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Abstract: Herein, a numerical model is proposed to simulate the nonlinear wave propagation from
deep to shallow water and wave breaking phenomena. In the numerical model, the governing
equations selected, in which the momentum equations were added to the eddy-viscous breaking
and bottom friction terms to simulate the wave breaking phenomenon, are suitable for the wave
propagation from deep to shallow water. The spatial derivations of the governing equations are
discretized with the hybrid scheme, combining the finite-difference and finite-volume methods. To
numerically simulate the nonlinear wave propagation in waters with various depths accurately, the
non-conservative governing equations are reorganized as conservative to facilitate a total variation
diminishing (TVD) type scheme using a Riemann solver. Extensive numerical tests of nonlinear
wave propagation have been realized in waters with large relative water depths and varying water
depths. The comparisons between numerical and analytical or experimental results indicated that
the numerical results are reasonable and reliable, and the present numerical model can effectively
simulate the wave-breaking phenomenon.

Keywords: nonlinear wave; TVD Riemann solver; numerical simulation; deep water; wave breaking

1. Introduction

Most waves are generated in the deep waters of an open ocean. Complicated physical
phenomena such as shoaling, reflection, refraction, diffraction, and wave breaking occur
when the wave propagates from deep to shallow water. The physical phenomena gener-
ated during water propagation and transformation are extremely important for coastal
engineering. This is because they affect the design of coastal structures and can induce
current circulation in the nearshore region, which affects the molding of topographical
features. Therefore, it is essential to study the wave propagation from the open sea to the
surf zone.

The Boussinesq-type and mild slope equations are commonly used to study wave propaga-
tion in coastal water regions. Peregrine (1967) [1] derived two-dimensional classical Boussinesq-
type equations suitable for mildly varying water depths using the perturbation method. The
conventional Boussinesq-type equations are weakly dispersive and nonlinear. To improve their
water depth application range and nonlinear characteristics, many scholars (Madsen et al., 1991 [2];
Nwogu, 1993 [3]; Wei et al., 1995 [4]; Hong, 1997 [5]; Zhang et al., 2011 [6]) proposed different
improved Boussinesq-type equations to enhance the accuracy of the linear dispersion relation-
ship and velocity distribution along water depth and the nonlinear characteristics. The mild
slope equation derived by Berkhof (1972) [7] is valid for describing the combined refraction-
diffraction phenomenon of linear waves in water of slow varying topography. The mild
slope equation has also been improved by many scholars (Hong, 1996 [8]; Panchang, 1990 [9];
Kirby and Dalymple, 1986 [10]; Tsai, 2014 [11]; Kim and Kaihatu, 2021 [12]); therefore, it is no
longer limited to simulating the monochromatic wave propagation in water of slow varying
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topography, and it can simulate the nonlinear irregular wave propagation in water of steep
slope topography.

Because the Boussinesq-type and mild slope equations have their respective disad-
vantages, some scholars (Tang and Ouellet, 1997 [13]; Wu et al., 2009 [14]; Li, 2008 [15];
Li, 2010 [16]) tried to develop a theoretical model to unify the two equations. Combin-
ing the first- and second-order Stokes wave theory with the Boussinesq-type equations,
Li (2008, 2010) [15,16] derived the nonlinear wave equations suitable for varying water
depth topography and without water depth restriction. In shallow water, the nonlinear
wave equations reduce to the improved classical Boussinesq-type equations derived by
Nwogu (1993) [3], and the second-order Stokes waves can be simulated directly with-
out water depth restriction in deep water. Meanwhile, the regular and irregular waves
from shallow to deep water were numerically simulated based on the finite-difference
method (FDM).

Before 2005, the numerical models with the Boussinesq-type and mild slope equa-
tions employed as the governing equations were commonly discretized based on FDM
(Madsen et al., 1991 [2]; Hong et al., 1998 [17]; Wei et al., 1995 [4]; Zhang et al., 2007 [18];
Fang and Zou, 2010 [19]) and the finite-element method (FEM) (Zhao et al., 2004 [20];
Liu et al., 2012 [21]). However, finite-difference and finite-element numerical models for
Boussinesq-type equations are noisy in practice, requiring filters to suppress spurious
oscillations near shorelines and for breaking waves (Kirby et al., 1998 [22]; Walkley and
Berzins, 2002 [23]). Erduran et al. (2005) [24] proposed a hybrid scheme composed of the
finite-volume method (FVM) and FDM to solve the conservative form of one-dimensional
Boussinesq-type equations derived by Madsen and Sørensen (1992) [25]. The fourth-order
monotonic upstream-centered scheme for conservation laws (MUSCL)-total variation di-
minishing (TVD) scheme proposed by Yamamoto and Daiguji (1993) [26] was employed
for the finite-volume discretization of the first-order derivative terms. The higher-order
spatial derivative terms were discretized by FDM. The third-order Adams-Basforth pre-
dictor and the fourth-order Adams-Moulton corrector methods were employed to achieve
fourth-order accuracy in time. Frazão and Zech (2002) [27] demonstrated that the numerical
results obtained based on the hybrid method were more accurate compared to those based
on the FDM for the simulation of secondary free-surface undulations (Favre waves). The
hybrid method has been employed rapidly because it can effectively simulate the prop-
agation and transformation of regular and irregular waves (Tonelli and Petti, 2009 [28];
Roeber et al., 2010 [29]; Shi et al., 2012 [30]; Choi et al., 2018 [31]). The unified numerical
solutions of Boussinesq-type and nonlinear shallow water equations were actually achieved
by employing the hybrid method.

Although the Boussinesq-type equations have been improved, their water depth
application ranges are limited by the water depth restriction. Therefore, the nonlinear
wave equations derived by Li (2010) [16] were employed as the governing equations in this
study. In Section 1, the governing equations, to which the momentum equations are added
the wave breaking and bottom friction terms, are re-derived as the conservative form. In
Section 2, the numerical scheme is proposed. In the numerical scheme, the hybrid scheme
composed of FDM and FVM is proposed to discretize the spatial derivatives, and the
predictor-corrector scheme is proposed for time stepping. In Section 3, the monochromatic
and bichromatic wave propagation in the waters with uniform depths is numerically
simulated, and the calculation results are compared with the theoretical solutions. In
Section 4, the wave propagation and wave breaking in the waters with variable depths are
numerically simulated, and the calculation results are compared to the experimental data.
Finally, the conclusions are presented.

2. Governing Equations
2.1. Nonlinear Water Wave Equations

Li (2010) [16] derived nonlinear wave equations by combining the second-order Stokes
wave theory in deep water with the Boussinesq theory in shallow water. The equations
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are suitable for wave propagation from deep water to shallow water without water depth
restriction. The one-dimensional horizontal (1DH) equations are expressed as

∂η

∂t
+

∂

∂x
[(h + η)uα] + M1 = 0 (1)

∂uα

∂t
+ uα

∂uα

∂x
+ g

∂η

∂x
+

∂M2

∂t
+ M3 = 0 (2)

where M1, M2, and M3 are expressed as

M1 =
∂3(F2uα)

∂x3 +
∂

∂x

[
h

∂2

∂x2 (F3uα)

]
+

∂

∂x

[
hZα

∂2

∂x2 (F4uα)

]
+

∂

∂x

(
hZ2

α

2
∂2uα

∂x2

)
(3)

M2 =
∂2

∂x2 (F1uα) + Zα
∂2

∂x2 (F4uα) +
Z2

α

2
∂2uα

∂x2 (4)

M3 =
∂

∂x

[
uα

∂2

∂x2 (F5uα)

]
(5)

F1, F2, F3, F4, and F5 are expressed as

F1 ≡
1− R

k2 − TZα

k
+

Z2
α

2
(6)

F2 ≡
h
k2

(
S− C2R

gh

)
(7)

F3 ≡
1− S

k2 − TZα

k
+

Z2
α

2
(8)

F4 ≡
T
k
− Zα (9)

F5 ≡
D
k2 (10)

where
Zα ≡ αh (11)

R ≡ cosh(kh)
cosh(kh + kZα)

(12)

β =
1

1− R

{
1
2
+ R− R[2 + R− 3Rcoth2(kh)]

3tanh(kh)− 3kh
8Rtanh(kh)− 6kh

}
(13)

C2 ≡ g
k

tanh(kh) (14)

T ≡ tanh(kh + kZα) (15)

S ≡ sech(kh + kZα) (16)

D ≡ β(1− R) (17)

where x is the direction of wave propagation; t is the time; h is the still water; η is the
surface elevation; uα is the horizontal velocity located at Zα; α is a constant determined by
linear shoaling analysis, and α was selected as −0.66 according to Li (2008) [15]; g is the
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gravitational acceleration; k is the wave number and was selected different values for the
different types of waves. For example, the value of k for the irregular wave was suggested
as 0.00001 according to Li (2008).

The wave breaking cannot be simulated directly using the numerical model proposed
by Li (2010). Therefore, adding the bottom friction term, M f , and wave breaking term, Mb,
to the momentum Equation (2) gives

∂uα

∂t
+ · · ·+ M f + Mb = 0 (18)

The specific expressions of M f and Mb are discussed in Section 2.2.

2.2. Mb and M f

2.2.1. Mb

The eddy viscosity-type formulation proposed by Kennedy et al. (2000) [32] was
successfully employed in the Boussinesq-type equations derived by Kim et al. (2009) [33]
(Yao et al., 2012) [34]. It was selected as the breaking model in this study. The 1DH form
expression for Mb is given by

Mb =
∂

∂x

(
v

∂Huα

∂x

)
(19)

where H (H = h + η) is the total water depth; v is an empirical coefficient given by
v = BδHηt; δ is an important parameter for wave breaking on a slope, and it ranges
from 1.4 to 10 and was selected as 2.0 by Yao et al. (2012) [34]. The quantity B varies
smoothly from 0 to 1 to avoid an impulsive start of breaking and the resulting instability.
ηt
∗ determines the onset and stoppage of breaking process. The expressions for B and ηt

∗

are given by

B =


1 ηt ≥ 2ηt

∗

ηt/ηt
∗ − 1 ηt

∗ < ηt ≤ 2ηt
∗

0 ηt ≤ ηt
∗

(20)

ηt
∗ =

{
ηt

F t− t0 ≥ T∗

ηt
I + t−t0

T∗
(
ηt

F − ηt
I) 0 ≤ t− t0 < T∗

(21)

where t0 is the time at which the breaking event starts; t − t0 is the age of the break-
ing event; T∗ is the duration of the breaking event; ηt

I and ηt
F are the threshold value

at the time which the breaking event starts and ends, respectively; T∗ = α1
√

H/g,
ηt

I = α2
√

gH, ηt
F = α3

√
gH, where α1, α2, and α3 are the empirical coefficients and

are given in Section 4.2.

2.2.2. M f

M f is expressed as
M f = ζuα|uα| (22)

where ζ is an empirical coefficient related to the Manning coefficient, n, and it is evaluated as

ζ =
gn2

H1/3 (23)

n ranges from 10−3 to 10−2.

2.3. Treatment of the Surface Gradient Term

A numerical imbalance problem occurs when the surface gradient term is conven-
tionally split into an artificial flux gradient and a source term using the hybrid numerical
scheme (Zhao et al., 1996) [35]. To ensure a well-balanced solution for any numerical order
for an unforced, still water condition, Rogers et al. (2001) [36] proposed a method for the
treatment of the surface gradient term that could eradicate the imbalance problem, which
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was demonstrated by Rogers et al. (2003) [37]. Using this method, the surface gradient
term is split as (Shi et al., 2012) [30]

gH
∂η

∂x
=

∂

∂x

(
1
2

g(η 2 + 2hη)

)
− gη

∂h
∂x

(24)

2.4. Conservative Form of the Governing Equations

The choice of variables is critical when flow discontinuities occur. The discontin-
uous problems are known as the Riemann problems, and they were solved using the
Riemann solver. The conserved variables are selected when the Riemann problems are
solved. Equations (1) and (18) expressed with the conserved variables H and M(M = Huα)
were re-derived.

Because the bathymetry is stationary, continuity Equation (1) becomes

∂H
∂t

+
∂M
∂x

+ M1 = 0 (25)

Substituting Equation (24) into Equation (18), the conservative form of the momentum
equation can be expressed as

∂V
∂t

+
∂

∂x

[
MM

H
+

1
2

g(η 2 + 2hη)

]
+ uα M1 −M2

∂η

∂t
+ HM3 − gη

∂h
∂x

+ HM f + HMb = 0 (26)

where V = Huα + HM2.

3. Numerical Scheme
3.1. Compact Form of the Governing Equations

Equations (25) and (26) can be uniformly written as

Ut + F(U)x = S (27)

where U, F(U), and S are the conserved variables, flux function, and source term, respec-
tively, and they are given as

U =

[
H
V

]
, F =

[
Huα

Huα
2 + 1

2 g(η 2 + 2hη)

]
,

S =

[
−M1

gη ∂h
∂x − HM3 + M2

∂η
∂t − uα M1 − HM f − HMb

] (28)

3.2. Spatial Discretization

A hybrid method combining FVM and FDM was applied to the spatial discretization.
The source term was discretized using the FDM, while the flux term was discretized
using the FVM. The numerical flux term was solved in two steps. In the first step, a
reconstruction technique was used to compute values at the cell interfaces; in the second
step, the numerical fluxes at the cell interfaces were obtained by using the Riemann solver.

The fourth-order MUSCL-TVD scheme (Yamamoto et al., 1993) [26] was employed to
reconstruct the values at the cell interfaces. In the x-direction, the interface constructions
can be written as follows:

∅L
i+1/2 = ∅i +

[
χ(r)∆∗∅i+1/2 + 2χ

(
1
r

)
∆∗∅i+1/2

]
/6 (29)

∅R
i−1/2 = ∅i −

[
2χ(r)∆∗∅i−1/2 + χ

(
1
r

)
∆∗∅i+1/2

]
/6 (30)
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where ∅L
i+1/2 is the constructed value at the left-hand side of interface i + 1/2 and ∅R

i−1/2
is the constructed value at the right-hand side of interface i− 1/2. The values of ∆∗∅ are
evaluated as follows:

∆∗∅i+1/2 = ∆∅i+1/2 − ∆3
−
∅i+1/2/6 (31)

∆∅i+1/2 = ∅i+1 −∅i (32)

∆3
−
∅i+1/2 = ∆

−
∅i+3/2 − 2∆

−
∅i+1/2 + ∆

−
∅i−1/2 (33)

∆
−
∅i−1/2 = minmod(∆∅i−1/2, ∆∅i+1/2, ∆∅i+3/2) (34)

∆
−
∅i+1/2 = minmod(∆∅i+1/2, ∆∅i+3/2, ∆∅i−1/2) (35)

∆
−
∅i+3/2 = minmod(∆∅i+3/2, ∆∅i−1/2, ∆∅i+1/2) (36)

where the Minmod limiter is given as

minmod(l, m, n) = sign(l)max{0, min[|l|, 2sign(l)m, 2sign(l)n]} (37)

The van-leer limiter is selected as χ(r) and given as

χ(r) =
r + |r|
1 + r

(38)

where

r =
∆∗∅i+1/2

∆∗∅i−1/2
(39)

The numerical fluxes are computed using a HLL approximate Riemann solver

F
(

UL, UR
)
=


F
(
UL) if sL ≥ 0

F
(
UR) if sR ≤ 0

sR F(UL)−sL F(UR)+sRsL(UR−UL)
sR−sL

if sL < 0 < sR

(40)

where the wave speeds of the Riemann solver are given as

sL = min
(

UL −
√

gHL, us −
√

ϕs

)
(41)

sR = min
(

UR −
√

gHR, us +
√

ϕs

)
(42)

us and ϕs are estimated as

us =
1
2

(
UL + UR

)
+
√

gHL −
√

gHR (43)

√
ϕs =

1
2

(√
gHL +

√
gHR

)
+

1
4

(
UL −UR

)
(44)

The spatial derivatives of the source term are evaluated at the cell centroids as

(∅i)x =
∅i−2 − 8∅i−1 + 8∅i+1 −∅i+2

12∆x
+ o
(

∆x4
)

(45)
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(∅i)xx =
∅i+1 − 2∅i +∅i−1

∆x2 + o
(

∆x2
)

(46)

(∅i)xxx =
∅i+2 − 2∅i+1 + 2∅i−1 −∅i−2

2∆x3 + o
(

∆x2
)

(47)

where ∆x is the grid size.

3.3. Time Integration

The time integration utilizes the predictor-corrector scheme. Let ∆t denotes the time
step. The third-order Adams–Basforth scheme was employed in the predictor stage, and it
is given as

Ûn+1
i = Ui

n +
∆t
12

[
23
(
−∆Fi

∆x
+ Si

)n
− 16

(
−∆Fi

∆x
+ Si

)n−1
+ 5
(
−∆Fi

∆x
+ Si

)n−2
]

(48)

The fourth-order Adams-Moulton scheme was employed in the corrector stage, and it
is given as

Ui
n+1 = Ui

n + ∆t
24

[
9
(
−∆F̂i

∆x + Ŝi

)n+1
+ 19

(
−∆Fi

∆x + Si

)n

−5
(
−∆Fi

∆x + Si

)n−1
+
(
−∆Fi

∆x + Si

)n−2
] (49)

An adaptive time step following the Courant–Friedrichs–Lewy (CFL) criterion is
given as

∆t = ξmin
i

(
∆x

|uα,i|+
√

gHi

)
(50)

where ξ is the Courant number and it is selected as 0.5 for the following examples.

3.4. Boundary Conditions

The numerical wave flume is shown in Figure 1. The left end of the wave flume is set
as the incident boundary. The monochromatic wave incident condition was specified by
the Stokes first-order solution, while the bichromatic wave incident condition was specified
by the second-order solution proposed by Hong (1980) [38].
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Figure 1. Sketch of the numerical wave flume.

The right end of the wave flume is set as the solid wall boundary. Three ghost cells are
needed for the fourth-order MUSCL-TVD scheme (Shiach and Mingham, 2009) [39]. The
point numbers at the grid center in the computational domain are 1, 2, . . . , N and those at
the grid center in ghost cells are N + 1, N + 2, and N + 3. Solid wall boundaries are modeled
according to the following expressions:

HN+i = HN−i, uα N+i = −uα N−i i = 1, 2, 3 (51)
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To absorb the waves at the right end of the wave flume, the sponge layer proposed by
Larsen and Dancy (1983) [40] was employed. That is, after each iteration step, η and uα are
divided by function f (x). The expression of f (x) is

f (x) = exp
[(

2−(N∆x−x)/∆x − 2−xs/∆x
)

lnϑ
]

N∆x− xs < x ≤ N∆x (52)

where xs is the width of the sponge layer, which is often set to 1–2 times the incident
wavelength, and it was considered to be 2 times the incident wavelength in this study. ϑ is
a coefficient, and it was considered as 5.0 in this study.

4. Numerical Simulation of Wave Propagation in Waters of Uniform Depth
4.1. Numerical Simulation of Monochromatic Wave Propagation

As shown in Figure 1, the length of the wave flume was set at 20 times the incident
wavelength. The parameters of the incident wave for the cases are listed in Table 1. A, H0, T,
and L denote the wave amplitude, wave height, wave period, and wavelength, respectively.
µ and ε denote the ratio of water depth to wavelength and the ratio of wave amplitude to
water depth, respectively. ∆x was set as L/50 and ∆t as T/1000 for Case I; ∆x was set as
L/500 and ∆t as T/10,000 for Case II; ∆x was set as L/300 and ∆t as T/10,000 for Case III.

Table 1. Parameters of the incident monochromatic waves.

Cases h (m) A (m) H0 (m) µ ε H0/h H0/L T (s) L (m)

I 1.4 0.07 0.14 0.1 0.05 0.1 0.01 4.0 14.0
II 318.0 4.0 8.0 3.0 0.013 0.025 0.075 8.24 106.0
III 636.0 8.0 16.0 6.0 0.013 0.025 0.151 12.978 106.0

The numerical instantaneous free surface elevations along the wave flume are com-
pared to the theoretical ones in Figure 2. Case I considers the transition water wave. Cases
II and III consider deepwater waves. As shown in Figure 2, the wave surfaces along the
wave flume are a typical regular sinusoidal waveform, which propagates uniformly and
stably. The numerical results are consistent with the theoretical solutions. Therefore, com-
pared to the conventional Boussinesq-type numerical model, the present numerical model
significantly expands the applicable range of water depth and can effectively simulate
wave propagation in large water depths.
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Figure 2. Comparisons of the instantaneous wave profiles for monochromatic waves (dashed line:
theoretical solutions; solid line: numerical solutions) [(a) µ = 0.1, ε = 0.05; (b) µ = 3.0, ε = 0.013;
(c) µ = 6.0, ε = 0.013].

4.2. Numerical Simulation of Bichromatic Wave Propagation

To systematically simulate the propagation of bichromatic waves, four groups of
bichromatic wave combinations were selected as the incident waves. The cases selected
contain three types of bichromatic wave combinations: the combination of two shallow
water waves, two transition water waves, and two deep water waves. The still depths for
Cases A and B1 were set at 1.0 and 0.45 m, respectively. The still depths for Cases B2 and C
were both set at 0.4 m. The total lengths of the numerical flume were set at 20 times the
wavelength of incident wave 1 for all of the considered cases. The wave incident condition
was specified by the second-order solution proposed by Hong (1980) [38], and naturally,
the theoretical solutions are calculated based on Hong (1980) [38]. The parameters of the
incident waves are listed in Table 2. ∆x was set at L1/50 and ∆t at T1/1000. After model
tests, the wave number in the governing Equations (27) and (28) for all cases was finally set
as (k1 + k2)/2.

Table 2. Parameters for different combinations of bichromatic waves.

Cases
Incident Wave 1 Incident Wave 2

T1(s) A1(m) L1(m) µ1 T2(s) A2(m) L2(m) µ2

A 7.0 0.02 21.62 0.046 14.0 0.002 43.70 0.023
B1 2.0 0.01 3.88 0.12 2.5 0.01 5.0 0.09
B2 1.02 0.02 1.51 0.265 2.15 0.02 4.01 0.1
C 0.6 0.004 0.56 0.71 0.6 0.003 0.56 0.71

Figure 3 shows the comparisons for all cases between the numerical instantaneous
spatial free surface elevation and the theoretical solutions. Figure 4 shows the comparisons
between the calculated time series of surface elevation and the theoretical solutions for all
cases. For Case A, the amplitude of incident wave 1 is 10 times that of incident wave 2,
whereas the period of incident wave 2 is 2 times that of incident wave 1. As shown in
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Figures 3a and 4a,b, the high- and low-wave crests formed after the superposition of two
waves, which becomes significant with the increase in propagation distance. The numerical
solutions can more effectively illustrate the nonlinear effect than the theoretical solutions.
Cases B1 and B2 consider the bichromatic wave combination of two transition water waves.
The wave heights for every case are the same, and the wave groups are fully modulated
wave groups. As shown in Figures 3b and 4c,d, the wave group waveform changes
periodically and stably, and the numerical solutions are consistent with the theoretical
solutions. Comparing Figure 3b,c, and Figure 4c–f, it can be established that the second-
order wave peaks appear for Case B2, which indicates that the wave-wave nonlinear
interaction for Case B2 is more significant than that for Case B1. As shown in Figure 4e,f, in
Case B2, there are phase differences between the numerical solutions and the theoretical
solutions, and the phase difference increases as the wave propagates forward. Case C
considers the bichromatic wave combination of two deepwater waves. The wave heights
of the two incident waves are close, and the wave period and wavelength are the same. As
shown in Figures 3d and 4g,h, after the interaction of two waves with the same frequency, a
regular sinusoidal waveform is still maintained; only the amplitude is the superposition of
those of two single waves. Therefore, the results indicate that the present numerical model
can effectively simulate the propagation and transformation of a bichromatic wave in
waters of uniform water depth in most cases, except for the phase differences encountered
in a particular case.
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Figure 3. Comparisons of the instantaneous wave profiles for bichromatic waves (dashed line:
theoretical solutions; solid line: numerical solutions) [(a) Case A; (b) Case B1; (c) Case B2; (d) Case C].
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Figure 4. Comparisons of the time series of surface displacement at different locations for bichromatic
waves (dashed line: theoretical solutions; solid line: numerical solutions) [(a) Case A, x = 5.0L1;
(b) Case A, x = 15.0L1; (c) Case B1, x = 5.0L1; (d) Case B1, x = 15.0L1; (e) Case B2, x = 5.0L1; (f) Case
B2, x = 15.0L1; (g) Case C, x = 5.0L1; (h) Case C, x = 15.0L1].
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5. Numerical Simulation in the Wave Flume with an Uneven Bottom
5.1. Wave Propagation over a Submerged Bar

The laboratory experiment containing a submerged bar was conducted to verify the
accuracy of the numerical models based on the Boussinesq-type equations. Luth et al. (1994) [41]
conducted a physical model experiment in a wave flume. The layout of the experimental set-
up, the locations of the measurement stations, and the geometry of the flume are illustrated
in Figure 5. The total length of the wave flume was 32.0 m. The still depth was 0.4 m in the
deep region and decreased to 0.1 m at the top of the bar, which consisted of an upward slope
of 1:20 and a 2.0 m horizontal crest followed by a downward slope of 1:10. Two sets of data
collected by Luth et al. (1994) [41] are summarized in Table 3. The incident wave boundary
condition is specified with the Stokes first-order solution in this study. ∆x were selected as
L/150 and L/50 for Cases I and II, respectively, and ∆t was set as T/1000 for the two cases.
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Figure 5. Sketch of a wave flume with a submerged bar following the experimental setup by
Luth et al. (1994) (m) [41].

Table 3. Parameters of incident waves for two cases.

Cases I II

H0 (m) 0.02 0.041
T (s) 2.02 1.01

µ 0.107 0.269
ε 0.025 0.051

Figures 6 and 7 show the time series of the surface displacements at different locations
for Cases I and II, respectively. As shown in Figures 6 and 7, the wave shapes are less
affected by the topography; that is, the wave surfaces at x = 2.0 and 4.0 m maintain a regular
sinusoidal waveform. This is because the front part of the bar has a horizontal bottom.
When x = 10.5 m, the wave has encountered the submerged bar; thus, the ratio of wave
height to water depth is increased, nonlinear effects become significant, and the wave crests
increase. Moreover, the wave profile begins to tilt in Figure 6 because the relative water
depth is shallower in Case I. When x = 12.5 and 13.5 m, the wave has reached the top of
the submerged bar; the wave crest becomes steeper and the wave trough becomes flatter.
It can be observed from Figure 6f,g that a significant secondary wave crest occurs owing
to the wave passing over the top of the submerged bar. During waves propagating from
x = 14.5 to 15.7 m, the secondary wave crest increases while the primary wave crest
decreases, and the phenomenon of harmonic decomposition becomes significant. As
shown in Figure 6h,j, at gauges 17.3, 19.0, and 21.0 m, the waves have propagated into the
deep-water region, where the secondary wave crest keeps growing. Comparing Case I to
Case II, Case II has a larger relative water depth. Therefore, Case II has stronger dispersive
characteristics than Case I. As shown in Figures 6 and 7, the numerical results at the leading
side and the top of the submerged bar are consistent with the experimental data. After
the wave propagates through the submerged bar into the deep-water region, the higher
harmonics are released, specifically for Case I. However, the numerical results cannot fully
illustrate the existence of the released higher harmonics, which is more obvious in Figure 6
than in Figure 7. This is because the governing equations adopted in this study are weakly
nonlinear, and the relative water depth for Case I is smaller than for Case II.
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Figure 6. Comparisons of the time series of surface displacement at different locations for Case I (dashed
line: experimental data; solid line: numerical solutions) [(a) x = 2.0 m; (b) x = 4.0 m; (c) x = 10.5 m;
(d) x = 12.5 m; (e) x = 13.5 m; (f) x = 14.5 m; (g) x = 15.7 m; (h) x = 17.3 m; (i) x = 19.0 m; (j) x = 21.0 m].
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Figure 7. Comparisons of the time series of surface displacement at different locations for Case II (dashed
line: experimental data; solid line: numerical solutions) [(a) x = 2.0 m; (b) x = 4.0 m; (c) x = 10.5 m;
(d) x = 12.5 m; (e) x = 13.5 m; (f) x = 14.5 m; (g) x = 15.7 m; (h) x = 17.3 m; (i) x = 19.0 m; (j) x = 21.0 m].

5.2. Numerical Simulation of Wave Propagation on Slopes

Tsai et al. (2005) [42] conducted three sets of physical model experiments that contain
three bottom slopes of 1:10, 1:5, and 1:3 to verify empirical formulas for the breaking
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wave heights. The experimental parameters of the bottom slope of 1:10 were selected for
numerical simulation, and the horizontal section was rough in this study.

The sketch of the experimental setup is shown in Figure 8. The horizontal ordinate
denotes the distance from the toe of the slope. The still water depth is 0.98 m before the
slope and decreases to 0.18 m at the top of the slope. Various wave gauges were used
to measure the wave profiles, and an A–D converter at a sampling frequency of 20 Hz
digitized all records. Parameters H0, T, and L of the incident wave were selected as 0.213
m, 2.6 s, and 7.27 m, respectively. According to Kennedy et al. (2000), α1, α2, and α3 were
selected as 8.0, 0.65, and 0.08, respectively. n was selected as 0.01. ∆x was set as L/60, and
∆t was set as T/1000. The total calculation time was 60 wave periods, and the time series
of surface elevation during the final 5 wave periods was used for the time average wave
height estimation at each grid point.
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Figure 8. Sketch of a wave flume following the experimental setup by Tsai et al. (2005) [42].

Figure 9 shows the comparison between the calculated averaged wave heights and ex-
periment data along the wave flume. It can be established that the present numerical results
are consistent with the experiment data. The averaged wave heights remain unchanged
in front of the slope. When the wave travels forward and encounters the slope, the wave
heights increase owing to the sharp change in water depth; finally, wave breaking occurs
after the rapid increase in wave heights owing to the limitation of water depth at the top of
the slope. After the wave breaking occurs, the wave height decreases rapidly within a short
propagation distance. As shown in Figure 9, the present numerical model can effectively
simulate the distribution of wave heights before and after wave breaking in the waters with
a slope topography and can accurately capture the location of wave breaking.
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Figure 9. Comparisons of the time average wave heights along the wave flume (red circle: experiment
data; solid line: numerical solutions).

6. Conclusions

In this study, a numerical model valid for wave propagation from deep to shallow
water was proposed. In the numerical model, the non-conservative nonlinear equations
derived by Li (2010) were first reorganized as the conservative equations and then employed
as the governing equations. To solve the imbalance problem, the surface gradient term



J. Mar. Sci. Eng. 2023, 11, 1003 16 of 18

was split into an artificial flux gradient and a source term that is almost not affected by
the bed slope in a non-uniform bed. The eddy viscosity-type breaking and bottom friction
terms were added to the momentum equations to numerically simulate the wave-breaking
phenomenon. This is because the model proposed by Li (2010) cannot numerically simulate
the wave-breaking phenomenon. When the governing equations were discretized, the
predictor-corrector scheme was utilized for the time integration, and a hybrid FDM and
FVM scheme was employed to discretize the spatial derivatives, where the numerical flux
terms were calculated by the MUSCL-TVD scheme up to the fourth-order accuracy with
the Riemann solver and the spatial derivatives in the source term were discretized by FDM.

The wave propagation in water flumes with uniform depth and various topographies
was simulated using the present numerical model. The calculation results indicate that
the present numerical model can simulate the wave propagation in the deep waters and
effectively simulate the different bichromatic wave combinations of two shallow water
waves, two transition water waves, and two deep water waves. The numerical results of
the wave propagation over a bar and a sloped beach were compared to the experiment
data. It is shown that the present numerical model can simulate the wave shoaling and
nonlinearity over a bar and accurately predict the position of the breaking point, and that
the calculated wave heights are consistent with the experiment data.

The one-dimensional numerical model proposed in this study will be extended to a
two-dimensional model in the near future.
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