
Citation: Dai, Y.; Li, Z.; Wang, B.

Optimizing Berth Allocation in

Maritime Transportation with Quay

Crane Setup Times Using

Reinforcement Learning. J. Mar. Sci.

Eng. 2023, 11, 1025. https://

doi.org/10.3390/jmse11051025

Academic Editors: Mateusz Zając

and Tomislav Rožić

Received: 17 April 2023

Revised: 8 May 2023

Accepted: 9 May 2023

Published: 11 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Optimizing Berth Allocation in Maritime Transportation
with Quay Crane Setup Times Using Reinforcement Learning
Yonggai Dai 1, Zongchen Li 2,* and Boyu Wang 3

1 Wuhan Hangke Logistics Company Limited, CCCC Second Harbor Engineering Company Ltd.,
Wuhan 430013, China

2 Mechanical Systems Engineering, EMPA-Swiss Federal Laboratories for Materials Science and Technology,
8600 Duebendorf, Switzerland

3 Shenzhen CaiGao Tech, Shenzhen 518067, China
* Correspondence: zongchen.li@empa.ch

Abstract: Maritime transportation plays a critical role in global trade as it accounts for over 80% of
all merchandise movement. Given the growing volume of maritime freight, it is vital to have an
efficient system for handling ships and cargos at ports. The current first-come-first-serve method
is insufficient in maintaining operational efficiency, especially under complicated conditions such
as parallel scheduling with different cargo setups. In addition, in the face of rising demand, data-
driven strategies are necessary. To tackle this issue, this paper proposes a mixed-integer model for
allocating quay cranes, terminals, and berths. It considers not only cargo types, but also the time
required for a quay crane setup. The proposed model features a greedy-insert-based offline algorithm
that optimizes berth allocation when vessel information is available. In situations where vessel
information is uncertain, the model utilizes an online optimization strategy based on a reinforcement-
learning algorithm that is capable of learning from feedback and of adapting quickly in real time.
The results of the numerical experiments demonstrate that both the offline and online algorithms can
significantly enhance cargo handling efficiency and overall harbor operation. Furthermore, they have
the potential to be extended to other complex settings.

Keywords: berth allocation; online optimization; reinforcement learning; quay crane setup

1. Introduction

The harbor plays a pivotal role in the operation of modern society since it connects
maritime transportation and land transportation, which makes it a center for industrial
activities and logistics. During the past few centuries, due to the rapid development of
logistics, harbor management is undergoing emerging challenges such as sped-up trans-
portation and an increasing volume of cargo. Specifically, the boom of the differentiated
commodity economy highlights the interaction between the harbor and its relevant logistics.
For the sake of the aforementioned challenges, a high-efficiency operation system is in great
demand by harbor managers.

The berth allocation problem (BAP) is a key obstacle in the development of harbor
management. As seen in Figure 1, when a ship arrives at a harbor, berth space must be
assigned, and a time schedule established. Cargos are typically delivered between the ship
and port using quay cranes (QCs). When considering the BAP, ship owners seek to minimize
duration at berth as it increases costs with no revenue being generated. Additionally, a
multipurpose terminal is capable of handling various types of cargo, including general
cargo, bulk cargo, and containers, while using a multipurpose gantry crane as its primary
handling equipment. Different types of cargo require different lifting devices for loading
and unloading. For general cargo, such as steel products, a hook is commonly used as
the lifting device. For bulk cargo, such as minerals, a grab is typically used. For container
handling, a container spreader is used to lift and move containers. This flexible handling

J. Mar. Sci. Eng. 2023, 11, 1025. https://doi.org/10.3390/jmse11051025 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11051025
https://doi.org/10.3390/jmse11051025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-4784-4684
https://doi.org/10.3390/jmse11051025
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11051025?type=check_update&version=1

J. Mar. Sci. Eng. 2023, 11, 1025 2 of 14

approach allows multipurpose terminals to meet the diverse cargo handling needs of
different industries. However, harbor managers must minimize berth time to accommodate
more ships and to increase freight volume. Factors such as the limited capacity of QCs
and the need to change the setup for different types of cargo (e.g., bulk cargo, containers,
and roll-on roll-off cargo) can impact loading efficiency. Furthermore, the vessel schedule
is often unpredictable due to weather and political uncertainties. Online optimization is
necessary to balance the various constraints in order to optimize the process.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 2 of 14

container handling, a container spreader is used to lift and move containers. This flexible
handling approach allows multipurpose terminals to meet the diverse cargo handling
needs of different industries. However, harbor managers must minimize berth time to
accommodate more ships and to increase freight volume. Factors such as the limited ca-
pacity of QCs and the need to change the setup for different types of cargo (e.g., bulk
cargo, containers, and roll-on roll-off cargo) can impact loading efficiency. Furthermore,
the vessel schedule is often unpredictable due to weather and political uncertainties.
Online optimization is necessary to balance the various constraints in order to optimize
the process.

Quay Crane

Quay Crane

Ships

Ships

Ships

Storage area
Berths

Figure 1. The layout of berths in a harbor.

In recent years, both academics and the industry have devoted considerable effort to
developing innovative statistical BAP solutions based on operations research and game
theory in response to the increasing freight volume. Before proposing solutions, it is nec-
essary to derive a mathematical model for BAP and to quantify the multiple constraints
and objectives. The current literature contains a number of state-of-the-art models, which
focus on the uncertainty posed by the arrival time and priority of different ships, but over-
look the unique characteristics of each harbor, such as their layout and equipment. To
meet this need, a comprehensive, universal BAP model is required to provide optimal
solutions. Furthermore, most existing models are continuous in nature, but a discrete
model is more suitable for practical applications.

The traditional first-in-first-serve (FIFS) scheduling strategy for ships at berth in har-
bors is often inefficient, particularly under extreme conditions. To improve operational
efficiency, computer-aided optimization algorithms have been introduced to harbor man-
agement. Various algorithms, including genetic algorithms, particle swarm optimization,
neural network algorithms, and reinforcement learning algorithms, each offer unique ad-
vantages for different application scenarios.

This paper aims to comprehensively summarize and categorize the various specs of
a harbor in order to address the aforementioned problem. In order to address the

Figure 1. The layout of berths in a harbor.

In recent years, both academics and the industry have devoted considerable effort to
developing innovative statistical BAP solutions based on operations research and game
theory in response to the increasing freight volume. Before proposing solutions, it is
necessary to derive a mathematical model for BAP and to quantify the multiple constraints
and objectives. The current literature contains a number of state-of-the-art models, which
focus on the uncertainty posed by the arrival time and priority of different ships, but
overlook the unique characteristics of each harbor, such as their layout and equipment.
To meet this need, a comprehensive, universal BAP model is required to provide optimal
solutions. Furthermore, most existing models are continuous in nature, but a discrete
model is more suitable for practical applications.

The traditional first-in-first-serve (FIFS) scheduling strategy for ships at berth in har-
bors is often inefficient, particularly under extreme conditions. To improve operational
efficiency, computer-aided optimization algorithms have been introduced to harbor man-
agement. Various algorithms, including genetic algorithms, particle swarm optimization,
neural network algorithms, and reinforcement learning algorithms, each offer unique
advantages for different application scenarios.

This paper aims to comprehensively summarize and categorize the various specs of a
harbor in order to address the aforementioned problem. In order to address the challenges
posed by the rising demand and scalability of various scenarios, a data-driven model,
which considers the capacity of loading, type of cargo, and the setup switching time, for a

J. Mar. Sci. Eng. 2023, 11, 1025 3 of 14

QC ship system is constructed. To minimize the total waiting time of ships in scenarios
where all vessel information is known beforehand, an offline solution with a greedy-based
algorithm is proposed. A greedy insert algorithm is used to achieve this goal. Compared to
other algorithms, such as the genetic algorithm, the greedy insert algorithm can reduce the
computation load and can increase the calculation speed. As real-world scenarios often
involve unknown information, such as the arrival time and the capacity of ships, the online
optimization of berth allocation is necessary. Therefore, a reinforcement learning algorithm
is proposed for online optimization. This machine learning algorithm is advantageous
in terms of convergence and scalability, making it suitable for the rapid optimization of
berth scheduling and allocation. A numerical experimental study is conducted using a
typical case from a harbor to validate the functionality of the proposed model and solutions.
The results of the comparison between the calculation results and the baseline reveal that
the proposed reinforcement learning algorithm performs excellently and can significantly
improve the operating efficiency of the harbor.

The other sections of the paper are organized as per the following below. Section 2
summarizes the previous efforts in developing BAP models and solutions. Section 3 defines
the BAP problem with regard to quay crane setup times. Section 4 presents the offline
case with a heuristic algorithm, while Section 5 demonstrates the reinforcement learning
formulation for the online case. Section 6 presents and discusses the numerical results.
Section 7 concludes the paper and incorporates insight into this research.

2. Literature Review

Maximizing the operating efficiency of the harbor is the top priority target for harbor
management. Prior to optimizing the operation of the harbor, the BAP and quay crane
scheduling problem (QCSP) should be addressed [1]. This type of research has attracted the
attention of the industry since the end of the last century. Several studies have proposed
solutions for the BAP and QCSP, including the use of novel set partitioning models and vari-
able reduction techniques [2]. Other studies have focused on the integration opportunities
and environmental issues that are related to cargo shipping through optimization, showing
that an accurate speed discretization can result in better economic and environmental
results [3].

Lai et al. [4] improved the conventional berth allocation strategy by changing the
allocation standard. According to the average waiting time of ships, the operating time
of the berth allocation system and the average utilization of berths, three different berth
allocation strategies are proposed. They also observed that the BAP cannot be addressed
with a constant standard. Kim et al. [5] have contributed to making this topic attrac-
tive to academia in their publication, which presents a detailed model of QC scheduling.
This model considers some factors such as the container groups, non-crossing restric-
tions, and safety distances, which make the model more accurate in practical applications.
Iris et al. [6] have integrated berth allocation and energy management approaches in ports.
Bierwirth et al. [7] have summarized the existing research in optimizing berth allocation and
the QCSP.

Prior to addressing the BAP, an accurate model that can quantify the impact of various
variables on the waiting time should be constructed. The major challenge that had a large
impact on the model is the uncertainty of vessel information, including the ship’s arrival
time and its priority of service. Therefore, as categorized by Rodrigues et al. [8], several
types of models are proposed in this field, including the stochastic model [9], the robust
optimization model [10], the fuzzy model [11], and deterministic models [12].

Nowadays, due to rapidly increasing transportation demands and complicated setups
in practical scenarios, data-driven methods are being introduced to solve the BAP in order
to minimize the impact caused by the uncertainty or intermittence of ships’ schedules.
For instance, the method proposed by Xiang et al. [13] considers the uncertainty of the
vessel arrival time, as well as the operating time of the QCs. Based on this model, a
berth allocation model that can minimize the operating cost is proposed. Agra et al. [14]

J. Mar. Sci. Eng. 2023, 11, 1025 4 of 14

comprehensively consider the BAP and QCSP and propose a relative position formulation
equation. Tengecha et al. [15] utilize a constraint programming approach to address
the QCSP.

Based on the algorithms utilized, there are several types of methodologies. The
basic method is based on the approximation algorithms introduced by Lee et al. [16] and
Liu et al. [17]. The mixed-integer linear programming (MILP) standard solver [18–23] is an
extensively applied method. Since the BAP is a multi-objective optimization problem, some
Pareto algorithms, such as the genetic algorithm [24–32] and unidirectional-search-based
algorithm [33,34], are also appropriate.

Among all the aforementioned algorithms, reinforcement learning is appropriate
for the optimal control of nonlinear systems [35,36], traffic control [37], manufacturing
automation [38], and enterprise management [39]. It was significantly improved by Mnih
et al. [40] by applying a deep Q-network (DQN) structure. Through its learning to make
and correcting mistakes, it has superiority in processing very complex problems that cannot
be solved by conventional computational techniques, and it can achieve long-term good
results. However, the application of reinforcement learning to solving the BAP has not yet
been reported. This paper will discuss the application of reinforcement learning in solving
the online berth allocation and QC scheduling problems.

3. Problem Definition

Prior to conducting optimization, it is necessary to understand the operation of a
harbor via defining the problem and all of the considered variables. In other words, the
final objective should be constructed. The conventional berth allocation method follows
the FIFS principle, while the operation efficiency is not considered. The optimized method
should aim at minimizing the total waiting time of the ships in the berths.

Herein, we assume a set of vessels V that are served at a set of berths B. Each vessel
ships with a single type of cargo are understood from the designated cargo set C, and each
ship should be allocated to one berth exactly. The service time of a vessel v ∈ V carrying
cargo with type c ∈ C depends on its cargo weight and the corresponding quay crane
resource; thus, this can be simplified as tb

v. The arrival time ta
v is deterministic since it is

usually given by the ship owners. As mentioned in Section 1, there are various types of
cargo, including liquid cargo, dry bulk cargo, etc. It usually takes some time for QCs to
re-setup if the cargo types change. This setup time is denoted by a matrix Ts. For example,
Ts(1, 2) refer to the consuming time for a quay crane that changes its setup from processing
a type 1 cargo into a type 2 cargo. It should be noted that Ts can be different in different
harbors, and Ts(i, j) could be a large positive number if the QCs are not able to switch
between cargo i and cargo j. The final objective of this setting is to minimize the total
waiting time. Based on the previous analysis, the objective function can be derived as given
in Equation (1).

Minimize ∑|V|
i=1 (t

s
i − ta

i), (1)

where ts
i is the start service time of vessel i. The definitions of each variable utilized in the

following sections can be found in Table 1.

Table 1. Notations utilized for the BAP.

Notation Meaning

V Set of vessels
B Set of berths
C Set of cargo types
tb
v Service time of vessel v in berth b

ts
v Start service time of vessel v

ta
v Arrival time of vessel v

Ts Setup changing time between cargo types

J. Mar. Sci. Eng. 2023, 11, 1025 5 of 14

No matter whether all the information is known ahead of time or not, the final target
of the optimization can be summarized in the form of Equation (1).

4. Offline Case

The offline case occurs when all information such as the arrival time, cargo type,
and QC setup time is revealed. With the known information, the global optimization
can be conducted. We first consider an offline setting where the vessel’s information{

v ∈ V
∣∣∣〈Cv, ta

v, tb
v

〉
} is known ahead of time, and the optimal allocation is searched to

minimize the total waiting time. In this section, we first formulate our setting as an integer
programming problem and then propose a heuristic algorithm to solve it.

4.1. Optimization Formulation

Based on Equation (1), the problem can be formulated as follows:

min ∑|V|
i=1(t

s
i − ta

i) (2)

s.t. ∑|V|
i=1 xb

0i ≤ 1, b ∈ B (3)

∑|V|
i=0 ∑|B|

b=1 xb
ik = 1, k ∈ V (4)

∑|V|+1
k=1 xb

ik = yb
i , i ∈ V, b ∈ B (5)

∑|V|
k=0 xb

ki = yb
i , i ∈ V, b ∈ B (6)

∑|B|
b=1 yb

i = 1, i ∈ V (7)

∑|B|
b=1 ∑|V|

k=0(xb
kit

s
k + Tkixb

ki + xb
kit

b
k) = ts

i , i ∈ V (8)

ts
0, tb

0, T0k = 0 (9)

xb
ki =

{
1 if vessel i immediately follows vessel k on berth b,

0 otherwise,
(10)

yb
i =

{
1 if vessel i assigned on berth b,

0 otherwise,
(11)

Tki denotes the setup switching time from vessel k to vessel i. Constraint (3) ensures
that for each berth selected to allocate vessels, only one real vessel follows the dummy
vessel 0. Constraint (4) ensures that if a vessel is allocated into a specific berth, it will
be served after one vessel, and a vessel must be served only at one position of a berth.
Constraints (5)–(6) determines that if two vessels are served sequentially, then they are
allocated in the same berth. Constraint (7) states that each vessel is scheduled to exactly one
berth. Constraints (8)–(9) restrict the vessel sequence of the starting times by the starting
time of the previous vessel, the service time of the previous vessel, and the time required for
setup switching. Finally, Constraints (10)–(11) define the domain of the decision variables.

4.2. Greedy Insert Algorithm

To solve this problem, we propose a greedy insert algorithm to enhance the allocation
performance step-by-step based on an initial solution. A solution is a vector of a numerical
sequence representing the vessels, and the |B| − 1 zeros represent the separation of the

J. Mar. Sci. Eng. 2023, 11, 1025 6 of 14

different berths. Figure 1 shows an example of the solution representation for a three berths,
seven vessels case. Thus, the total waiting time can be calculated based on the vessel
information, berth information, and the allocation.

The main idea of the proposed greedy insert algorithm is first sorting the vessels
according to their arrival time, then allocating them into berths following the FIFS (first-
in-first-serve) rule in which the incoming vessel will be allocated into the berth with the
earliest idle time. After an initial solution is obtained, based on the FIFS rule as shown in
Figure 2, a vessel is randomly selected at each step. Herein, a greedy strategy is adopted
by reinserting this vessel into the allocation, and the best position is picked where the
total waiting time reduces the most. Finally, if the total waiting time increases or if the
computation time exceeds a specific threshold, the iteration stops. The solution that can
be calculated with the aforementioned algorithm indicates the allocation of the vessels
at berth and the serve time for each ship. Even though the solution is generally not the
optimal value, the results are still acceptable considering the complexity of the calculation.
Algorithm 1 illustrates the process of the proposed greedy insert algorithm, where M is the
preset iteration threshold, f(.) represents the total waiting time calculation, and dxk−1, Iep

represents the Ith non-zero entry of the vector xk−1 shift to position p.

Algorithm 1. Greedy Insert

1: Input:
{〈

Vn, Cn, ta
Vn

, ts
Vn

, tb
Vn

〉}
, Ts

2: Initialize: x0 = FIFS
({〈

Vn, Cn, ta
Vn

, ts
Vn

, tb
Vn

〉}
, Ts

)
3: while Tk < Tk−1 or k ≤ M:
4: Randomly select Vk with index Ik

5: I∗ = minp f
(
dxk−1, Ikep

)
6: xk :← dxk−1, I∗ep
7: end while
8: return x

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 14

The main idea of the proposed greedy insert algorithm is first sorting the vessels ac-
cording to their arrival time, then allocating them into berths following the FIFS (first-in-
first-serve) rule in which the incoming vessel will be allocated into the berth with the ear-
liest idle time. After an initial solution is obtained, based on the FIFS rule as shown in
Figure 2, a vessel is randomly selected at each step. Herein, a greedy strategy is adopted
by reinserting this vessel into the allocation, and the best position is picked where the total
waiting time reduces the most. Finally, if the total waiting time increases or if the compu-
tation time exceeds a specific threshold, the iteration stops. The solution that can be cal-
culated with the aforementioned algorithm indicates the allocation of the vessels at berth
and the serve time for each ship. Even though the solution is generally not the optimal
value, the results are still acceptable considering the complexity of the calculation. Algo-
rithm 1 illustrates the process of the proposed greedy insert algorithm, where 𝑀 is the
preset iteration threshold, f(.) represents the total waiting time calculation, and ⌈𝑥ିଵ, 𝐼⌉
represents the 𝐼௧ non-zero entry of the vector 𝑥ିଵ shift to position 𝑝.

Algorithm 1. Greedy Insert1: Input: ൛〈𝑉, 𝐶, 𝑡 , 𝑡௦ , 𝑡 〉ൟ,𝑇௦
2: Initialize: 𝑥 = 𝐹𝐼𝐹𝑆(൛〈𝑉, 𝐶, 𝑡 , 𝑡௦ , 𝑡 〉ൟ, 𝑇௦)
3: while 𝑇 ൏ 𝑇ିଵ or 𝑘 ≤ 𝑀:
4: Randomly select 𝑉 with index 𝐼
5: 𝐼∗ = 𝑚𝑖𝑛𝑓൫⌈𝑥ିଵ, 𝐼⌉൯
6: 𝑥: ← ⌈𝑥ିଵ, 𝐼∗⌉
7: end while
8: return x

Figure 2. An example of the allocation representation.

A typical example to illustrate the greedy insert algorithm is the given vessels set 𝑉
from Table 2 being allocated into three berths with an identical service time; the setup
changing times are assumed to be {A to B: 15 min, A to C: 20 min, B to A: 15 min, B to C:
45 min, C to A: 20 min, and C to B: 30 min}. Then, the solution is initialized (as shown in
Figure 2), where vessels (V1, V4, V7), (V2, V5), and (V3, V6) are assigned to Berth 1, 2, and
3, respectively. Numerically, the solution is in the form of a vector [1,4,7,0,2,5,0,3,6]. Note
that each berth is separated by the number zero. The total waiting time for this solution
can be calculated as 195 min. On Iteration 1, suppose 𝑉ସ is randomly selected and can be
possibly relocated into any berth with any order. The corresponding total waiting time
can be calculated and the shortest total waiting time will be selected, which is 185 min,
which corresponds to a solution [1,7,0,2,4,5,0,3,6]. Then, move to the next iteration. In this
way, the berth allocation and QC scheduling can be gradually improved.

Figure 2. An example of the allocation representation.

A typical example to illustrate the greedy insert algorithm is the given vessels set
V from Table 2 being allocated into three berths with an identical service time; the setup
changing times are assumed to be {A to B: 15 min, A to C: 20 min, B to A: 15 min, B to C:
45 min, C to A: 20 min, and C to B: 30 min}. Then, the solution is initialized (as shown in
Figure 2), where vessels (V1, V4, V7), (V2, V5), and (V3, V6) are assigned to Berth 1, 2, and
3, respectively. Numerically, the solution is in the form of a vector [1,4,7,0,2,5,0,3,6]. Note
that each berth is separated by the number zero. The total waiting time for this solution
can be calculated as 195 min. On Iteration 1, suppose V4 is randomly selected and can be
possibly relocated into any berth with any order. The corresponding total waiting time can
be calculated and the shortest total waiting time will be selected, which is 185 min, which
corresponds to a solution [1,7,0,2,4,5,0,3,6]. Then, move to the next iteration. In this way,
the berth allocation and QC scheduling can be gradually improved.

J. Mar. Sci. Eng. 2023, 11, 1025 7 of 14

Table 2. An example of a vessel set.

Vessel Arrival Time Cargo Type Service Time (min)

V1 8:20 a.m. A 140
V2 9:20 a.m. A 90
V3 9:40 a.m. B 100
V4 10:20 a.m. C 65
V5 10:30 a.m. C 70
V6 10:50 a.m. B 90
V7 11:20 a.m. A 120

5. Online Case

The offline case is more straight forward since all information is known. However, in
real-world applications, some information is usually unknown, or it may change due to
various unpredicted reasons. For instance, the weather forecast usually has considerable
errors and it can significantly affect the arrival time of the vessel ships. Therefore, online
cases are more critical for practical applications.

In this case, we now consider an online setup where the vessels arrive sequentially,
and the information for arrival times, types of cargo, and handling time are unavailable
until the vessel arrives at the port. Thus, once a new vessel arrives, the port will schedule
the vessel to one of the berths to minimize the overall waiting time. The new variables that
will be used for online case optimization are listed in Table 3.

Table 3. State space for online optimization cases.

Notation Meaning Dimension

Sp In-processing berth status Nb × Nc
Sh Processing history Nb × Nc

Sa
Service time of the arrival

vessel Nb × 1

St Type of cargo 1

In Table 3, Nb and Nc denote the number of berths and cargo type, respectively. The
berth status Sp and the processing history Sh are all in the form of matrix with the dimension
Nb × Nc.

5.1. MDP Formulation

The online BAP considered in this paper is formulated as a Markov decision process
(MDP) problem. The MDP is a discrete-time stochastic process used to model decisions,
and it can be represented mathematically in a tuple (S, A, P, R, γ), where S is the state space,
A is the action space, P is the transition probability, R is the reward after an action is taken,
and γ is the discount factor.

States: We define the states by observing the current status of the berths and vessels.
The proposed state consists of two matrices and a vector as follows:

• Sp: The most important status is to describe the current working situation of the quay
cranes of the corresponding berths. We define the matrix Sp to represent the remaining
working time of each berth. In Sp, each row means a berth, and each column means
a type of cargo; thus, the entries are the remaining time of a specific type of cargo
processed in a specific berth;

• Sh: To capture the history of the berths and the quay cranes, we define a matrix Sh,
which has a similar structure to Sp but which represents the processed working time
for each type of cargo at each berth;

• Sa: We also define a vector to represent the service time of the arrival vessels that are
being allocated into different berths;

• St: A scalar represents the type of cargo that the arrival vessel carries.

J. Mar. Sci. Eng. 2023, 11, 1025 8 of 14

Actions: the actions are defined by simply allocating the arrival vessel to one of the
berths, and the action set A is defined as follows:

A = {a|a = 1, . . . Nb} (12)

An action an = k indicates that a vessel arrives at time slot n, and it will be allocated
into the kth berth. It should be noted that the port only makes an action at one time slot
when there a vessel arrives at that time slot.

Rewards: The reward defined in this paper is the waiting time of the vessel until it
starts to be served. It can be expressed as is given in (13).

rn = −tb
r (13)

State transitions: After executing an, the state transitions from Sn into Sn+1. Intuitively,
the in-processing berth status and the last action will be updated accordingly in terms of
the allocation.

Example: Figure 3 describes an example of vessel allocation and depicts how the MDP
model evolves. V1, V2, and V3 are the three vessels that are parking at different berths
and being handled by the quay cranes. When V4 arrives at Time slot 2, it is allocated
into the third berth by taking action a2 = 3. Then, the state transitions from S2 into S3.
Specifically for Sp, the current working status is updated by switching from a steel cargo
into a container, and the remaining processing time is updated by considering the addition
of V4 into the queue of Berth 3. Similarly, for Sh, the history will be updated accordingly. In
addition, Sa and St return to 0.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 14

• 𝑆: We also define a vector to represent the service time of the arrival vessels that are
being allocated into different berths;

• 𝑆௧: A scalar represents the type of cargo that the arrival vessel carries.
Actions: the actions are defined by simply allocating the arrival vessel to one of the

berths, and the action set 𝐴 is defined as follows: 𝐴 = ሼ𝑎|𝑎 = 1, … 𝑁ሽ (12)

An action 𝑎 = 𝑘 indicates that a vessel arrives at time slot 𝑛, and it will be allocated
into the 𝑘௧ berth. It should be noted that the port only makes an action at one time slot
when there a vessel arrives at that time slot.

Rewards: The reward defined in this paper is the waiting time of the vessel until it
starts to be served. It can be expressed as is given in (13). 𝑟 = −𝑡 (13)

State transitions: After executing 𝑎, the state transitions from 𝑆 into 𝑆ାଵ. Intui-
tively, the in-processing berth status and the last action will be updated accordingly in
terms of the allocation.

Example: Figure 3 describes an example of vessel allocation and depicts how the
MDP model evolves. 𝑉ଵ, 𝑉ଶ, and 𝑉ଷ are the three vessels that are parking at different
berths and being handled by the quay cranes. When 𝑉ସ arrives at Time slot 2, it is allo-
cated into the third berth by taking action 𝑎ଶ = 3. Then, the state transitions from 𝑆ଶ into 𝑆ଷ. Specifically for 𝑆, the current working status is updated by switching from a steel
cargo into a container, and the remaining processing time is updated by considering the
addition of 𝑉ସ into the queue of Berth 3. Similarly, for 𝑆, the history will be updated
accordingly. In addition, 𝑆 and 𝑆௧ return to 0.

Figure 3. An example of vessel allocation.

5.2. Dueling-DQN-Based Algorithm
A dueling deep Q-network (DDQN) was trained to learn the state-value function.

DDQN is a variant of DQN; it takes a state 𝑠 as an input and outputs Q-values 𝑄(𝑠, 𝑎)
for all candidate actions 𝑎 ∈ 𝐴 with parameters 𝜃. However, DQN performs inefficiently
in practice, and the DDQN structure was proposed to overcome this issue by decoupling
the value and advantage in DQN. Figure 4 shows the proposed fully connected network
architecture where the input of DDQN is a matrix constructed by concatenating the state
matrices 𝑆, 𝑆, and 𝑆. Following the fully connected hidden layer, two sequences are

Figure 3. An example of vessel allocation.

5.2. Dueling-DQN-Based Algorithm

A dueling deep Q-network (DDQN) was trained to learn the state-value function.
DDQN is a variant of DQN; it takes a state s as an input and outputs Q-values Qθ(s, a)
for all candidate actions a ∈ A with parameters θ. However, DQN performs inefficiently
in practice, and the DDQN structure was proposed to overcome this issue by decoupling
the value and advantage in DQN. Figure 4 shows the proposed fully connected network
architecture where the input of DDQN is a matrix constructed by concatenating the state

J. Mar. Sci. Eng. 2023, 11, 1025 9 of 14

matrices Sp, Sh, and Sa. Following the fully connected hidden layer, two sequences are
constructed to estimate the value and advantage functions separately. Finally, the value
function and the advantage function are aggregated into Q-values.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 14

constructed to estimate the value and advantage functions separately. Finally, the value
function and the advantage function are aggregated into Q-values.

The training of DDQN is similar to regular DQN. First, the action is determined by
an 𝜀-greedy policy to balance the exploration and exploitation. Then, the performance
will be stored as tuples in a replay memory. The small batch of tuples from this memory
are selected randomly, and the value function 𝑉(𝑠) and advantage function 𝐴መ(𝑠, 𝑎) are
calculated and aggregated into the Q-value. Finally, a gradient descent step is performed,
and parameters are updated accordingly. The training process is defined in Algorithm 2.

Figure 4. Architecture of the DDQN.

Algorithm 2. DDQN Training1: Input: ൛〈𝑉, 𝐶, 𝑡 , 𝑡௦ , 𝑡 〉ൟ, 𝑇௦
2: Initialize: Initialize the weight 𝜔 of network 𝑄(𝑠, 𝑎)
3: for 𝑒 = 1, 2, … , 𝐸 do
4: Initialize states
5: for 𝑡 = 1, 2, … , 𝑇 do
6: select action a based on 𝜀-greedy
7: Update state 𝑆
8: Store transition in replay memory 𝐷
9: Sample random minibatch of transitions from 𝐷
10: Calculate value function 𝑉(𝑠) and advantage function 𝐴መ(𝑠, 𝑎)
11: Aggregate Q value
12: Perform a gradient descent step
13: end for
14: end for
15: return w

6. Numerical Results
6.1. Offline Case

To validate the functionality of the proposed offline algorithm, a numerical case
study was conducted. A total of 3 berths, 5 types of cargo, and 80 vessels, as well as 10
cases were tested; the results are listed in Table 4. The original information of the ships is
based on the practical data of a harbor in China. The computer utilized for the numerical
study was an Apple MacBook with a 2.2 GHz CPU and 16 GB RAM, and the programming

Figure 4. Architecture of the DDQN.

The training of DDQN is similar to regular DQN. First, the action is determined by
an ε-greedy policy to balance the exploration and exploitation. Then, the performance
will be stored as tuples in a replay memory. The small batch of tuples from this memory
are selected randomly, and the value function V̂(s) and advantage function Â(s, a) are
calculated and aggregated into the Q-value. Finally, a gradient descent step is performed,
and parameters are updated accordingly. The training process is defined in Algorithm 2.

Algorithm 2. DDQN Training

1: Input:
{〈

Vn, Cn, ta
Vn

, ts
Vn

, tb
Vn

〉}
, Ts

2: Initialize: Initialize the weight ω of network Q(s, a)
3: for e = 1, 2, . . . , E do
4: Initialize states
5: for t = 1, 2, . . . , T do
6: select action a based on ε-greedy
7: Update state S
8: Store transition in replay memory D
9: Sample random minibatch of transitions from D
10: Calculate value function V̂(s) and advantage function Â(s, a)
11: Aggregate Q value
12: Perform a gradient descent step
13: end for
14: end for
15: return w

6. Numerical Results
6.1. Offline Case

To validate the functionality of the proposed offline algorithm, a numerical case study
was conducted. A total of 3 berths, 5 types of cargo, and 80 vessels, as well as 10 cases were
tested; the results are listed in Table 4. The original information of the ships is based on the

J. Mar. Sci. Eng. 2023, 11, 1025 10 of 14

practical data of a harbor in China. The computer utilized for the numerical study was an
Apple MacBook with a 2.2 GHz CPU and 16 GB RAM, and the programming environment
was Python 3.8. The cargo type was generated with discrete uniform distribution, and the
cargo-setup switching time is the real data from the harbor.

Table 4. Numerical results for the offline cases.

Case No. Optimal FIFS Greedy Insert

Computation time 225 s 0.03 s 1.1 s
1 18,233 min 21,823 min 20,435 min
2 19,338 min 27,949 min 22,391 min
3 17,391 min 26,596 min 18,935 min
4 19,476 min 31,450 min 28,234 min
5 16,758 min 29,273 min 26,743 min
6 17,698 min 28,229 min 23,210 min
7 18,290 min 27,652 min 21,431 min
8 24,210 min 35,183 min 28,947 min
9 19,261 min 26,832 min 23,998 min
10 18,992 min 27,079 min 21,284 min

Three different groups of results are compared. The optimal results are calculated via a
mathematics-based solver by defining the optimization formulation in Equation (2) with high
computational complexity. The average computation time for optimal results is 225 s. The
average computation time of the greedy insert and the FIFS are 1.1 s and 0.03 s, respectively.

To better compare the performance of the greedy insert and the FIFS, the average
waiting time of the FIFS and greedy insert are referred to the optimal results, which are
listed in Table 4 and plotted in Figure 5. As shown in Figure 5, the greedy insert shows a
superiority in terms of waiting time over the FIFS.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 14

environment was Python 3.8. The cargo type was generated with discrete uniform distri-
bution, and the cargo-setup switching time is the real data from the harbor.

Three different groups of results are compared. The optimal results are calculated via
a mathematics-based solver by defining the optimization formulation in Equation (2) with
high computational complexity. The average computation time for optimal results is 225
s. The average computation time of the greedy insert and the FIFS are 1.1 s and 0.03 s,
respectively.

Table 4. Numerical results for the offline cases.

Case No. Optimal FIFS Greedy Insert
Computation time 225 s 0.03 s 1.1 s

1 18,233 min 21,823 min 20,435 min
2 19,338 min 27,949 min 22,391 min
3 17,391 min 26,596 min 18,935 min
4 19,476 min 31,450 min 28,234 min 1
5 16,758 min 29,273 min 26,743 min
6 17,698 min 28,229 min 23,210 min
7 18,290 min 27,652 min 21,431 min
8 24,210 min 35,183 min 28,947 min
9 19,261 min 26,832 min 23,998 min

10 18,992 min 27,079 min 21,284 min

To better compare the performance of the greedy insert and the FIFS, the average
waiting time of the FIFS and greedy insert are referred to the optimal results, which are
listed in Table 4 and plotted in Figure 5. As shown in Figure 5, the greedy insert shows a
superiority in terms of waiting time over the FIFS.

Figure 5. Waiting time for the FIFS and greedy insert over the optimal results.

6.2. Online Case
To validate the functionality of the online optimization, a numerical study was con-

ducted with the known information, such as the number of berths, types of cargo, QC
capacity, etc., while the vessel arrival time, amount of cargo, etc., were unknown. The
computer utilized was the same one that was utilized with the offline case validation. The
original data input is from the real harbor daily operation. Nine groups of experimental
studies were conducted with the FIFS and DDQN, respectively, and the results are plotted
in Figure 6. To investigate the performance of the DDQN algorithm, the amounts of berths
and cargo types are different in each case. It should be noted that, in Figure 6, the vessel

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

W
ai

tin
g

tim
e/

Op
tim

al
 re

su
lts

Case

FIFS Greedy Insert

Figure 5. Waiting time for the FIFS and greedy insert over the optimal results.

6.2. Online Case

To validate the functionality of the online optimization, a numerical study was con-
ducted with the known information, such as the number of berths, types of cargo, QC
capacity, etc., while the vessel arrival time, amount of cargo, etc., were unknown. The
computer utilized was the same one that was utilized with the offline case validation. The
original data input is from the real harbor daily operation. Nine groups of experimental
studies were conducted with the FIFS and DDQN, respectively, and the results are plotted
in Figure 6. To investigate the performance of the DDQN algorithm, the amounts of berths
and cargo types are different in each case. It should be noted that, in Figure 6, the vessel

J. Mar. Sci. Eng. 2023, 11, 1025 11 of 14

amount is selected to be 50, 80, and 120. The relationship between the vessel amount and
the total waiting time is straight, as is shown in Figure 6.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 14

amount is selected to be 50, 80, and 120. The relationship between the vessel amount and
the total waiting time is straight, as is shown in Figure 6.

Figure 6. Comparison of the FIFS and DDQN for different online cases.

7. Discussion and Conclusions
7.1. Discussion

The numerical results of the offline cases, including the amount of cargo, type of
cargo, and setup switch, are shown in Table 3. The greedy insert approach yields wait
times that are nearly close to optimal but are much shorter than the FIFS in all cases. The
greedy insert approach also requires slightly more computation time than the FIFS, but it
still only takes 1.1 s to finish the calculation, making it an acceptable tradeoff between
performance and efficiency. Therefore, it is suitable for the practical operation of berth
allocation and QC scheduling for a harbor.

For the offline case optimization, since all information is known prior to calculation,
there are various algorithms reported in the existing references. Based on the survey given
by Bierwirth et al. [7], the genetic algorithm can give a better result while the computation
time is correspondingly longer. In the following research, it is interesting to conduct a
comparative study between the state-of-the-art optimization algorithms.

The results of the online numerical case study are displayed in Figure 6. It can be seen
that reinforcement learning has a more significant advantage as the number of vessels
increases. Both the type and the number of cargo and berths significantly affect the opti-
mization outcomes. Comparing the group with five berths and five types of cargo to the
group with three berths and three types of cargo, it is clear that reinforcement learning
can reduce the waiting times more effectively in larger, more complex harbors. The
DDQN drastically reduces the total waiting time for the 5 berths, 5 types of cargo, and 120
vessels setup, requiring only 60% of the total waiting time that is required by the FIFS. It
should be noted that the outcome of the computation may vary between rounds, and the
performance can be improved further with appropriate data training.

A major advantage of the DDQN is its high efficiency due to the off-policy feature. It
can increase the convergence speed over the DQN. In the following research, more ma-
chine learning algorithms such as proximal policy optimization can be employed for the
BAP solution and can be compared with the DDQN.

Figure 6. Comparison of the FIFS and DDQN for different online cases.

7. Discussion and Conclusions
7.1. Discussion

The numerical results of the offline cases, including the amount of cargo, type of cargo,
and setup switch, are shown in Table 3. The greedy insert approach yields wait times that
are nearly close to optimal but are much shorter than the FIFS in all cases. The greedy insert
approach also requires slightly more computation time than the FIFS, but it still only takes
1.1 s to finish the calculation, making it an acceptable tradeoff between performance and
efficiency. Therefore, it is suitable for the practical operation of berth allocation and QC
scheduling for a harbor.

For the offline case optimization, since all information is known prior to calculation,
there are various algorithms reported in the existing references. Based on the survey given
by Bierwirth et al. [7], the genetic algorithm can give a better result while the computation
time is correspondingly longer. In the following research, it is interesting to conduct a
comparative study between the state-of-the-art optimization algorithms.

The results of the online numerical case study are displayed in Figure 6. It can
be seen that reinforcement learning has a more significant advantage as the number of
vessels increases. Both the type and the number of cargo and berths significantly affect the
optimization outcomes. Comparing the group with five berths and five types of cargo to
the group with three berths and three types of cargo, it is clear that reinforcement learning
can reduce the waiting times more effectively in larger, more complex harbors. The DDQN
drastically reduces the total waiting time for the 5 berths, 5 types of cargo, and 120 vessels
setup, requiring only 60% of the total waiting time that is required by the FIFS. It should be
noted that the outcome of the computation may vary between rounds, and the performance
can be improved further with appropriate data training.

A major advantage of the DDQN is its high efficiency due to the off-policy feature. It
can increase the convergence speed over the DQN. In the following research, more machine
learning algorithms such as proximal policy optimization can be employed for the BAP
solution and can be compared with the DDQN.

Future work can explore the potential for developing and applying different
reinforcement-learning-based models to optimize harbor operations. In addition, dif-
ferent setups can be explored, such as considering multiple terminals, diverse cargo types,
and varying environmental factors. The effectiveness of alternative optimization algorithms

J. Mar. Sci. Eng. 2023, 11, 1025 12 of 14

and decision-making frameworks can also be examined. Additionally, the implementation
of real-time data feeds and advanced analytics techniques, such as predictive modeling and
anomaly detection, could further enhance the efficiency and reliability of harbor operations.

7.2. Conclusions

This study provides a comprehensive analysis of the BAP and QCSP. To address these
issues, a Markov decision process model was constructed based on a real harbor layout.
This model considers the loading capacity of quays, the types of cargo, and the setup
time of switching. Two cases were discussed: an offline case, where all vessel information
is known, and an online case, where the uncertainty of vessel arrival time is taken into
account. The offline optimization utilized the greedy insert algorithm, which drastically
reduced waiting time while keeping computation time to a minimum when compared
to the conventional FIFO method. Online optimization was accomplished through the
deep double Q-network (DDQN) reinforcement learning algorithm, which is capable of
learning from feedback and quickly adapting in real-time; in addition, it further reduced
the waiting time when compared to the FIFO approach. The optimization algorithms
proposed in this study have demonstrated the capacity to substantially enhance efficiency
and flexibility in harbor operations while accommodating uncertainties. Additionally, the
feasibility of extending these algorithms to more intricate scenarios has been explored
through a data-driven approach.

Author Contributions: Conceptualization, Y.D., B.W. and Z.L.; methodology, Y.D.; software, Y.D.
and B.W.; validation, Y.D., Z.L. and B.W.; formal analysis, Y.D.; investigation, Y.D. and Z.L.; re-
sources, Y.D.; data curation, Y.D., B.W. and Z.L.; writing—original draft preparation, Y.D. and Z.L.;
writing—review and editing, Y.D., Z.L. and B.W.; visualization, Y.D.; supervision, Y.D., Z.L. and B.W.;
project administration, Y.D., Z.L. and B.W.; funding acquisition, Y.D., Z.L. and B.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the data of this study is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mnasri, S.; Alrashidi, M. A comprehensive modeling of the discrete and dynamic problem of berth allocation in maritime

terminals. Electronics 2021, 10, 2684. [CrossRef]
2. Iris, Ç.; Pacino, D.; Ropke, S.; Larsen, A. Integrated berth allocation and quay crane assignment problem: Set partitioning models

and computational results. Transp. Res. Part E Logist. Transp. Rev. 2015, 81, 75–97. [CrossRef]
3. Venturini, G.; Iris, Ç.; Kontovas, C.A.; Larsen, A. The multi-port berth allocation problem with speed optimization and emission

considerations. Transp. Res. Part D Transp. Environ. 2017, 54, 142–159. [CrossRef]
4. Lai, K.K.; Shih, K. A study of container berth allocation. J. Adv. Transp. 1992, 26, 45–60. [CrossRef]
5. Kim, K.H.; Park, Y.M. A crane scheduling method for port container terminals. Eur. J. Oper. Res. 2004, 156, 752–768. [CrossRef]
6. Iris, Ç.; Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable

energy under uncertainty. Omega 2021, 103, 102445. [CrossRef]
7. Bierwirth, C.; Meisel, F. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J.

Oper. Res. 2015, 244, 675–689. [CrossRef]
8. Rodrigues, F.; Agra, A. Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey. Eur. J.

Oper. Res. 2022, 303, 501–524. [CrossRef]
9. Iris, Ç.; Lam, J.S.L. Recoverable robustness in weekly berth and quay crane planning. Transp. Res. Part B Methodol. 2019, 122,

365–389. [CrossRef]
10. Xiang, X.; Liu, C. An expanded robust optimisation approach for the berth allocation problem considering uncertain operation

time. Omega 2021, 103, 102444. [CrossRef]

https://doi.org/10.3390/electronics10212684
https://doi.org/10.1016/j.tre.2015.06.008
https://doi.org/10.1016/j.trd.2017.05.002
https://doi.org/10.1002/atr.5670260105
https://doi.org/10.1016/S0377-2217(03)00133-4
https://doi.org/10.1016/j.omega.2021.102445
https://doi.org/10.1016/j.ejor.2014.12.030
https://doi.org/10.1016/j.ejor.2021.12.040
https://doi.org/10.1016/j.trb.2019.02.013
https://doi.org/10.1016/j.omega.2021.102444

J. Mar. Sci. Eng. 2023, 11, 1025 13 of 14

11. Gutierrez, F.; Lujan, E.; Asmat, R.; Vergara, E. Fuzziness in the berth allocation problem. In Recent Advances in Computational Opti-
mization: Results of the Workshop on Computational Optimization WCO 2017; Springer International Publishing: Berlin/Heidelberg,
Germany, 2019; pp. 149–174.

12. Lujan, E.; Vergara, E.; Rodriguez-Melquiades, J.; Jiménez-Carrión, M.; Sabino-Escobar, C.; Gutierrez, F. A fuzzy optimization model
for the berth allocation problem and quay crane allocation problem (BAP + QCAP) with n quays. J. Mar. Sci. Eng. 2021, 9, 152.
[CrossRef]

13. Xiang, X.; Liu, C.; Miao, L. A bi-objective robust model for berth allocation scheduling under uncertainty. Transp. Res. Part E
Logist. Transp. Rev. 2017, 106, 294–319. [CrossRef]

14. Agra, A.; Oliveira, M. MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem.
Eur. J. Oper. Res. 2018, 264, 138–148. [CrossRef]

15. Tengecha, N.A.; Zhang, X. An Efficient Algorithm for the Berth and Quay Crane Assignments Considering Operator Performance
in Container Terminal Using Particle Swarm Model. J. Mar. Sci. Eng. 2022, 10, 1232. [CrossRef]

16. Lee, D.H.; Chen, J.H. An improved approach for quay crane scheduling with non-crossing constraints. Eng. Optim. 2010, 42, 1–15.
[CrossRef]

17. Liu, M.; Zheng, F.; Li, J. Scheduling small number of quay cranes with non-interference constraint. Optim. Lett. 2015, 9, 403–412.
[CrossRef]

18. de Andrade, J.L.M.; Menezes, G.C. A column generation-based heuristic to solve the integrated planning, scheduling, yard
allocation and berth allocation problem in bulk ports. J. Heuristics 2023, 29, 39–76. [CrossRef]

19. Guo, L.; Zheng, J.; Du, H.; Du, J.; Zhu, Z. The berth assignment and allocation problem considering cooperative liner carriers.
Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102793. [CrossRef]

20. Tang, M.; Ji, B.; Fang, X.; Yu, S.S. Discretization-strategy-based solution for berth allocation and quay crane assignment problem.
J. Mar. Sci. Eng. 2022, 10, 495. [CrossRef]

21. Lv, X.; Jin, J.G.; Hu, H. Berth allocation recovery for container transshipment terminals. Marit. Policy Manag. 2020, 47, 558–574.
[CrossRef]

22. Ji, B.; Tang, M.; Wu, Z.; Samson, S.Y.; Zhou, S.; Fang, X. Hybrid rolling-horizon optimization for berth allocation and quay crane
assignment with unscheduled vessels. Adv. Eng. Inform. 2022, 54, 101733. [CrossRef]

23. Iris, Ç.; Lalla-Ruiz, E.; Lam, J.S.L.; Voß, S. Mathematical programming formulations for the strategic berth template problem.
Comput. Ind. Eng. 2018, 124, 167–179. [CrossRef]

24. Zhao, S.; Zhao, X.; Farnell, C.; Mantooth, H.A.; Umuhoza, J.; Zhang, Y. A daily optimization method for a PV-battery microgrid
considering the battery lifetime and time-of-use pricing. In Proceedings of the 2019 IEEE Applied Power Electronics Conference
and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3243–3250.

25. Hu, X.; Ji, S.; Hua, H.; Zhou, B.; Hu, G. An Improved Genetic Algorithm for Berth Scheduling at Bulk Terminal. Comput. Syst. Sci.
Eng. 2022, 43, 1285–1296. [CrossRef]

26. Jiang, X.; Zhong, M.; Shi, J.; Li, W.; Sui, Y.; Dou, Y. Overall Scheduling Model for Vessels Scheduling and Berth Allocation for
Ports with Restricted Channels That Considers Carbon Emissions. J. Mar. Sci. Eng. 2022, 10, 1757. [CrossRef]

27. Yu, J.; Tang, G.; Song, X. Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering
vessel service differentiation. Transp. Res. Part E Logist. Transp. Rev. 2022, 160, 102651. [CrossRef]

28. Fatemi-Anaraki, S.; Tavakkoli-Moghaddam, R.; Abdolhamidi, D.; Vahedi-Nouri, B. Simultaneous waterway scheduling, berth
allocation, and quay crane assignment: A novel matheuristic approach. Int. J. Prod. Res. 2021, 59, 7576–7593. [CrossRef]

29. Yu, F.; Shan, Q.; Xiao, Y.; Teng, F. Robust Low-Carbon Discrete Berth Allocation under Uncertainty. Int. Trans. Electr. Energy Syst.
2022, 2022, 5310004. [CrossRef]

30. Liu, B.; Li, Z.C.; Wang, Y. A two-stage stochastic programming model for seaport berth and channel planning with uncertainties
in ship arrival and handling times. Transp. Res. Part E Logist. Transp. Rev. 2022, 167, 102919. [CrossRef]

31. Liu, B.; Li, Z.C.; Wang, Y.; Sheng, D. Short-term berth planning and ship scheduling for a busy seaport with channel restrictions.
Transp. Res. Part E Logist. Transp. Rev. 2021, 154, 102467. [CrossRef]

32. Iris, Ç.; Pacino, D.; Ropke, S. Improved formulations and an adaptive large neighborhood search heuristic for the integrated berth
allocation and quay crane assignment problem. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 123–147. [CrossRef]

33. Meisel, F.; Bierwirth, C. A framework for integrated berth allocation and crane operations planning in seaport container terminals.
Transp. Sci. 2013, 47, 131–147. [CrossRef]

34. Legato, P.; Trunfio, R. A local branching-based algorithm for the quay crane scheduling problem under unidirectional schedules.
4OR Q. J. Oper. Res. 2014, 12, 123–156. [CrossRef]

35. Huang, Q.; Huang, R.; Hao, W.; Tan, J.; Fan, R.; Huang, Z. Adaptive power system emergency control using deep reinforcement
learning. IEEE Trans. Smart Grid 2019, 11, 1171–1182. [CrossRef]

36. Xiao, X.; Waddell, C.; Hamilton, C.; Xiao, H. Quality Prediction and Control in Wire Arc Additive Manufacturing via Novel
Machine Learning Framework. Micromachines 2022, 13, 137. [CrossRef]

37. Wan, Z.; Jiang, C.; Fahad, M.; Ni, Z.; Guo, Y.; He, H. Robot-assisted pedestrian regulation based on deep reinforcement learning.
IEEE Trans. Cybern. 2018, 50, 1669–1682. [CrossRef]

38. Xiao, X.; Joshi, S. Process planning for five-axis support free additive manufacturing. Addit. Manuf. 2020, 36, 101569. [CrossRef]

https://doi.org/10.3390/jmse9020152
https://doi.org/10.1016/j.tre.2017.07.006
https://doi.org/10.1016/j.ejor.2017.05.040
https://doi.org/10.3390/jmse10091232
https://doi.org/10.1080/03052150902943020
https://doi.org/10.1007/s11590-014-0756-4
https://doi.org/10.1007/s10732-022-09506-3
https://doi.org/10.1016/j.tre.2022.102793
https://doi.org/10.3390/jmse10040495
https://doi.org/10.1080/03088839.2020.1725672
https://doi.org/10.1016/j.aei.2022.101733
https://doi.org/10.1016/j.cie.2018.07.003
https://doi.org/10.32604/csse.2022.029230
https://doi.org/10.3390/jmse10111757
https://doi.org/10.1016/j.tre.2022.102651
https://doi.org/10.1080/00207543.2020.1845412
https://doi.org/10.1155/2022/5310004
https://doi.org/10.1016/j.tre.2022.102919
https://doi.org/10.1016/j.tre.2021.102467
https://doi.org/10.1016/j.tre.2017.06.013
https://doi.org/10.1287/trsc.1120.0419
https://doi.org/10.1007/s10288-013-0235-2
https://doi.org/10.1109/TSG.2019.2933191
https://doi.org/10.3390/mi13010137
https://doi.org/10.1109/TCYB.2018.2878977
https://doi.org/10.1016/j.addma.2020.101569

J. Mar. Sci. Eng. 2023, 11, 1025 14 of 14

39. Xiao, X.; Roh, B.M.; Hamilton, C. Porosity management and control in powder bed fusion process through process-quality
interactions. CIRP J. Manuf. Sci. Technol. 2022, 38, 120–128. [CrossRef]

40. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cirpj.2022.04.005
https://doi.org/10.1038/nature14236

	Introduction
	Literature Review
	Problem Definition
	Offline Case
	Optimization Formulation
	Greedy Insert Algorithm

	Online Case
	MDP Formulation
	Dueling-DQN-Based Algorithm

	Numerical Results
	Offline Case
	Online Case

	Discussion and Conclusions
	Discussion
	Conclusions

	References

