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Abstract: In aquaculture, the accurate recognition of fish underwater has outstanding academic value
and economic benefits for scientifically guiding aquaculture production, which assists in the analysis
of aquaculture programs and studies of fish behavior. However, the underwater environment is
complex and affected by lighting, water quality, and the mutual obscuration of fish bodies. Therefore,
underwater fish images are not very clear, which restricts the recognition accuracy of underwater
targets. This paper proposes an improved YOLO-V7 model for the identification of Takifugu rubripes.
Its specific implementation methods are as follows: (1) The feature extraction capability of the original
network is improved by adding a sizeable convolutional kernel model into the backbone network.
(2) Through ameliorating the original detection head, the information flow forms a cascade effect
to effectively solve the multi-scale problems and inadequate information extraction of small targets.
(3) Finally, this paper appropriately prunes the network to reduce the total computation of the model;
meanwhile, it ensures the precision of the detection. The experimental results show that the detection
accuracy of the improved YOLO-V7 model is better than that of the original. The average precision
improved from 87.79% to 92.86% (when the intersection over union was 0.5), with an increase of
5.07%. Additionally, the amount of computation was reduced by approximately 35%. This shows
that the detection precision of the proposed network model was higher than that for the original
model, which can provide a reference for the intelligent aquaculture of fishes.

Keywords: Takifugu rubripes; accurate identification; improved YOLO-V7 network; large
convolution kernel

1. Introduction

Triggerfish, commonly known as “puffer fish” [1], are a kind of bony fish with a high
economic value and are an important aquaculture group in northeast Asia. The usual
species are Takifugu rubripes (T. rubripes), Takifugu obscurus, and Takifugu pseudommus, etc.
The mariculture species are mainly T. rubripes, and the production mode of combining sea
cage and land-based industrialization is adopted. Takifugu rubripes is delicious and nutri-
tious and, as a high-quality food, it is in great demand for exports. With the development of
digitalization and informatization, the traditional aquaculture fishery management model
relying on human resources and experience now encounters limitations [2]. Problems of
manual observation and purely empirical methods such as misdetection, missing detection,
and untimely feedback happen occasionally. At present, the fish movement posture in
water is variable. The underwater environment, lights, and the mutual occlusion between
fish bodies reduce the accuracy of static fish identification in breeding ponds, which leads
to the problem of a low accuracy of fish identification [3–5]. Traditional methods can
no longer meet the needs of precision and intelligence for modern aquaculture [6]. The
accurate identification of fish requires more and more attention and the automatic detection
and identification of fish underwater are significant for fishery resource assessment and
ecological environment monitoring [7–9]. Therefore, this paper focuses on the accurate
identification algorithms for fish in underwater images to solve these above problems.

J. Mar. Sci. Eng. 2023, 11, 1051. https://doi.org/10.3390/jmse11051051 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11051051
https://doi.org/10.3390/jmse11051051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse11051051
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11051051?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1051 2 of 15

Traditional target detection algorithms typically use a sliding window model, in which
a window sequentially slides on the detected image [10]. Feature extraction is carried out
on each sliding window, respectively, and machine learning algorithms are used for the
extracted features to determine whether the window contains the object. This method
means that the feature extraction and matching have certain defects. Meanwhile, the
adaptability, accuracy, and detection speed of traditional algorithms are relatively poor [11].
With the development of deep learning [12–14], Hinton’s group won the ImageNet image
recognition competition in 2012 by building the AlexNet [15] convolutional neural network
to crush the performance of the second-place SVM classifier. As a result, many scholars
have shifted their attention from traditional image processing to deep learning target
recognition [16,17]. With the advantages of a simple structure, higher efficiency, and higher
accuracy, the target detection algorithm based on deep learning has quickly caught up
with the traditional target detection algorithms [18,19]. It has become the most mainstream
target detection algorithm.

There are currently two main types of mainstream object detection algorithms. The
first are known as two-stage algorithm models, such as R-CNN [20], Fast R-CNN [21], and
Faster R-CNN [22]. This model first uses heuristics or RPN structures to generate a series
of candidate boxes. Subsequently, it uses convolutional neural networks to regress and
classify the samples. Using this process, it gains a higher precision, but a lower inference
speed. The other algorithm is the single-stage algorithmic model, which uses regression
ideas to input images into the convolutional neural network and output the result directly
after the detection, such as YOLO [23], SSD [24], and Retina-Net [25]. This algorithm lacks
the screening and optimization process of the prediction frameworks, which reduces the
accuracy of the detection. Despite this, its detection speed is faster and higher than those of
the two-stage methods.

With the fast development of deep learning, it has quickly been applied in fish detec-
tion, but there are still many challenges in the model for the accurate identification of fish.
Liu et al. [26] detailed a fish recognition detection algorithm based on the FML-Centernet,
which introduces a feature fusion module in a Centernet algorithm network structure to
fuse low-level feature information and high-level feature information. On this basis, they
put forward a more complete feature map, but the detection accuracy was not ideal. Cai
et al. [27] constructed a CNN model for fish identification, using the ReLU function as the
activation function through dropout and regularization, but increased the detection time.
Dong et al. [28] detailed a network that mixed the spatial domain attention mechanism
and hierarchical streamlined bilinear features together. Its feature extraction network was
initialized with the parameters trained on the ImageNet dataset and further fine-tuned
using the fish dataset, while the amount of computation was increased.

YOLO (You Only Look Once) [29–31], a classical single-stage detection algorithm,
has achieved a good balance between accuracy and speed and is widely used in various
target detection tasks. For example, Wu et al. [32] used a modified YOLO model to detect
how pine nematode disease affected trees at different stages of infection. Wang et al. [33]
used improved YOLO-V4 and binocular positioning for real-time vehicle identification and
tracking during an agricultural operation. Qiu et al. [34] used a YOLO-based method to
detect sidewalk cracks in real-time drone images. The above results show good accuracy
when detecting targets that are more dispersed from the background. However, there will
be still many problems if this model is to be directly applied to the accurate recognition of
T. rubripes:

(1) Compared to common scenarios, underwater images are affected by lighting, water
flow, and water quality, etc., and the fish bodies in the images form a relatively
complex background due to overlapping and occlusion, which increases the difficulty
of the detection and causes inaccurate detection results.

(2) In the feature extraction and fusion, the feature map output from each node is not fully
utilized and the feature extraction ability can be further strengthened during training.
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(3) Due to the high density of cultured T. rubripes and the different target sizes in the
images, the detection head of the YOLO-V7 needs to be improved.

In response to the above issues, based on the YOLO-V7 [35] algorithm framework, this
paper proposes an accurate identification and detection algorithm for T. rubripes to solve
the problem of the low accuracy of fish recognition in images.

2. Materials and Methods
2.1. Dataset
2.1.1. Data Acquisition and Image Features

This paper collected experimental data from the breeding ponds of the Dalian
Tianzheng Breeding Factory, which raises different sizes of T. rubripes in ponds, and finally
collected videos of the T. rubripes. The light in the breeding ponds was relatively fixed and
soft. To avoid the influence of vertical light, the camera shot the water surface from bottom
to top at a 30-degree angle. Considering the changes in light and turbidity, etc., the camera
used a zoom lens and was kept in auto mode. The captured video size was 1920 × 1080
and one frame was extracted from the video every six seconds, eventually selecting 3870
images of T. rubripes.

2.1.2. Image Annotation and Dataset Production

The open-source script LabelImg (https://github.com/tzutalin/labelImg, accessed
on 11 June 2021) on GitHub was used to annotate the dataset. After running the LabelImg
script, the target samples in each image were marked. With these produced datasets, an
XML file containing the target type and coordinate information was generated and trained.
An example of an annotated image is shown in Figure 1. In the production of the dataset,
3870 images of T. rubripes were used. These comprised 3096 pictures used for the training
dataset and 774 images used for the validation dataset.
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2.2. Related Works
2.2.1. YOLO-V7

As the most typical representation of a single-stage object detection algorithm, the
YOLO algorithm is based on deep neural networks for object recognition and localization.
It uses a single CNN model to achieve end-to-end target detection, takes the whole image as
the input into the network structure, and directly regresses the location of the bounding box
and the category to which it belongs in the output layer. The YOLO-V7 network represents
a continuous improvement over the previous the YOLO series, which provides a good
balance between the accuracy and operating speed. The YOLO-V7 network consists of
four main modules: input, backbone, head, and prediction. It adopts strategies such as
extended efficient layer aggregation networks (E-ELAN), model scaling for concatenation-
based models [36], re-parameterized convolution [37], and other techniques. The algorithm
structure of YOLO-V7 is shown in Figure 2.
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Figure 2. The overview architecture of YOLO-V7.

E-ELAN is a computational block in the YOLO-V7 backbone network that can guide
different groups of computation blocks to learn more diverse characteristics. In large-
scale ELANs, the network always reaches an equilibrium state, regardless of the gradient
direction, path length, and total number of blocks. However, such equilibrium states
may be destroyed and the usage of the main parameters will be reduced if the blocks
are stacked endlessly. The E-ELAN algorithm uses expansion, random scrambling, and
merging cardinality to continuously enhance the ability of the network learning without
destroying the original gradient path, and to also guide the different computational block
groups to learn more diverse features. The primary purpose of the model scaling is to
adjust the specific properties of the model and generate models of different sizes to meet
the needs of varying inference speeds. When scaling the model for a cascade-based model,
only the depth in the computational block needs to be scaled, and the rest of the transport
layer is scaled with the corresponding width. When scaling the depth factor of a calculated
block, the change in the output channel of the block is calculated and makes the same
changes to the transition layer. RepConv without constant connection is used to redesign
the architecture of the reparametrized convolution and proposed to generate coarse to
acceptable hierarchical labels with guidance from the prediction results of the guidance
head, which are used to assist the learning of the guidance head. This paper presents an
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improved algorithm based on YOLO-V7, and the research content flowchart is shown in
Figure 3.
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2.2.2. Evaluation Metrics

An experiment needs performance indexes to evaluate an algorithm model. According
to the evaluation indexes of the neural network model [38], this paper uses accuracy, recall
rate, F1 score, and average precision as its evaluation indicators. The calculations of the
accuracy, recall, F1 score, and average precision are shown in Equations (1)–(4).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1=
2× Precision × Recall

Precision + Recall
(3)

AP =
∫ 1

0
Precision × Recall dr (4)

AP@0.5:0.95 =
1

10
(AP@0.50 + AP@0.55 + . . . + AP@0.90 + AP@0.95) (5)

TP is the real example, that is, the sample correctly identified as T. rubripes; FP is the
false positive example, which is the incorrectly identified sample of the T. rubripes; FN is
the false counter example, that is, the sample wrongly identified as the background; TN
is the true counter example, that is, the sample correctly identified as the background; ‘r’
represents the integral variable, which is used to determine the integration of precision
∗ recall and is between 0 and 1; AP is the size of the area under the curve drawn by
the accuracy–recall ratio (P-R); AP@0.5 is the average of the accuracy at different recall
values when the Intersection Over Union (IOU) is 0.5; and AP@0.95 is the average of the
accuracy at different recall values when the IOU is 0.95. AP@0.5:0.95 is the average of the ten
values, AP@0.50, AP@0.55, . . . , AP@0.90, and AP@0.95, and the calculation formula is shown
in Equation (5).

2.3. The Proposed Algorithm

This paper proposes an algorithm that is an improvement on YOLO-V7, based on
data set characteristics. The sample code and pseudocode of the proposed algorithm are
provided in Appendix A.

To solve the problem of the receptive field not being significantly improved after
adding depth, it is necessary to increase the convolutional kernel. Compared to a large
number of small convolutional kernels, a small number of large convolutional kernels can
improve the receptive field and optimize the network backbone model. By these means,
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the proposed algorithm will capture more effective information and enhance the ability of
the feature extraction (Figure 4).

Figure 4. Improvements in feature extraction capability.

Based on the difficulty of the feature loss caused by the excessive occlusion between the
targets, this paper upgrades the original detection head. With the progressive information
flow, it clears up issues such as the multi-scale and insufficient extraction of small targets,
thereby improving the accuracy of the target detection task (Figure 5).
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2.3.1. Improvements in Feature Extraction Capabilities

During the experiment, there were missed and incorrect results when the original
algorithm was used to detect the T. rubripes. After the evaluation, we found that most
of the false detection or missed detection occurred in the area of dense fish. In order to
capture the features clearly, this study hoped to expand the effective receptive field of the
model. According to the effective receptive field theory, the size of the receptive field is
proportional to the size of the convolution kernel, and the square root of the convolution
kernel layers has a positive effect as well. Therefore, we considered that increasing the
receptive field by adding depth was more effective for improving the receptive field than
directly expanding the convolution kernel. For example, while ResNet [34] looks like it
can go very deep, or go up to hundreds or thousands of layers, its effective depth is not
very deep and a lot of its signals are from the shortcut layer, which does not increase its
effective depth. However, if the convolution kernel size is increased, its effective receptive
field tends to go up very significantly.

This paper added a large convolution kernel into an ELANB module to expand the
effective receptive field of YOLO-V7, so that we could train a larger area. The structure of
the improved algorithm is shown in Figure 4. We increased the convolution kernel of the
second layer from 3 × 3 to 21 × 21. This upgraded the extraction ability and achieved a
more precise recognition result.

2.3.2. Improvement of the Detection Head

The head of the original YOLO-V7 algorithm has three sizes: large, medium, and small.
Based on the actual distribution and sample situation of T. rubripes, the experiment found
that obscured targets increased the error rate during the feature extraction. Furthermore,
short distances caused interference and reduced the precision of the target detection,
making the target extraction insufficient. Thus, this study proposed adding an object
detection layer, abandoning the initially extracted feature map, deepening the layer based
on the original, and further informing the information flow. The improved feature map
found it easier to inform the feature information of the target and achieve the purpose of
improving the detection accuracy, as shown in Figure 5.

3. Results

The software environment of our experiment is shown in Table 1. Considering the
GPU memory limitation after adding large convolution kernels during the training, the
batch size was set to 16. In order to analyze the training process perfectly, our study selected
300 iterations in the experiment. During the test, a batch of images was chosen with the
same resolution in the training phase to verify the algorithm.

Table 1. Experimental environment.

Configuration Parameter

CPU Intel Xeon(R) Gold 5128R
GPU Nvidia RTX 3090 Ti
Operating system Ubuntu 20.04
Development environment Pycharm 2022.2
Accelerated environment CUDA11.1

3.1. Analysis of Training Results

Our study statistically analyzed the test results of the verification set. The sample
number of T. rubripes in the verification set was 2280, the conf threshold (target confidence
threshold) was set to 0.25, and the IOU was set to 0.45 for verification. The results are
displayed in Table 2. In the improved model, the accuracy, recall rate, and F1 score were
all improved by varying degrees. Among them, the accuracy increased by five percent,
the recall by eight percent, and the F1 score by seven percent. The main reasons for this
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increase in the recall rate were the significant increase in the TP and the significant decrease
in the FN, which meant that more and more T. rubripes were correctly identified. This
demonstrates the effectiveness of the improved algorithm.

Table 2. Comparison of evaluation indicators before and after improvement.

Conf-Thresh = 0.25
IOU = 0.5

Precision Recall F1-Score TP FP FN

YOLO-V7 0.91 0.82 0.86 1859 174 421
Improved YOLO-V7 0.96 0.94 0.95 2154 79 126

3.2. Algorithm Performance Evaluation
3.2.1. Pre-Training

The pre-training dataset was composed of 3870 T. rubripes images, for which a weight
file was obtained and the parameters during the pre-training set were as follows: firstly,
this study set the initial learning rate to 0.01, made the weight attenuation 0.0005, set the
batch size to 16, and performed 300 iterations to generate the pre-training weight files. The
dataset was trained using transfer learning. Figure 6 shows the difference between using
these transfer learning strategies and not using them. It points out that transfer learning
improved the AP by 1.02%, which indicates that this strategy is effective.
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3.2.2. Performance Comparison to Improve Feature Extraction Capabilities

The experiment changed the effective receptive field of YOLO-V7 by changing the
network structure of the ELANB. Although adding convolution kernels improved the
precision, it also required more running memory. We selected convolution kernels with
the sizes of 13 × 3, 17 × 17, 21 × 21, and 27 × 27 for comparison. We comprehensively
compared the number of parameters and running speeds and finally decided on a size of
21 × 21 for the convolution kernel. The following experiments were conducted to add the
number of improved modules, replacing one, two, and four enhanced modules. The results
of this experiment are shown in Figure 7. Considering the running speed and accuracy,
we finally replaced two ELANB blocks. After strengthening the feature map, the trained
AP increased from 87.7% to 91.3%. These results show that the enhanced ELANB block
improved the correction of the training. At the same time, the large convolution kernel
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strengthened the ability of the feature extraction and positively reduced the occurrence of
error detection.
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3.2.3. Performance Comparison to Improve Head

This paper improved the detection head of the original YOLO-V7, abandoned the
feature map of the original, and deepened it based upon the last feature extraction. Through
this, the progressive information flow, multi-scale problem [39,40], and inadequate extrac-
tion of the small target information were effectively solved during the detection. The results
of the enhanced comparative experiment are shown in Figure 8. The AP of the improved
training increased from 87.79% to 89.81%. This shows that the enhanced head improved
the detection accuracy.
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3.2.4. Comparison of Network Pruning Performance

Takifugu rubripes detection is a challenging detection task. Still, the network structure
of YOLO-V7 is large and its accuracy has been improved by increasing the convolution
kernel. This task selected the depth of the convolutional layer. Under the premise of
ensuring the detection accuracy, we pruned the network appropriately. Table 3 shows
the total amount of computation for each algorithm in a billion floating-point operations
(GFlops). The results show that, after pruning the network, the whole calculation amount
of the model was reduced by about 35%.

Table 3. Comparison of the number of network pruning parameters.

Model YOLO-V7 Feature
Extraction

Improved
Head

Network
Pruning GFLOPs

1
√

104.8
2

√ √
109.9

3
√ √

119.4
4 (Ours)

√ √ √ √
68.2

3.3. Performance Comparison of the Overall Algorithm

Table 4 compares the results of the different improvement strategies. The results show
that the AP50 increased from 87.79% to 92.86%, with an increase of 5.07%. Through a series
of improved operations, we successfully improved the detection accuracy for T. rubripes.

Table 4. Ablation experiment comparison results.

Model YOLO-V7 Feature Extraction Improved Head Network Pruning AP@0.5 (%) AP@0.5:0.95 (%)

1
√

87.79% 52.76%
2

√ √
91.37% 55.82%

3
√ √

89.81% 56.65%
4 (Ours)

√ √ √ √
92.86% 57.94%

In order to further analyze the performance of the proposed method, we compared it
with YOLO-V5, Faster R-CNN, and SSD. We used the same training, verification, and test
set to compare the five networks, the results of which are shown in Table 5. The improved
YOLO-V7 has a higher accuracy than the other models.

Table 5. Comparison with current mainstream detection algorithms.

Model AP@0.5 (%) AP@0.5:0.95 (%)

YOLO-V5 87.11% 51.80%
Faster R-CNN 88.71% 53.55%

SSD 82.26% 46.43%
YOLO-V7 87.79% 52.76%

Ours 92.86% 57.94%

Figure 9 compares the PR curves of the T. rubripes before and after the improvement of
YOLO-V7. The closed area of the PR curve before the improvement was much smaller.
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Figure 10 shows an example image of the before and after comparison results of some
of the test picture improvements. The red box represents the detection result of the original
YOLO-V7 and the purple box represents the result of the improved YOLO-V7. The yellow
box indicates that the T. rubripes could be correctly detected after improving the algorithm.
The modified YOLO-V7 network could effectively improve the detection accuracy for the T.
rubripes. The reason for this was that the enhanced network increased the ability to process
feature maps. In this way, T. rubripes could be detected correctly when they occurred at
higher densities, with an overlapping environment between the fish.
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The results of the whole screen, before and after the improvement, are shown in
Figure 11. Under the interference of high density, the grid units in the feature map extraction
network did not perform accurately enough to predict the target, resulting in omissions
and error detection in the original YOLO-V7. After the improvement, the detection effect
was improved, 47 targets were obtained from the original analysis, 56 targets were obtained
after the improvement in picture (a), 40 targets were obtained from the original analysis,
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and 47 targets were obtained after the improvement in picture (b). This shows that the
improved network was better than the unimproved one.
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targets were obtained after the improvement and (b) 40 targets were obtained from the original
analysis, and 47 targets were obtained after the improvement.(The first line shows the detection result
of the original YOLO-V7 and the second line shows the result of the improved YOLO-V7).

4. Conclusions and Discussion

In this paper, we proposed an improved YOLO-V7 network for accurately detecting
T. rubripes. The feature extraction ability and detection head of YOLO-V7 were all modified
in our new model. The new model ameliorated the situation of low-quality underwater
images and more overlapping and dense identification targets, leading to a higher precision.
The experimental results show that the AP increased from 87.79% to 92.86%, with a total
increase of 5.07%, which means that the improved YOLO-V7 network was better the
original version.

This paper effectively solved the problem of fish identification needing to be improved
in the cultivation of T. rubripes when the background is relatively simple. The recognition
of fish images with a complex background is not as good as that with a single background
in a practical situation. The intelligence of aquaculture still needs more research and
exploration, and our next step will be studying fish identification in complex backgrounds.

Author Contributions: Conceptualization, S.Z.; methodology, S.Z. and K.C.; software, S.Z. and K.C.;
validation, S.Z. and X.T.; formal analysis, S.Z. and K.C.; writing—original draft preparation, S.Z.;
writing—review and editing, S.Z.; visualization, S.Z., J.H. and X.S.; supervision, Y.F. and H.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the province scientific research project Education Department
of Liaoning [JL201917].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.



J. Mar. Sci. Eng. 2023, 11, 1051 13 of 15

Acknowledgments: The authors are grateful for the support from the Education Department of
Liaoning Province, China.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithm A1: The pytorch style code of the improved LgConv & LKDeXt module

1: class LgConv(nn.Module):
2: def __init__(self, in_channels, dw_channels, block_lk_size, small_kernel, drop_path,
small_kernel_merged=False):
3: super().__init__()
4: self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0)
5: self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0)
6: self.large_kernel = ReparamLargeKernelConv(dw_channels, dw_channels,
block_lk_size, 1, dw_channels, small_kernel, small_kernel_merged)
7: self.lk_nonlinear = nn.ReLU()
8: self.prelkb_bn = get_bn(in_channels)
9: self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

10: def forward(self, x):
11: out = self.prelkb_bn(x)
12: out = self.pw1(out)
13: out = self.large_kernel(out)
14: out = self.lk_nonlinear(out)
15: out = self.pw2(out)
16: return x + self.drop_path(out)

17: class LKDeXt(nn.Module):
18: def __init__(self, c1, c2, n=1, True, g=1, e=0.5):
19: super().__init__()
20: c_ = int(c2 * e)
21: self.cv1 = Conv(c1, c_, 1, 1)
22: self.cv2 = Conv(c1, c_, 1, 1)
23: self.cv3 = Conv(2 * c_, c2, 1)
24: self.m = nn.Sequential(*(LgConv(c_, c_, 21, 5, 0.0, False) for _ in range(n)))
25: def forward(self, x):

26: return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

Algorithm A2: The pseudocode of the improved ConvBlock & LKDeXt

1: def ConvBlock(x):
2: x = Conv(x)
3: x = Batch_norm(x)
4: x = ReLU(x)
5: return x
6: def LgConv(x):
7: y = Batch_norm(x)
8: y = ConvBlock(y)
9: y = ReparamLargeKernelConv (y)
10: y = ReLU(y)
11: y = ConvBlock(y)
12: return x + dropout(y)

13: def LKDeXt(x):
14: y = Conv(concat(LgConv(Conv(x)),Conv(x),dim=1))
15: return y



J. Mar. Sci. Eng. 2023, 11, 1051 14 of 15

References
1. Guo, R.; Zhang, X.; Su, H.; Liu, H. The research status of nutrition value and by-products ultilization of puffer fish. J. Food Sci.

Technol. 2018, 3, 113–116.
2. Yang, D.; Zhang, S.; Tang, X. Research and development of fish species identification based on machine vision technology. Fish.

Inf. Strategy 2019, 31, 112–120.
3. Sun, L.; Wu, Y.; Wu, Y. Multi-objective fish object detection algorithm is proposed to study. J. Agric. Mach. 2019, 50, 260–267.
4. Tu, B.; Wang, J.; Wang, S.; Zhou, X.; Dai, P. Research on identification of freshwater fish species based on fish back contour

correlation coefficient. Comput. Eng. Appl. 2016, 52, 162–166.
5. Wan, P.; Zhao, J.; Zhu, M.; Tan, H.; Deng, Z.; Huang, S.; Wu, W.; Ding, A. Freshwater fish species identification method based on

improved ResNet50 model. J. Agric. Eng. 2021, 12, 159–168.
6. Liu, S.; Li, G.; Tu, X.; Meng, F.; Chen, J. Research on the development of aquaculture production information technology. Fish.

Mod. 2021, 48, 64–72.
7. Zhao, Z.; Liu, Y.; Sun, X.; Liu, J.; Yang, X.; Zhou, C. Composited FishNet: Fish detection and species recognition from low-quality

underwater videos. IEEE Trans. Image Process. 2021, 30, 4719–4734. [CrossRef]
8. Li, S.; Yang, L.; Yu, H.; Chen, Y. Underwater fish species identification model and real-time recognition system. J. Intell. Agric.

2022, 4, 130–139.
9. Wang, W.; Jiang, H.; Qiao, Q.; Zhu, H.; Zheng, H. Research on fish recognition and detection algorithm based on deep Learning. J.

Inf. Technol. Netw. Secur. 2020, 33, 6157–6166.
10. Sun, S.; Zhao, J. Pattern Recognition and Machine Learning. J. Sci. Technol. Publ. 2021, 322, 154.
11. Li, J.; Xu, L. Research hot trend prediction model based on machine learning algorithm comparison and analysis, the BP neural

network, support vector machine (SVM) and LSTM model. Mod. Intell. 2019, 33, 23–33.
12. Amanullah, M.; Selvakumar, V.; Jyot, A.; Purohit, N.; Fahlevi, M. CNN based prediction analysis for web phishing prevention. In

Proceedings of the International Conference on Edge Computing and Applications (ICECAA), Tamilnadu, India, 1–3 December
2022; pp. 1–7.

13. Althubiti, S.A.; Alenezi, F.; Shitharth, S.; Reddy, C.V.S. Circuit manufacturing defect detection using VGG16 convolutional neural
networks. Wirel. Commun. Mob. Comput. 2022, 2022, 1070405. [CrossRef]

14. Alyoubi, K.H.; Shitharth, S.; Manoharan, H.; Khadidos, A.O.; Khadidos, A.O. Connotation of fuzzy logic system in underwater
communication systems for navy applications with data indulgence route. Sustain. Comput. Inform. Syst. 2023, 38, 100862.
[CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton Geoffrey, E. ImageNet classification with deep convolutional neural networks. Commun.
ACM 2017, 60, 84–90. [CrossRef]

16. Naseer, A.; Baro, E.N.; Khan, S.D.; Vila, Y. A novel detection refinement technique for accurate dentification of nephrops
norvegicus burrows in underwater imagery. Sensors 2022, 12, 4441. [CrossRef] [PubMed]

17. Shitharth, S.; Prasad, K.M.; Sangeetha, K.; Kshirsagar, P.R.; Babu, T.S.; Alhelou, H.H. An enriched RPCO-BCNN mechanisms for
attack detection and classification in SCADA systems. IEEE Access 2021, 9, 156297–156312. [CrossRef]

18. Sun, H.; Li, Y.; Lin, Y. Significant target detection based on deep learning review. J. Data Acquis. Process. 2023, 38, 21–50.
19. Qian, C. Target detection algorithm based on depth of learning research progress. J. Wirel. Commun. Technol. 2022, 31, 24–29.
20. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Washington, DC, USA, 23–28 June 2014;
IEEE: Pitscatway, NJ, USA, 2014.

21. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

22. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real—Time object detection with region proposal networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

23. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
24. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings

of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham,
Switzerland, 2016; pp. 21–37.

25. Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516.
26. Liu, Y.; Wang, Y.; Hunag, L. Fish recognition and detection based on FML-Centernet algorithm. Laser Optoelectron. Prog. 2022,

59, 317–324.
27. Cai, W.; Pang, H.; Zhang, Y.; Zhao, J.; Ye, Z. Recognition model of farmed fish species based on convolutional neural network. J.

Fish. China 2022, 46, 1369–1376.
28. Dong, S.; Liu, W.; Cai, W.; Rao, Z. Fish recognition based on hierarchical compact bilinear attention network. Comput. Eng. Appl.

2022, 5, 186–192.
29. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
30. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection

on drone-captured scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops
(ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788.

https://doi.org/10.1109/TIP.2021.3074738
https://doi.org/10.1155/2022/1070405
https://doi.org/10.1016/j.suscom.2023.100862
https://doi.org/10.1145/3065386
https://doi.org/10.3390/s22124441
https://www.ncbi.nlm.nih.gov/pubmed/35746223
https://doi.org/10.1109/ACCESS.2021.3129053
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650


J. Mar. Sci. Eng. 2023, 11, 1051 15 of 15

31. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO series in 2021. arXiv 2021, arXiv:2107.08430.
32. Wu, K.; Zhang, J.; Yin, X.; Wen, S.; Lan, Y. An improved YOLO model for detecting trees suffering from pine wilt disease at

different stages of infection. Remote Sens. Lett. 2023, 14, 114–123. [CrossRef]
33. Wang, L.; Li, L.; Wang, H.; Zhu, S.; Zhai, Z.; Zhu, Z. Real-time vehicle identification and tracking during agricultural master-slave

follow-up operation using improved YOLO v4 and binocular positioning. Proc. Inst. Mech. Eng. 2023, 237, 1393–1404. [CrossRef]
34. Qiu, Q.; Lau, D. Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle

(UAV) images. Autom. Constr. 2023, 147, 104745. [CrossRef]
35. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.
36. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-YOLOv4: Scaling cross stage partial network. In Proceedings of the

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 13024–13033.

37. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style convnets great again. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 13728–13737.

38. Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F score, with implication for evaluation. In
Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005;
pp. 345–359.

39. Khan, S.D.; Basalamah, S. Multi-Scale person localization with multi-stage deep sequential framework. Int. J. Comput. Intell. Syst.
2021, 14, 1217–1228. [CrossRef]

40. Khan, S.D.; Alarabi, L.; Basalamah, S. A unified deep learning framework of multi-scale detectors for Geo-spatial object detection
in high-resolution satellite images. Arab. J. Sci. Eng. 2022, 47, 9489–9504. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/2150704X.2022.2161843
https://doi.org/10.1177/09544062221130928
https://doi.org/10.1016/j.autcon.2023.104745
https://doi.org/10.2991/ijcis.d.210326.001
https://doi.org/10.1007/s13369-021-06288-x

	Introduction 
	Materials and Methods 
	Dataset 
	Data Acquisition and Image Features 
	Image Annotation and Dataset Production 

	Related Works 
	YOLO-V7 
	Evaluation Metrics 

	The Proposed Algorithm 
	Improvements in Feature Extraction Capabilities 
	Improvement of the Detection Head 


	Results 
	Analysis of Training Results 
	Algorithm Performance Evaluation 
	Pre-Training 
	Performance Comparison to Improve Feature Extraction Capabilities 
	Performance Comparison to Improve Head 
	Comparison of Network Pruning Performance 

	Performance Comparison of the Overall Algorithm 

	Conclusions and Discussion 
	Appendix A
	References

