gap between the original ship’s historical trajectory data
being transmitted and received, the corresponding spatial distribution of the trajectory data
in the state of a continuous time series does not match with the actual movement of the ship.
As a result, many data in the ship trajectory appear locally jagged or rippled. Figure 2a
shows the ship trajectory after selecting the geographic box, and it can be seen that many
trajectories have localized jagged or ripple-like anomalies. In order to show the anomalous
part of the original data more clearly and visually, we zoomed in on the local part of some
anomalous traces in Figure 2a and mapped several tracks as shown in Figure 2b. The above
data with anomalous trajectories neither conform to the real hydrodynamic motion of the
ship nor contribute to the learning of data features by the algorithm model, which leads to
large errors in predicting the spatial and temporal information of the trajectory.

For the problems of the above trajectories, this paper proposes a filtering method
called “time window panning smoothing filtering”. The duplicate data and out-
lier data in the database need to be removed before filtering. We build a dataset
D =

{
Xk, (k = 1, 2 · · · , N)|X ∈ Θ

}
of trajectory sequences based on MMSI identification

numbers, where Θ denotes the range of geographical areas in which the ship trajectories
are located, while Xk denotes the trajectory sequences of ships with different MMSI. For
any trajectory, a segment can be represented by Xk =

{
τk

i ; i = 1, · · · , T
}

, where τk
i de-

notes the temporal and spatial information of the trajectory point, τk
i has the temporal and

spatial properties of the trajectory point, τ =
{(

tj, xj, yj, vj, cj
)}

(j = 1, 2 · · · , n) denote the
longitude, latitude, speed, and heading at the time of tj, respectively.

The main feature of time series data is that it is possible to describe changes in the state
in the historical time dimension of the object based on its time dimension. Ship trajectory
data are typical of time series data, where the position, speed, and heading of the ship need
to be indexed by the time dimension. Therefore, filtering operations on trajectories need to
be modeled with the time dimension as a reference. During the filtering and smoothing
operation of the trajectory, the time within the time window is selected as the reference
point, so that the time reference is sequential moment points within the window in order.
The kernel function is constructed by calculating the difference between the time in the
window and the time reference point, and the kernel function performs the dot product
operation with the trajectory features corresponding to the traversed time, as shown in
Figure 3a. After that, the filtering of all trajectory feature data is completed by panning
the time window and, finally, the smoothing filtering operation of the whole trajectory
segment is gradually realized. The mechanism of the smoothing filtering operation is
shown in Figure 3b. When determining the size of the time window, taking into account
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the frequency of AIS launch and the sampling interval of the training data required by the
model in this paper, the time window size is set to 60 s. When filtering and smoothing
successive adjacent trajectory points, they are based on a Gaussian kernel function for the
trajectory feature data within the window, as in Equation (1).

W(t) =
1√

2π∆tw
e−

tpi−tr
2∆tw (1)

where ∆tw denotes the size of the time window, tpi denotes the moment of the ith point in
the window, tr denotes the base reference time within this window.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW  6  of  25 
 

 

 
(a) 

 
(b) 

Figure 2. Trajectory before time window panning and smoothing filtering: (a) Vessel trajectory in 

the geographical area before filtering, the arrows point out the jagged or rippled localization in the 

anomalous trajectory (b) Mapping of parts of anomalous trajectories in a geographical area. 

For  the problems of  the above  trajectories,  this paper proposes a filtering method 

called “time window panning smoothing filtering”. The duplicate data and outlier data 

in  the  database  need  to  be  removed  before  filtering.  We  build  a  dataset 

  , 1, 2 ,kD X k N X Θ      of  trajectory  sequences based on MMSI  identifica-

tion numbers, where  Θ   denotes the range of geographical areas in which the ship tra-

jectories are located, while 
kX   denotes the trajectory sequences of ships with different 

MMSI. For any trajectory, a segment can be represented by   ; 1, ,k k
iX τ i Τ   , where 

Figure 2. Trajectory before time window panning and smoothing filtering: (a) Vessel trajectory in
the geographical area before filtering, the arrows point out the jagged or rippled localization in the
anomalous trajectory (b) Mapping of parts of anomalous trajectories in a geographical area.
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Compared with the original trajectory before filtering, the rippled or jagged tra-
jectory points are removed from the ship trajectory data after the above time window
panning filtering algorithm. At the same time, the points in the trajectory that deviate
from the actual motion position of the ship are corrected. The trajectory data are shown in
Figures 2a and 4a. Both come from the same selected geographic box and those in Figure 4a
are displayed as the trajectory in Figure 2a after the smoothing and filtering operation. It
can be seen that any AIS trajectory in the figure is continuously smooth and homogeneously
distributed after the filtering operation. Similarly, the trajectory in Figure 4b is the mapping
of the anomalous trajectory in Figure 2b after the filtering process.
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2.2. Other Preprocessing of Trajectory Data

As mentioned in the previous smoothing filtering research, anomalies in the trajectory
need to be removed before smoothing. Anomalies mainly include duplicate values, error
values, and outliers. Duplicate values refer to the values where the time indexes overlap
and the values of each field are continuously the same in the trajectory generated by the
navigation process. An error value means that the longitude and latitude information of the
track point is beyond the selected waters or the values of COG, SOG, HED, etc. are beyond
a reasonable range. Outliers refer to jump values with large deviations between voyages
with small distances, usually due to incorrectly recorded information for a single point.
These anomalies will affect the subsequent data analysis and application of the model,
which in turn affect the prediction accuracy of the algorithm, so such anomalies should be
processed. Duplicate values can be handled by retaining one of the values and deleting the
rest of the same values, and error values and outliers also need to be interpolated to fill in
the vacant bits after deletion.
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The complete AIS trajectory is composed of a continuous sequence of points during
the ship’s voyage, and it is more appropriate to apply the interpolation method for the com-
plementary processing of the vacant values. For the characteristics of the small time interval
of the trajectory sequence, the application of the cubic spline interpolation method has
some advantages in the smoothing of the trajectory. Therefore, the method of cubic spline
interpolation is used in this study. The functional equation of cubic spline interpolation is
shown in (2). Assuming that the period time of the sequence to be interpolated is divided
into n intervals [(x0, x1), (x1, x2), · · · , (xn−1, xn)] and if n + 1 points y0, y1, · · · , yn satisfy
the function Equation (2), then the data can be interpolated at equal intervals according to
the conditions satisfied by the cubic spline equation and the adjacent data points.

Si(x) = ai + bix + cix2 + dix3 (2)

where ai bi ci di are the coefficients to be determined. The time interval of the AIS data
selected for the experiments in this paper is mostly the emission frequency interval, which
is generally 2–10 s. The intensive time interval cannot test the prediction accuracy of the
model and the information of the predicted future moments will also lose its practical
significance. Therefore, it is necessary to resample the above preprocessed data according
to the research of this paper. In this paper, the time interval of resampling is 1 min, and the
future time period of prediction can be determined according to the length of the sequence
predicted by the model.

In order to make the prediction network converge quickly and avoid the impact of
data on training due to different magnitudes and quantiles, the data are normalized here.
In view of the fact that the numerical distribution of the experimental data has no obvious
boundaries, this paper adopts the mean variance normalization method to normalize the
data, and the equation of mean variance normalization is shown in (3).

S̃j = norm(Sj) =
Sj − Sj

mean

Sj
max − Sj

min

(3)

where S̃j is the normalized value, Sj
mean is the mean value, Sj is the original data, Sj

min and

Sj
max are the minimum and maximum values of the original data, respectively.

The process of the above data processing is summarized in Figure 5.
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3. Methodology

In this part of the study, a deep prediction model method based on historical ship
trajectory data is mainly established, and the method is used to predict the ship’s trajectory
in the future period.

In order to improve the prediction accuracy and better adapt to the learning of spa-
tiotemporal sequence type data, this paper combines the advantages of Transformer and
LSTM to propose a trajectory prediction method incorporating an attention mechanism,
which is named TRFM-LS prediction in this paper.

3.1. Transformer Model Main Architecture

Transformer is a deep learning model that utilizes encoder and decoder structures for
sequence modeling [20]. Transformer networks no longer rely on the structure of time series
in RNN-based neural networks. Transformer also differs from the seq2seq model which
only captures the relationship between the input source and the predicted target while
ignoring the respective internal relationships. As shown in Figure 6, the main network
structure of the Transformer model framework consists of two parts, the encoder block
and the decoder block. The framework mainly relies on the self-attention mechanism
and sub-modules of multi-headed attention for nonlinear learning of time series data and
spatial data internally.
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As a new type of model that is capable of handling sequential data, the Transformer
sub-module also gives the model the ability to train data in parallel. Thus, when an
AIS trajectory containing multi-dimensional features is embedded in the Transformer
architecture in a certain batch, the model is based on temporal and spatial information
delivered to the multi-headed attention mechanism and stacking layers in the architecture
to be able to learn dynamic and hierarchical features in the sequence data. It is also the
difference between Transformer and recurrent neural networks in predicting sequence data.
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3.1.1. Positional Encoding

As shown in Figure 6, the framework has mainly feedforward structures instead of
the previous main convolutional or recurrent structures. Thus, the Transformer module
processes the sequential structure of the trajectory sequence differently from the recurrent
neural network, which mainly relies on self-attention to encode the temporal and spatial
attributes of the trajectory sequence. The encoding E

(i,t)
obj embedded in the input sequence

contains the embedding of the temporal position encoding c
(i,t)
obj and the spatial position

encoding Pt vector of the trajectory sequence. Referring to the setting in [20], this paper
uses the sin function and cos function to encode the location information as in the following
Equation (6).

E
(i,t)
obj = c

(i,t)
obj +P t (4)

P t =
{
p
(
tpos, d

)}D
d=1 (5)

{
p
(
tpos, 2d

)
= sin(tpos/100002d/D)

p
(
tpos, 2d + 1

)
= cos(tpos/100002d+1/D)

(6)

where tpos represents the time position of the input vector in the input sequence, d denotes
the vector dimension.

Positional encoding is very important for the model, because each dimension of the
positional encoding varies in time according to a sinusoid of different frequency. This
ensures a unique time stamp for sequences of up to 10,000 elements and extends unseen
lengths of sequences. At this point, Transformer differs greatly from the RNN. The RNN
processes the input sequentially and the order of input positions determines the flow of
time. It needs to “unroll” at training time, i.e., back-propagate the signal sequentially across
the cell or blocks processing the observations. By contrast, the training of Transformer is
parallelizable. Notably, thanks to the positional encoding which time stamps the input,
Transformer may deal with missing observations. Missing data are just neglected, but the
model is aware of the relative time stamps of the presented observations.

3.1.2. Encoder–Decoder Transformer

Encoder–decoder is an essential structural component of the Transformer, its key con-
tent is the internal attention mechanism. The processed historical ship trajectory positions
are fed to the network, and the network predicts the future trajectory. In this work, the
encoder–decoder network is composed of six encoder blocks and six decoder blocks. Every
encoder block has two sub-layers, a multi-head attention layer, and a feedforward network
layer. The multi-head attention layer uses self-attention to learn the relationships of the
input sequences. The other feedforward layer is a fully connected network responsible
for the linear transformation and ReLU activation function for each position vector. The
output of the encoder block is passed on to the next encoder block or decoder. All encoding
processes are parallel, which greatly improves the efficiency compared to the model in the
original RNN.

Similar to the encoder block, each decoder block consists of three sub-layers, two multi-
head attention layers, and a feedforward network layer. The first part of the attention layer
uses self-attention to learn the relationships within the target sequence. The output of this
layer is fed into the second attention layer together with the results passed from the previous
encoder. The latter is not a self-attention layer, but encoder–decoder attention, which is
mainly used to learn the relationship between the input sequence and the target sequence.
To prevent degradation and accelerate convergence, residuals and layer normalization are
added behind each layer in the encoder block and decoder block.
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3.2. TRFM-LS Trajectory Prediction Model
3.2.1. Transformer–LSTM Fusion Structure

In this section, to exploit the complementarity of the long-term representation of LSTM
hidden states, the TRFM-LS trajectory prediction structure is proposed and an LSTM model
is added to the Transformer block as shown in Figure 6.

After position encoding, the sequence is sent to the encoding module of the Trans-
former, while the sequence is also sent to the LSTM module for processing. LSTM is a
special structure of the RNN, which solves the problem of gradient disappearance and
explosion when dealing with longer time sequences. The core part of the LSTM network
is the hidden layer memory block with stored states. This hidden layer block contains
three gate structures, which are the forget gate, input gate, and output gate. The structure
in the memory block of the hidden layer is initialized by the final hidden state of the
past segment (n − 1), as shown in Figure 7. This hidden layer block allows the sequence
data to pass through the entire cell without information loss, and only a small number of
linear operations are performed to achieve memory retention of the spatiotemporal data
characteristics of long time series.
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The sequences which are input to the LSTM module are processed by a separate LSTM.
The reason for choosing LSTM is that it can be considered a decomposition process. As this
study is a time series modeling problem, temporal features are important in corresponding
to spatial features. We use LSTM to accomplish the embedding of temporal features. Thus,
these models extract temporal and spatial features step by step.

ft = σ(Wt · [ht−1, xi] + b f )
it = σ(Wi · [ht−1, xt])

C̃t = tanh(Wc · [ht−1, xt + bc])

Ct = ft · Ct−1 + it · C̃t
Ot = σ(Wo · [ht−1, xt] + bo)
ht = ot · tanh(Ct)

(7)

where ft is the forget gate, it is the input gate, C̃t represents the update state of the cell, Ct
is the state of the cell, Ot is the output gate, ht is the hidden state. σ represents the sigmoid
function and W and b representing the weights and bias, respectively.

The forget gate ( ft) controls the amount of information in the storage unit at the
previous moment. The input gate (it) controls the amount of information updated by the
memory unit. (C̃t) is created by a tanh neural network layer to create a new state candidate
vector. (Ct) contains the information passed at moment (t− 1) that needs to be discarded
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at this time and the new information (it · C̃t) that needs to be added at moment (t) that is
acquired. The output gate (Ot) controls the amount of information that is output to the
next hidden state. The output value is passed to the state value of the next unit (ht) to
complete the training procedure for all of the information.

The combined model of LSTM and Transformer algorithms provides attention-based
representations from their respective complementary historical representations, which can
improve the capabilities of the network. In the study of this paper, considering the temporal
properties of the trajectory data, the LSTM module can learn the temporal characteristics of
the data in the process of computing the target sequence. The self-attention mechanism in
Transformer solves the drawback that LSTM is weak in capturing sequence information
from a distance. Therefore, this part is designed in such a way that the input information is
fed into both the LSTM module and the encoding block of the Transformer. This achieves
the advantage of the complementarity of the combined model in the training process of
the trajectory sequence for the long-range dependence of temporal and spatial features.
In addition, the combinatorial model can address the impact of error information in the
trained input sequence on the prediction results with a certain degree of fault tolerance.

The sequence after the Transformer encoding module is fused with the output se-
quence of LSTM as an input to the Transformer decoding module. The sub-layer of the
decoder module consists of multi-headed attention and a feedforward neural network.
Normalization is performed after adding residual connections to the back of each sub-layer
to stabilize the gradient and obtain better training performance.

3.2.2. Multi-Headed Self-Attention Mechanism

The working mechanism of Transformer is to selectively focus on the given data for
learning. Meanwhile, the function of the self-attention module is to use the observation
part of the sample and predict the remaining part. In the encoder structure, the matrices
Q, K, and V are derived from the same input features. The input features are projected to
different potential sub-spaces using a learnable feedforward network, which is expressed
as Equation (8). A set of queries is packed together into a matrix Q, while the keys and
values are packed into matrices K and V, respectively.

In the self-attention mechanism, X is the input of the input sequence data after embed-
ding. The inputs of an attention module consist of query embedding inputs, key embedding
inputs, and value embedding inputs.

According to Equation (8), each vector input to X is multiplied with the three parame-
ter matrices Wq, Wk, Wv, respectively, to calculate their weights. In Figure 8, the red dashed
box illustrates the process of calculating the weights of the subsequent input x̃1 and the cor-
responding output Z1. In order to stabilize the gradient, the weights of the computed serial
feature correlations are normalized by dividing them by the square root of dimension dk.
After that, the so f t max layer makes the weight matrix into a probability distribution matrix
of [0, 1], as in Equations (9)–(11). Then, the weighted V is obtained by multiplying with v
at the corresponding position, and the final result is obtained by summing the weighted V
values, as in Equation (11). Each of the remaining weight vectors is calculated in a similar
manner to Z1. As shown in Figure 8, the advantage of the self-attention mechanism is that it
can compute the input sequence in parallel, which greatly improves the speed of extracting
the features of the input sequence. Finally, the features Z1, Z2, · · · Zs of the sequence are
extracted quickly and prepared for the subsequent computation.

XWq = Q
XWk = K
XWv = V

, (8)
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α =


α1,1 α1,2 α1,3 · · · α1,s
α2,1 α2,2 α2,3 · · · α2,s
α3,1 α3,2 α3,3 · · · α3,s

...
...

... · · ·
...

αs,1 αs,2 αs,3 · · · αs,s

 =
Q · KT
√

dk
, (9)

α̃ = So f t max(α), (10)

attention(Q, K, V) = Z = ∑ α̃ ·V, (11)

where X is the input features, dk is the dimension of queries and keys, and Wq, Wk, Wv

denote the trainable parameters in different iterative networks. Multi-head attention is also
the core component of Transformer.
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Multi-head attention uses multiple sets of WQ, WK, WV to obtain multiple sets of
queries, keys, and values, and then each set is computed separately to obtain a Z matrix.
Finally, the obtained multiple Z matrices are stitched together.

Benefitting from the multi-head attention operation, the Transformer frame can jointly
generate comprehensive latent features of trajectory data from different representation
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sub-spaces. The multi-head section computes the scaled dot product of each sub-space in
parallel and finally concatenates all the attention output according to Equation (12).{

MultiHead(Q, K, V) = concat(head1, head2, · · · headh)W
o

headi = attention(QW
Q

i , KWK
i , VWV

i )
(12)

where W
Q

i , WK
i , WV

i , WO
i are the weight matrices in queries, keys, values, and output.

3.3. Fully Connected Feedforward Layer

A fully connected layer is included in both the encoding and decoding blocks, and
the fully connected layer is a two-layer neural network. There is a feedforward network
consisting of two linear transformations with a ReLU activation in each sub-layer [20,28],
as shown in Equation (13). The fully connected layer is followed by the residual network
layer. The residual dropout module is set to reduce overfitting, speed up training, and
improve the efficiency of the network.

FFN(x)= ReLU(xW1 + b1)W2 + b2, (13)

where W1 and W2 are the weight matrices of fully connected feedforward neural networks.
In the process of data training, the current and previous positions are embedded

into the input encoder. The output of the encoder and the output of the LSTM are fused
and transmitted together to the decoder section as a memory for attention operation.
Thereafter, as the position embedding part of the predicted position vector, the object query
information is sent to the decoder part. The decoder recursively and automatically predicts
the future position of the trajectory. The decoding process of the decoder is sequential,
i.e., when decoding the i vector, it can only be based on the i− 1 vector and the previous
decoding results.

4. Experiments and Results

In this section, experiments are conducted to validate the performance of the proposed
model in real ship AIS trajectory prediction. A certain dataset is collected to compare and
analyze the prediction performance of different deep learning methods. Several metrics
are applied to evaluate the performance of our model and compare it with the current
state-of-the-art research methods.

4.1. Dataset Preparation

The data processing procedures and methods are shown in the previous Section 2.
The data were collected from the AIS data of vessels in and out of the core port area
of Ningbo-Zhoushan, China, between the navigation channel of Luotou and Xiazhimen.
Vessels navigating in the waters are mainly merchant vessels for trade transport and there
is a high volume of vessel traffic and a variety of vessel types in the waters. The AIS
data of ships in the waters are suitable for the validation of the prediction model. The
collected data are stored in the form of a database. The AIS data for selected waters are
filtered utilizing the defined rectangular boxes with latitude and longitude boundaries.
Each row of AIS messages in the database includes the ship’s identifier MMSI, time stamp,
latitude and longitude position information, speed, heading, and a static attribute message
of the ship. In addition, the AIS transmitting frequency is related to the movement state
of the ship. The requirements for the time interval of AIS trajectory points during data
processing and the trajectory data with too low speed do not meet the general state of
merchant ship navigation in the channel. As a result, we select trajectory data with a speed
of more than five knots and a length above ninety meters. Aggregation is also required
for the filtered AIS trajectories so that the same identifier (MMSI) AIS data are a collection
of independent trajectories in temporal order. Then, the process and method of the time
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window panning smoothing algorithm for the trajectory data are as in Section 2.1 and will
not be repeated here.

4.2. Experimental Design

The main goal of training the model based on the data is to learn the optimal approxi-
mation as the prediction result. An effective prediction model can map the spatiotemporal
characteristics of trajectories over time based on historical trajectory data. The proposed
method is implemented in a Python 3.8-based programming environment. All the algo-
rithms are computed on an NVIDIA RTX 3060 GPU (6GB RAM) platform. The number
of encoding and decoding modules in the Transformer framework of the model is set to
6, while the number of multi-heads inside the encoding and decoding modules is set to
8. The number of LSTM layers in the spatiotemporal feature embedding module is set
to 3, and the number of nodes in the hidden layer is set to 32. All models are trained
by mean square error (MSE) loss function and optimized using the adaptive stochastic
gradient descent algorithm Adam. When the learning rate is too large, it will cause the
loss function to directly cross the global optimum, and when the learning rate is too small,
the loss function will change slowly, which greatly increases the convergence complexity
of the model, and it is easy to be trapped in the local optimum, so the learning rate is set
to adaptive learning rate = 0.001 in this paper. The variation of the loss in the training
and testing sets after 300 epochs of learning the model is shown in Figure 9a. The model
gradually converges after 100 epochs of learning, but the loss in the testing set is unstable.
When the training exceeds 200 epochs, the loss changes of the training and testing sets tend
to be stable. Figure 9b shows the prediction error variation, which quantitatively depicts
the prediction effect of the algorithm on longitude and latitude after learning.
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4.3. Results
4.3.1. Model Comparison

In order to validate the effectiveness of the proposed algorithm, in this section we
compare the prediction results of the proposed algorithm with the LSTM model, Attention-
LSTM model, Bi-LSTM mode, and SVR model, respectively. In this section, each model
is designed to learn 100 epochs, 200 epochs, and 300 epochs for the data, and then the
prediction results are compared, as shown in Figures 10–12.
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where  iy   denotes  the  true value of  the  trajectory data feature,  iy   denotes  the corre-
sponding predicted value of the trajectory data feature. 
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Figure 12. The comparison of the performance after learning 300 epochs of different methods:
(a) LSTM (b) LSTM-attn (c) Bi-LSTM (d) SVR (e) TRFM-LS.

(a) LSTM algorithm trajectory prediction refers to the application of the LSTM method
to train the model and predict the longitude and latitude of the trajectory.

(b) Attention-LSTM (abbreviated as LSTM-attn) is the introduction of the attention
mechanism in the LSTM method. The essence is to highlight the attention to the features
by assigning the difference to the hidden layer units and to predict the features of the
trajectory.

(c) The Bi-LSTM model is composed of two LSTM cells with different directions.
Information is passed from the positive direction of one cell and the negative direction
of the other cell and finally combined into a final output and enables the prediction of
trajectory features.

(d) SVR is a support vector regression model, where the core of the model is to find
the best linear function and create a spacing band on both sides. The model is optimized
by minimizing the total loss and maximizing the support vector.

(e) The comparison shows that the prediction result of the TRFM-LS model is closer to
the real value and has a better prediction effect.

4.3.2. Evaluation Metrics

In this study, three indicators, mean absolute error (MAE), mean square error (MSE),
and root mean square error (RMSE), are used to evaluate the prediction effectiveness of
the model. MAE indicates the mean of the absolute error between the predicted and true
values, which can visually reflect the strengths and weaknesses of the model. MSE indicates
the expected value of the squared difference between the predicted and true values, and
the smaller the value of MSE, the better the prediction model reflects the experimental data
with better accuracy. RMSE measures the deviation between predicted and true values, is
more intuitive in terms of order of magnitude, and the metric is more sensitive to outliers
in the data. The equations are shown in (14)–(16).

MAE =
1
m

m

∑
i=1
|yi − ŷi| (14)
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MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (15)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (16)

where yi denotes the true value of the trajectory data feature, ŷi denotes the corresponding
predicted value of the trajectory data feature.

In this section, a statistical method box plot is used to compare the error metrics of
the state-of-the-art or typical prediction models. The MAE, MSE, and RMSE are three
of the more standardized metrics for evaluating prediction models and are commonly
used as metrics in many trajectory prediction studies in the literature. We draw box plots
and comparisons of MAE, MSE, and RMSE for each method after trajectory prediction, as
shown in Figure 13.
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Obviously, the TRFM-LS method has the lowest error metric of MAE of 1.229 for
longitude and the lowest error metric of RMSE of 1.584 in terms of prediction performance
of ship trajectories. Meanwhile, the error metric of MAE for latitude is as low as 2.131 and
that of RMSE is 2.395, both of which are lower than the error metrics of other prediction
methods. It demonstrates that the method studied in this paper has better performance in
trajectory prediction.
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5. Conclusions

The historical AIS trajectory data of ships in busy maritime waters, together with
the multi-dimensional features inherent in time series data, provide directions for the
scalability of deep learning algorithms used on the data. In this paper, the spatiotemporal
correlation of AIS data is fully considered, to mine and exploit their correlation properties.
After a multi-dimensional analysis of the data, a time window trajectory filtering method is
proposed. The application of this method effectively smooths the jumps and outliers in the
trajectory data well, ensures the continuity and integrity of the trajectory, and also prepares
the data well for the time series.

This paper integrates a new trajectory time series prediction method based on the
deep learning of historical AIS trajectory data of vessels. In the study, the Transformer
model is improved based on the characteristics of temporal sequences of trajectory data,
and the LSTM module is combined with the Transformer prediction framework. The fused
method predicts the position of the ship in the future period. Compared with the state-of-
the-art methods, the proposed method in this paper has better prediction accuracy and
smaller error, which proves the feasibility and effectiveness of this algorithm. In the gradual
development process of intelligent shipping, this research provides a kind of early warning
information reference for the ship’s autonomous navigation and collision avoidance.

6. Discussion
6.1. Limitations

This paper explores a new trajectory prediction method by combining the LSTM mod-
ule and Transformer model based on deep learning theory, but there are some limitations
in this research. The predicted trajectory is the vessel’s track data under normal navigation
conditions and does not take into account the effects of external factors such as special
weather conditions and encounters with other vessels. In addition, the preprocessing of the
data is based on spatiotemporal characteristics to establish the time series data.

6.2. Future Research

Future research could be conducted to address the above limitations. For example,
the prediction of multi-dimensional features of trajectories based on deep learning meth-
ods when considering ship encounter scenarios. Alternatively, deep learning models
could be used as a basis for studying the prediction of trajectory data and ship dynamics
characteristics after being influenced by geographical and meteorological conditions.
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