
Citation: Yu, A.; Wang, Y.; Zhou, S.

Distance‑Independent Background

Light Estimation Method. J. Mar. Sci.

Eng. 2023, 11, 1058. https://doi.org/

10.3390/jmse11051058

Academic Editor: Ernesto Weil

Received: 13 April 2023

Revised: 12 May 2023

Accepted: 14 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Distance‑Independent Background Light Estimation Method
Aidi Yu, Yujia Wang * and Sixing Zhou

College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
yuaidi@hrbeu.edu.cn (A.Y.); z2533541867@163.com (S.Z.)
* Correspondence: wangyujia@hrbeu.edu.cn

Abstract: A distance‑independent background light estimation method is proposed for underwater
overhead images. The method addresses the challenge of the absence of the farthest point in under‑
water overhead images by adopting a global perspective to select the optimal solution and estimate
the background light by minimizing the loss function. Moreover, to enhance the information reten‑
tion in the images, a translation function is employed to adjust the transmission map values within
the range of [0.1, 0.95]. Additionally, themethod capitalizes on the redundancy of image information
and the similarity of adjacent frames, resulting in higher computational efficiency. The comparative
experimental results show that the proposed method has better restoration performance on under‑
water images in various scenarios, especially in handling color bias and preserving information.

Keywords: background light; underwater image restoration; distance‑independent

1. Introduction
The development of modern technology has made unmanned underwater vehicles

(UUVs) suitable oceanic equipment for performing various underwater tasks. In politi‑
cal, economic, and military fields, UUVs play an irreplaceable role. They are widely used
in various underwater tasks, e.g., pipeline tracking, underwater terrain scanning, laying
underwater cables, developing oceanic resources, etc. As the tasks performed by UUVs
become more complex, acoustic technology is unable to meet the accuracy requirements
for fine operations. In contrast, optical technology is more suitable for close‑range, deli‑
cate operations. The visual of underwater optical images directly affects the performance
of subsequent operations, such as target detection, feature extraction, and pose estimation.
Therefore, obtaining clear and realistic underwater images is crucial for precise underwa‑
ter operations. However, the special properties of the underwater environment can affect
the quality of underwater images. Due to the different rates of attenuation of light of differ‑
ent wavelengths underwater and the scattering of light caused by underwater impurities,
underwater images often have problems such as low contrast, blurred object edges, high
noise, and blue‑green color deviation. These problems greatly affect the effectiveness of
UUVs in underwater tasks and may even lead to task failure. Therefore, image processing
technology for underwater images plays a crucial role in UUV underwater operations.

This paper aims to address the issue of poor image restoration caused by the ab‑
sence of the farthest point in underwater overhead images. To achieve this, a distance‑
independent real‑time underwater image restoration method suitable for CPUs is pro‑
posed. Specifically, a loss function is constructed tominimize information loss and achieve
histogram distribution equalization. For the severely attenuated red channel, the back‑
ground light is calculated based on the minimum difference principle of gray value. In
addition, this method also optimizes the transmission map estimation method [1] using
a translation function to reduce information loss. To address real‑time issues, two accel‑
eration strategies are proposed based on the redundancy of image information and the
similarity of adjacent frames. Experimental results show that the proposed method can
restore underwater images with richer colors and more information.
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The rest of the paper is organized as follows. In Section 2, the existing underwater im‑
age processingmethods and their shortcomings are reviewed. In Section 3, the underwater
imaging model is introduced. In Section 4, the proposed method for real‑time underwater
image restoration is explained. In Section 5, the experimental results are presented and
discussed. Finally, Section 6 is the conclusion.

2. Related Work
In recent years, many methods have been proposed to enhance and restore underwa‑

ter images to tackle these issues. Image enhancement algorithms [2] include histogram
equalization, white balancing, wavelet transform, fusion methods, etc. These algorithms
enhance image contrast and sharpen image details to improve the quality without relying
on the underwater imaging model. While these methods are easy to operate and have
simple principles, they do not address the root cause of the degradation of underwater
images. Image restoration algorithms based on the Jaffe–McGlamery underwater imaging
model [3,4] address this limitation. The core of this approach is to solve two unknowns in
the model: transparency and background light, to restore the image. After the pioneering
work of He et al. [5], many related methods and variants emerged [6,7]. While the above
image restoration algorithm can be applied to image dehazing and deblurring, there is still
room for improvement [8]. For better results, combined approaches [8–16] that combine
image enhancement methods such as Gray‑World assumption theory, semantic white bal‑
ance, low‑pass filtering, and polarization technology with image restoration algorithms.
While these methods can achieve better results, they require more processing time and
complex computations.

Most of the methods mentioned above attempt to determine the distance between
the camera and the target and approximate the intensity value of the farthest point as
the background light. For instance, the dark channel prior (DCP) algorithm proposed by
He et al. [5] exploits the fact that scattered light can increase the luminance of the dark
channel. As the depth of the scene increases, the dark channel luminance also increases.
The background light can be obtained by calculating the average gray value of the top 1%
of the brightest pixels in the dark channel. Furthermore, the transmission map can be ob‑
tained by substituting the dark channel value into the Jaffe–McGlamery underwater imag‑
ing model [3,4] after assuming that the dark channel value of a clear and fog‑free image
tends to zero. Drews et al. [6] proposed the underwater dark channel prior (UDCP) algo‑
rithm, which is a variant of the DCP algorithm that removes the effect of the red channel
by considering the severe attenuation of the red channel in underwater images. Carlevaris‑
Bianco et al. [1] calculated the difference between the red channel and the maximum value
of the blue and green channels to obtain the transmittance, which decreases with increas‑
ing distance. This law leads to the proposed MIP algorithm, where the grayscale value at
the lowest transmittance, which corresponds to the farthest distance, is the value of the
background light. Dai et al. [14] employed the fact that objects that are further away from
the camera are more blurred than closer objects. They used a quadtree to find a small area
in the image with the flattest, the least color variation, and most blurred, and the mean
grayscale value of this area is the value of background light. Additionally, Peng et al. [15]
combined several of the abovemethods to solve for the unknowns in the Jaffe–McGlamery
underwater imaging model [3,4]. Furthermore, there have been various deep learning‑
based methods proposed recently for scene depth and lighting estimation. For instance,
Wang et al. [17] presented an occlusion‑aware light field depth estimation network with
channel and view attention, which uses a coarse‑to‑fine approach to fuse sub‑aperture im‑
ages from different viewpoints, enabling robust and accurate depth estimation even in the
presence of occlusions. Song et al. [7] used deep learning to find the linear relationship
between the maximum value of the blue‑green channel and the maximum value of the red
channel and the distance. Similarly, the transmissionmap is found, and the grayscale value
at the farthest distance is the value of background light. Ke et al. [16] comprehensively con‑
sider color, saturation, and detail information to construct the scene depth and edge maps
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for estimating the transmissionmap. Zhan et al. [18] proposed a lighting estimation frame‑
work that combines regression‑based and generation‑based methods to achieve precise re‑
gression of lighting distribution with the inclusion of a depth branch. These methods rely
on estimating the background light value by approximating the farthest point in the un‑
derwater image as a point at infinity from the camera. Therefore, these methods only work
wellwhen processing horizontally captured images, as shown in Figure 1a. However, in ar‑
eas such as underwater pipeline tracking, underwater mine clearance, underwater terrain
exploration, and seafood fishing, the cameras on UUVs are typically pointed downwards
vertically or diagonally. The captured images are shown in Figure 1b, where each point is
very close to the camera. In this situation, the distance‑based background light estimation
methods are unsuitable for such images. Moreover, the DCP algorithm, which depends
on the background light to solve for the transmission map, tends to introduce errors in the
results, degrading the quality further.
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Figure 1. Underwater images. (a) Image taken horizontally; (b) Image taken overhead.

To solve this problem, image restorationmethods that do not rely on the farthest point
from the camera in the image are needed. Currently, the commonly used solution is to
create an end‑to‑end network that directly outputs the restored image after inputting the
original image [19–27]. For instance, Tang et al. [25] unified the unknown variables of
the underwater imaging model. They predicted a single‑variable linear physical model
through a lightweight convolutional neural network (CNN) to generate clear images di‑
rectly. Zhang et al. [26] enhanced the three‑channel features of the image and fused them
based on CNN to solve the problem of non‑uniform illumination. Han et al. [27] utilized
contrastive learning and generative adversarial networks tomaximize themutual informa‑
tion between original information for image restoration. Although these methods perform
well in underwater scenes, they require graphics processing units (GPUs) with high perfor‑
mance and large memory. However, the suitability of this method for UUVs with limited
hardware resources is limited, which led to the proposal of an underwater overhead image
restoration method suitable for central processing units (CPUs).

Recently, Li et al. [8] proposed a simple and effective underwater image restoration
method based on the principles of minimum information loss and histogram priors. This
method is distance‑independent and can be implemented on CPUs. Inspired by this, these
principles andprior knowledge are applied to propose a distance‑independent background
light calculationmethod. The novelty of themethod is that it takes a global perspective and
constructs a loss function based on the expected effect of image restoration, thus obtaining
the background light without relying on distance. In addition, considering the real‑time
requirement of image processing, Jamil et al. [28] classified the information in the image
into three categories: useful, redundant, and irrelevant, and discussed the pros and cons of
various lossy image compression methods. Regarding the global variable of background
light, which is related to the overall color tone of the entire image but not related to the
details in the image. Inspired by this, in solving the background light, this paper adopts
a lossy compression method to reduce the resolution of the image, thereby improving the
efficiency of the algorithm. The main contributions of this work are as follows:
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1. A distance‑independent method for solving background light is proposed, which is
more suitable for color correction anddoes not require additional image enhancement
operations or hardware resources.

2. By utilizing spatial resolution and similarity between adjacent frames, the proposed
method offers high computational efficiency.

3. Background
Underwater images are generally degraded due to the absorption and scattering of

light. The medium of water causes the absorption of light, reducing the energy of light
based on its wavelength and depth. As different wavelengths of light have varying atten‑
uation rates in water, this leads to color distortion. In addition, the scattering of light is
caused by suspended particles in the water reflecting light in other directions, resulting
in image blurring. The Jaffe–McGlamery underwater imaging model suggests that the
light received by the camera in an underwater scene contains three components: the direct
attenuation component, the forward scattering component, and the backscattering compo‑
nent, as shown in Figure 2. Therefore, an underwater image can be represented as a linear
superposition of these three components. The model can be expressed as

ET = Ed + E f + Eb (1)

where ET is the light arriving at the camera, Ed is the direct attenuation, E f is the forward
scattering, and Eb is the backscattering.

1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Jaffe–McGlamery underwater imaging model.

Direct attenuation is the attenuation due to the main radiation within the medium
with increasing propagation distance. It is mathematically defined as

Ed(x, λ) = J(x, λ)t(x, λ), λ ∈ {R,G,B} (2)

where x denotes a pixel, λ is the wavelength of light, J(x, λ) is the non‑degraded image,
and t(x, λ) is the transmission map.

Forward scattering is the light reflected from the target object that reaches the camera
through scattering. It can be expressed as

E f (x, λ) = Ed(x, λ) ∗ gd(x), λ ∈ {R,G,B} (3)

where gd(x) is the point spread function; because forward scattering has little effect on
image quality, it is usually neglected.

Backscattering is the light reaching the camera due to the scattering effect of impurities
in the water. It can be expressed as

Eb(x, λ) = B∞(λ)(1 − t(x, λ)), λ ∈ {R,G,B} (4)
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where B∞(λ) is the background light, it represents the color of the body of water, and
its value can be expressed as the grayscale value of a point at a distance of infinity from
the camera.

The simplified underwater imaging model [25] can be expressed as

I(x, λ) = J(x, λ)t(x, λ) + B∞(λ)(1 − t(x, λ)), λ ∈ {R,G,B} (5)

where I(x, λ) is the observed image.
Equation (5) can be transformed into Equation (6). Themain task of underwater image

recovery is to estimate the transmission map t(x, λ) and the background light B∞(λ).

J(x, λ) =
I(x, λ)− B∞(λ)(1 − t(x, λ))

t(x, λ)
, λ ∈ {R,G,B} (6)

Methods for solving the background light and the transmission map often involve
estimating the distance between the camera and the target. This is because the background
light represents the grayscale value of a point at infinity from the camera. In addition,
according to the Beer–Lambert law [29], as shown in Equation (7), the transmission map
decreases exponentially as the distance increases.

t(x, λ) = e−cd(x), λ ∈ {R,G,B} (7)

where c is the attenuation coefficient; d(x) is the distance between the camera and the target.

4. The Proposed Method
In this section, this paper will introduce the proposed method for restoring overhead

underwater images, as well as strategies for accelerating the process. The operational steps
of the proposed method are shown in Figure 3. Firstly, the transmission map is calculated,
and the values of the transmission map outside the range are transferred by a translation
function to reduce information loss. Secondly, the background light for the blue and green
channels is estimated by minimizing the loss function. Thirdly, the background light for
the red channel is determined based on the principle of minimizing the average grayscale
difference between the three channels. Finally, the degraded underwater image can be
restored based on the obtained background light and transmission map.
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4.1. Transmission Map Estimation
To achieve accurate transmission map solutions and avoid compounding errors, this

paper utilizes the MIP algorithm’s [1] transmission map solution method instead of the
DCP algorithm, which depends on the background light. In theMIP algorithm, the largest
differences among the three different color channels are calculated as follows:

D(x) = max
x∈Ω, λ=R

I(x, λ)− max
x∈Ω, λ∈{B,G}

I(x, λ) (8)

where D(x) is the largest difference among the three color channels, and Ω is a local patch
in the image.

The transmission map is

t(x) = D(x) + (1 −max
x

D(x)) (9)

As shown by Equation (5), t(x) and (1 − t(x)), respectively, represent the contribu‑
tion of the main radiation and the background radiation to the image. The value of t(x)
decreases as the background radiation dominates the grayscale value. However, as the
background radiation is usually not as bright as the main radiation, the minimum value
of t(x) is kept at 0.1 to avoid an overly dark recovered image. In addition, to preserve
the image’s authenticity, a portion of the fog is retained in the recovered image. Hence,
the maximum value of t(x) is set to 0.95 [5]. This leads to a transmission map range
of [0.1, 0.95].

However, simply cutting off the transmission map values beyond the range of val‑
ues will lead to the loss of information. Therefore, in this paper, the transmission map is
transformed as follows to transfer the information in the transmission map to the range
[0.1, 0.95] as much as possible.

τ =


min(tmax − 0.95, tmin − 0.1),| tmax > 0.95, tmin > 0.1

−min(0.95 − tmax, 0.1 − tmin),| tmax < 0.95, tmin < 0.1

0, otherwise
ttrans(x) = t(x)− τ

(10)

where τ is the quantity of the transformation, tmin is theminimumvalue of the transmission
map, tmax is the maximum value of the transmission map, and ttrans(x) is the transmission
map after the transformation.

This transformation technique retains some transmission map information beyond
the effective range while maintaining the contrast of the original transmission map.
The comparison results of the transmission maps before and after the transformation are
depicted in Figure 4a,b. The entropy values of the transmission maps are 5.5424 and
5.5433, respectively, indicating that the transformed transmission map is more detailed
and informative.
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4.2. Background Light of Blue and Green Channels Estimation
Asmentioned above, it is not appropriate to use one or the mean value of a few pixels

in the image to represent the background light in an overhead image because there is no
point far enough in the image that can be reasonably approximated as background light.
To overcome this limitation, this paper calculates the value of the background light through
inference rather than relying on any specific pixel value in the image. The value of the
background light is inferred from the desired image result, which provides amore accurate
representation of the background light.

Firstly, motivated by Li et al. [30], who determined the transmission map by mini‑
mizing information loss, this paper aims to find the background light by minimizing the
information loss of the image. To ensure that the grayscale value of the restored image is
between 0 and 1, any values outside this range are directly assigned to 0 or 1. If there are
too many pixels outside the grayscale range, large black or white areas will appear in the
image, leading to information loss from the original image.

To solve this problem, the existing approach is to use the stretching function.

S(v) =
v −min(V)

max(V)−min(V)
(11)

where V represents the grayscale range before stretching and v represents the grayscale
value involved in the calculation.

The grayscale difference between the two pixels can be expressed as

∆v = v1 − v2∆vs =
∆v

max(V)−min(V)
(12)

where ∆v represents the difference between the two pixels before stretching, and ∆vs rep‑
resents the difference between the two pixels after stretching.

While themethod is effectivewhen thedifference between themaximumandminimum
grayscale values is less than 1, it is unsuitable for cases where this difference exceeds 1. In
such scenarios, the method compresses the original grayscale values, resulting in decreased
contrast between pixels. This can lead to loss of important information and reduced overall
image quality. Therefore, compressing the contrast of the entire image to retain a few bright
or dark pixels that contain minimal information is not a reasonable approach.

When the grayscale difference max(V) −min(V) is greater than 1, the method de‑
scribed above directly assigns the under or over the part to 0 or 1. However, to minimize
information loss and maintain the contrast of the image, this paper aims to minimize the
number of pixels that fall outside the grayscale range. In other words, the number of such
pixels must be kept as small as possible while minimizing the information loss.

min
(
M ∗ N− nJbi [0,1](λ)

)
, λ ∈ {G,B} (13)

where M and N represent the length and width of the image and nJbi [0,1](λ) is the number
of pixels whose grayscale values fall between 0 and 1 in the image recovered by taking the
background light bi.

In addition, Li et al. [30] observed that the histograms of clear, fog‑free images are
distributed relatively uniformly without sharp points, based on their analysis of image
datasets of five natural scenes. However, the histograms of underwater images are typ‑
ically concentrated in a small range. In light of this, the present study aims to produce
restored images with the most balanced grayscale distribution. This is achieved by min‑
imizing the variance of the histogram of the restored image, which can be expressed as

min(Sover(λ)), λ ∈ {G,B} (14)

where Sover(λ) is the area of the histogram of the recovered images over the desired his‑
togram (the desired histogram is the most uniform distribution of image grayscale, with
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the same number of pixels falling on each gray value as (M×N)/255), indicating the degree
of unevenness of the histogram distribution, as shown in Figure 5.
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In summary, the loss function for obtaining the background light values in the range
[0, 1] is defined as follows:

Loss(bi, λ) == M ∗ N− nJbi [0,1](λ) + Sover(λ), λ ∈ {G,B} (15)

Then the background light of the blue and green channels is

B∞(λ) = argmin
bi

Loss(bi, λ), λ ∈ {G,B} (16)

Through several experiments, it is found that the loss function is generally convex, i.e.,
it shows a trend of decreasing and then increasing as the background light bi increases, as
shown in Figure 6. Therefore, inspired by the loss function optimization method in deep
learning, to find the background light that makes the loss function obtain the minimum
value, instead of finding all the function values within the range of values of background
light bi, the gradient descent method can be used, as shown in Equation (17), and B∞(λ)
can be obtained after several steps.

bi+1(λ) = bi − ϵ
∂Loss(bi, λ)

∂bi
(17)

where ϵ is the learning rate.

4.3. Background Light of Red Channel Estimation
Due to the red channel’s limited information, it is challenging to accurately determine

the background light using only this channel. Therefore, this paper infers the red channel
background light by leveraging information from the recovered blue‑green channels. The
study analyzes the mean values of the red, green, and blue channels of both natural and
underwater image datasets, as illustrated in Figures 7 and 8. The details of the datasets are
as follows:
• The Caltech‑UCSD Birds‑200‑2011 Dataset (http://www.vision.caltech.edu/datasets/

cub_200_2011/, accessed on 20 March 2023) [31]. This is a natural image dataset for
bird image classification, which includes 11,788 images covering 200 bird species.

• CBCL Street Scenes Dataset (http://cbcl.mit.edu/software‑datasets/streetscenes/, ac‑
cessed on 20 March 2023) [32]. This is a dataset of street scene images captured by
a DSC‑F717 camera from Boston and its surrounding areas in Massachusetts, belong‑
ing to the category of natural image datasets, with a total of 3547 images.

http://www.vision.caltech.edu/datasets/cub_200_2011/
http://www.vision.caltech.edu/datasets/cub_200_2011/
http://cbcl.mit.edu/software-datasets/streetscenes/
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• Real World Underwater Image Enhancement dataset (https://github.com/dlut‑dimt/R
ealworld‑Underwater‑Image‑Enhancement‑RUIE‑Benchmark, accessed on 20 March
2023) [33]. This underwater image dataset was collected from a real ocean environ‑
ment testing platform consisting of 4231 images. The dataset is characterized by its
large data size, diverse degree of light scattering effects, rich color tones, and abundant
detection targets.
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Figure 7. The mean values of the red, green, and blue channels of the natural image dataset. 
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Figure 8. The mean values of the red, green, and blue channels of the underwater image dataset.
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The natural images exhibit similar three‑channel mean values, whereas the underwa‑
ter images demonstrate a clear demarcation. To further investigate this difference,
Equation (18) calculates the sum of the differences between the three‑channel means, and
Figure 9 displays the results. The analysis shows that the DRGB values for underwater
images are significantly larger than those for natural images.

DRGB = |IR − IB|+ |IR − IG|+ |IG − IB| (18)

where IR, IB, and IG are the mean values of the red, green, and blue channels of the ob‑
served image.

 

4 

 

 
  

Figure 9. The DRGB values of the underwater and natural images.

Therefore, this paper aims to minimize the DRGB values. Specifically, the gray mean
value of the blue and green channels is utilized as the gray mean value of the red channel
to derive the red channel background light. This approach allows for correcting the color
shift problem in underwater images without additional image enhancement operations.

JR = JB+JG
2

B∞(R) = IR−JR×t
1−t

(19)

where JR, JB, and JG are themean values of the red, green, and blue channels of the restored
image, t is the mean value of the transmission map.

In some cases, theremay be a significant difference between themean value of the blue
channel JB and the mean value of the green channel JG, leading to a color bias towards red
in the resulting image. To address this issue, this paper proposes a solution where the
background light of the channel with the higher mean value is kept, and its recovery map
is used to estimate the background light of the remaining two channels. For instance, if the
mean value of the green channel is larger, the background light of the other two channels
can be estimated as follows:

B∞(R) = IR−JG×t
1−t

B∞(B) = IB−JG×t
1−t

(20)

The recovered image is obtained by bringing the transmission map and background
light into Equation (6).

4.4. Strategies to Speed Up
Considering the need for higher computational efficiency, this paper aims to improve

the operation speed by addressing two key factors: the spatial resolution of images and
the similarity of neighboring images.
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First, the proposed background light calculationmethod is based on the global consid‑
eration of the picture and is not sensitive to the size of the picture. As shown in Figure 10,
the recovery effect of the picture is not affected too much after reducing the size of the
picture to 1/K of the original one. Therefore, when applied in practice, the K value can be
adjusted appropriately, weighing the imaging effect as well as the running speed.
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Second, in the continuous working state, the scene of several adjacent frames does
not change much, and the background light values can be shared to further improve the
running speed. As shown in Figure 11, the recovery images are almost the same after the
neighboring images swap the background light values.
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Figure 11. The results of image restoration by sharing the background light between several adja‑
cent frames.

5. Experimental Results and Discussion
The proposed approach is compared with five existing techniques: the dark channel

prior (DCP) method [5], underwater dark channel prior (UDCP) method [6], Carlevaris‑
Bianco’s (MIP) method [1], Differential Attenuation Compensation (DAC) method [2] and
Shallow‑UWnet method [34]. Underwater images were obtained from the Real World Un‑
derwater Image Enhancement dataset [33]. Qualitative and quantitative evaluations are
carried out to assess the performance of different methods.

In this study, different types of images are selected from the dataset (including images
with the green tune, blue tune, and images with less color bias). In addition, the perfor‑
mance of the proposed method is compared with other methods in restoring real under‑
water images. Qualitative experiments show the results of different methods in restoring
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underwater aerial images, as shown in Figure 12. The proposed method eliminates the
effects of light absorption, corrects the color distortion of blue‑green color cast in under‑
water images, and restores the rich and vibrant colors of the images, which is in line with
common sense. In addition, the proposed method successfully eliminates the effects of
scattering and makes the images clearer. Other methods improve the underwater images
to different extents but still have room for improvement. Although the DCP and UDCP
methods improve the clarity of the images, they do not correct the color bias of the images.
The MIP method successfully performs defogging of the images but causes undesirable
yellow color bias. DAC algorithm overcomes the color bias problem. However, the re‑
stored images are more blurry than other methods, and the corrected colors are relatively
dim. The Shallow‑UWnet algorithm successfully corrects the color bias of blue tune un‑
derwater images. Still, for images with green tune or less color bias, the restored images
are over‑corrected, resulting in additional yellow or red color distortion. Therefore, their
method’s results are not satisfactory. The fact that every point in the underwater aerial im‑
age is near the camera is considered. The proposed method does not use distance‑based
background light solutions but instead chooses the best global solution for background
light. As a result, the method produces more natural and superior results in terms of color
and detail than other methods.

Table 1 shows the average processing time and hardware requirements for different
algorithms to process one image, as well as their integrated development environments
(IDE). The DCP method [5], UDCP method [6], MIP method [1], DAC method [2], and
the proposed method run on the Windows 10 operating system, with 16 GB of memory
and 11th Gen Intel(R) Core(TM) i7‑1165G7 @ 2.80 GHz (8 CPUs). The Shallow‑UWnet
method [34] runs on a Tesla T4 GPU. As shown in Table 1, among the algorithms running
on the CPUs, the DCP algorithm has the fastest speed. The proposed method in this paper
is slightly slower than MIP and UDCP. The Shallow‑UWnet algorithm has good real‑time
performance but requires additional hardware resources.

Table 1. The average processing time, hardware requirements, and IDE of each method.

Algorithm DCP MIP UDCP DAC Shallow‑UWnet Proposed

Time (s) 0.1822 0.2493 0.2166 1.7272 0.2227 0.3345
IDE Pycharm Pycharm Pycharm MATLAB Pycharm Pycharm

Hardware CPU CPU CPU CPU GPU CPU

To show the proposed method’s advantages quantitatively, comparisons are made
with other restoration methods using three underwater quality evaluation metrics: the
Underwater Color Image Quality Evaluation Metric (UCIQE) [35], the Underwater Image
Quality Measure (UIQM) [36], and the entropy.

UCIQE is an objective evaluation expressed as a linear combination of chroma, satu‑
ration, and contrast:

UCIQE = m1 × σc + m2 × conl + m3 × µs (21)

where m1,m2, and m3 are the scale factors, they are set as per the original paper [35].
σc is the standard deviation of chroma, conl is the contrast of brightness, and µs is the
saturation average.

UIQM evaluates the quality of underwater images through a linear combination of its
three components: sharpness measure, colorfulness measure, and contrast measure.

UIQM = c1 × UICM + c2 × UISM + c3 × UIConM (22)

where c1, c2, and c3 are the scale factors, they are set as per the original paper [36].
UICM is the colorfulness measure, UISM is the sharpness measure, and UIConM is the
contrast measure.
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The entropy of the system reflects the degree of chaos, and the higher the entropy, the
more information the image contains, which means the clearer the image.

Tables 2 and 3 report the UCIQE and UIQM scores of images shown in Figure 12.
The scores in bold denote the best results. The proposed method has stronger robustness
and optimal overall performance in various scenarios, as indicated by its maximum av‑
erage value. While the UCIQE and UIQM scores for some of the images processed by
the proposed method were slightly lower than those of other methods, these methods ex‑
hibited larger fluctuations, with high scores in some images and low scores in others. In
contrast, the proposed method demonstrates a more stable restoration performance for
various types of images. However, it should be noted that some of the restoration images
with higher scores were too focused on enhancing contrast, neglecting color correction.

Table 2. UCIQE scores * of images shown in Figure 12.

Image Origin DCP MIP UDCP DAC Shallow‑UWnet Proposed

1 0.2722 0.3790 0.3730 0.3947 0.2255 0.2290 0.3896
2 0.3609 0.3917 0.3808 0.4015 0.3874 0.3967 0.4234
3 0.3751 0.407 0.4285 0.4222 0.3491 0.3779 0.4568
4 0.3752 0.4053 0.3771 0.4175 0.3679 0.4026 0.4099
5 0.4298 0.4385 0.4961 0.4587 0.4022 0.4185 0.4968
6 0.3630 0.4035 0.4137 0.4510 0.3589 0.4545 0.4916
7 0.3224 0.408 0.3533 0.4583 0.3122 0.4183 0.4616
8 0.375 0.4149 0.3632 0.4910 0.2577 0.2555 0.3985
9 0.4489 0.4572 0.4625 0.5156 0.3707 0.3927 0.5052
10 0.3888 0.4174 0.4588 0.434 0.3617 0.3967 0.4479
11 0.3148 0.4020 0.4987 0.4295 0.2966 0.4397 0.4671
12 0.2854 0.3990 0.3106 0.3835 0.2149 0.2366 0.3536
13 0.4681 0.4708 0.4680 0.5152 0.3664 0.3709 0.4964
14 0.3713 0.4125 0.3947 0.3605 0.3109 0.2725 0.4265

Average 0.3679 0.4148 0.4128 0.4381 0.3273 0.3616 0.4446
* A higher UCIQE score indicates better image quality.

Table 3. UIQM scores * of images shown in Figure 12.

Image Origin DCP MIP UDCP DAC Shallow‑UWnet Proposed

1 −0.8400 −0.2123 −0.2165 −0.3135 −0.8632 −0.3081 −0.2368
2 −0.2399 0.1390 −0.2809 0.2300 −0.3355 −0.0169 0.1813
3 0.0389 0.4613 0.5522 0.6048 −0.2648 0.0105 0.9704
4 −0.2021 0.1858 −0.2702 0.2522 −0.3302 −0.0475 0.2504
5 0.2519 0.4889 1.5800 0.6816 −0.1267 0.2372 1.4260
6 −0.3721 0.0374 0.2101 0.3436 −0.4271 −0.2427 0.5991
7 −0.5682 −0.1038 −0.0442 0.4378 −0.5846 −0.4666 0.3336
8 −0.2644 0.1885 −0.3574 0.6283 −0.6318 −0.649 −0.2960
9 0.3213 0.3925 0.9095 0.892 −0.1506 −0.1994 0.7112
10 −0.0872 0.3457 0.6865 0.4386 −0.3144 −0.0487 0.7507
11 −0.4421 0.1594 0.9140 0.5198 −0.4638 −0.4826 0.8586
12 −0.6686 −0.2113 −0.6194 0.0549 −0.7350 −0.4215 −0.2384
13 0.4338 0.5377 1.1882 1.0858 −0.2229 −0.3031 0.6632
14 −0.4251 −0.0212 0.3275 −0.3393 −0.4701 −0.3526 −0.3487

Average −0.2188 0.1705 0.3271 0.394 −0.4229 −0.2351 0.4018
* A higher UIQM score suggests that the result is more consistent with human visual perception.

To further demonstrate the superiority of the proposedmethod in color correction, the
colorfulness measures in UCIQE and UIQM scores (σc and UICM) are additionally listed
in Tables 4 and 5. The results show that the proposedmethod achieved the highest or near‑
highest scores in both evaluation metrics, indicating that the algorithm can effectively im‑
prove the color level of the restored images. This is because the histogram distribution bal‑
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ance was considered when constructing the loss function, and the value of the background
light was obtained by minimizing the loss function. Therefore, the calculated background
light can make the restored images more colorful and vivid.

Table 4. The colorfulness measure σc * in UCIQE scores of images shown in Figure 12.

Image Origin DCP MIP UDCP DAC Shallow‑UWnet Proposed

1 0.0291 0.0393 0.0446 0.0447 0.0646 0.0569 0.2923
2 0.0387 0.0454 0.0688 0.0372 0.1490 0.0346 0.2191
3 0.0329 0.0387 0.0824 0.033 0.1026 0.0264 0.261
4 0.0349 0.0434 0.054 0.0368 0.1175 0.0215 0.2474
5 0.0344 0.0370 0.1401 0.034 0.1171 0.0376 0.2812
6 0.0869 0.1049 0.2182 0.1091 0.1028 0.2900 0.2728
7 0.1088 0.1149 0.1598 0.1152 0.0934 0.2792 0.2269
8 0.0113 0.0120 0.0229 0.0368 0.049 0.0772 0.3443
9 0.0458 0.0434 0.2114 0.0746 0.0987 0.1818 0.3464
10 0.0428 0.0515 0.0601 0.0419 0.1015 0.0332 0.2266
11 0.114 0.1353 0.1437 0.1331 0.0669 0.3108 0.2602
12 0.0211 0.0467 0.0259 0.0484 0.0573 0.0176 0.2991
13 0.0643 0.0582 0.1629 0.1207 0.1053 0.1563 0.331
14 0.0174 0.0275 0.0826 0.0517 0.0915 0.0346 0.294

Average 0.0487 0.0570 0.1055 0.0655 0.0941 0.1113 0.2787
* A higher σc score indicates richer colors in the image.

Table 5. The colorfulness measure UICM * in UIQM scores of images shown in Figure 12.

Image Origin DCP MIP UDCP DAC Shallow‑UWnet Proposed

1 −0.7381 −0.3839 3.7792 2.2919 −1.9772 17.6672 17.2558
2 4.9669 5.4557 4.0874 5.0828 9.0464 14.4282 14.5248
3 5.3565 5.3235 8.2615 4.7840 5.2131 14.7446 16.8768
4 3.7914 4.5229 2.7446 4.2913 6.3745 9.9716 17.1822
5 4.8659 4.5921 15.3959 4.1764 4.9793 17.2987 17.6408
6 4.9898 5.6814 15.6180 4.9501 5.3688 14.4294 17.4807
7 4.8346 4.3226 15.9747 3.6215 4.5631 9.7244 15.6106
8 4.9449 5.0272 5.2024 0.7624 3.5792 4.2325 15.1843
9 5.4198 4.8146 13.1484 3.4475 5.7817 13.3738 17.2481
10 5.0785 5.2059 8.3004 4.8098 5.1170 11.5138 17.2416
11 5.0306 6.2061 8.2831 5.7368 4.1944 7.3071 17.4254
12 3.5741 1.4052 1.7001 −1.3721 1.6424 14.6708 16.9075
13 6.2110 5.7990 11.1680 6.4725 5.4693 9.8003 18.1152
14 0.9821 1.8303 7.3491 0.2730 2.7675 13.1950 10.2711

Average 4.2363 4.2716 8.6438 3.5234 4.4371 12.3112 16.3546
* A higher UICM score indicates a more balanced color in the image.

Table 6 gives the entropy values of the images shown in Figure 12. The images re‑
stored by the proposed method carry more information. This is because the transforma‑
tion function in this study preserved more information about the transmitted image, and
the loss of information was considered when constructing the loss function. This allows
the calculated background light to retain more information about the image.
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Table 6. Entropy * values of images shown in Figure 12.

Image Origin DCP MIP UDCP DAC Shallow‑UWnet Proposed

1 6.4746 6.6325 6.993 6.9564 6.4891 6.4818 7.4472
2 7.5963 7.5738 7.7616 7.5553 7.3026 7.4749 7.8655
3 7.3334 7.459 7.7236 7.3815 7.1283 7.2481 7.7627
4 7.5308 7.6079 7.7275 7.5382 7.2805 7.4499 7.8300
5 7.5362 7.4825 7.8325 7.4762 7.3261 7.4873 7.7172
6 7.5771 7.6552 7.4784 7.5963 7.502 7.4921 7.6124
7 7.4291 7.3635 7.7968 7.5028 7.2571 7.3375 7.9253
8 6.765 6.9913 7.1735 6.4368 6.8517 6.7923 7.4940
9 7.5079 7.4011 7.7481 7.219 7.5068 7.4889 7.8966
10 7.2536 7.4224 7.6655 7.3088 7.0689 7.1571 7.6892
11 7.3948 7.6695 7.8462 7.6124 7.2622 7.2871 7.7604
12 6.659 7.1119 6.7411 6.7670 6.6057 6.6583 7.3675
13 7.4904 7.431 7.5626 7.6088 7.4993 7.4456 7.9022
14 6.9208 6.9743 6.7258 6.7058 7.0053 6.9624 7.8121

Average 7.2478 7.3411 7.484 7.2618 7.149 7.1974 7.7202
* A higher entropy value suggests that the result contains more information.

6. Conclusions
In this paper, a new image recovery method has been proposed for overhead im‑

ages taken by UUVs performing tasks such as underwater pipeline tracking, underwa‑
ter mine clearance, underwater terrain detection, and seafood fishing. Firstly, a distance‑
independent background light calculation method has been proposed for the overhead
images where the points are close to the camera, unlike the previous methods that use
the most distant point in the image to approximate the background light. Next, an opti‑
mization function based on the overall information loss as well as the uniformity of the
histogram distribution has been used to calculate the blue and green channel background
light values. Then, based on the statistical results, the mean value of the red channel has
been determined based on the principle of minimizing the sum of the differences between
the mean values of the three channels, which has been used to invert the background light
value of the red channel. Moreover, this paper also has used the translation function to
control the value range of the transmission map between 0.1 and 0.95, which retains the
information carried by the transmission map. Finally, based on the real‑time considera‑
tion, two strategies have been proposed to speed up the operation from the perspective
of the spatial resolution of the image and the similarity of two adjacent frames. The ex‑
perimental results show that the proposed method has strong robustness in adapting to
various underwater environments. Moreover, the method can effectively correct the blue‑
green color cast in underwater images while preserving more information. Importantly,
the method can run on a CPU without the need for additional hardware resources. The
average processing time per frame is 0.3345 s, demonstrating good real‑time performance.

However, the proposed method still has some limitations. The method focuses on
color restoration and information preservation without taking measures to enhance con‑
trast. In future work, efforts will be made to enhance the contrast of underwater images to
make image details clearer.
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