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Abstract: Shipping companies and maritime organizations want to improve the energy efficiency of
ships and reduce fuel costs through optimization measures; however, the accurate fuel consumption
prediction of fuel consumption is a prerequisite for conducting optimization measures. In this study,
the white box models (WBMs), black box models (BBMs), and gray box models (GBMs) are developed
based on sensor data. GBMs have great potential for the prediction of ship fuel consumption,
but the lack of interpretability makes it difficult to determine the degree of influence of different
influencing factors on ship fuel consumption, making it limited in practical engineering applications.
To overcome this difficulty, this study obtains the importance of GBM input characteristics for ship
fuel consumption by introducing the SHAP (SHAPley Additive exPlanations) framework. The
experimental results show that the prediction performance of the WBM is much lower than that of the
BBM and GBM, while the GBM has better prediction performance by applying the a priori knowledge
of WBMs to BBMs. Combining with SHAP, a reliable importance analysis of the influencing factors is
obtained, which provides a reference for the optimization of ship energy efficiency, and the best input
features for fuel consumption prediction are obtained with the help of importance ranking results.

Keywords: fuel consumption prediction; white box models; black box models; gray box models;
SHAP; sensor data

1. Introduction

Maritime is one of the most popular and energy-efficient means of transportation [1].
Since the total international seaborne trade accounts for more than 80% of the total inter-
national cargo trade [2], and the shipping industry mainly uses heavy fuel oil [HFO] and
liquefied natural gas [LNG], etc., as fuel to power ships, ships are considered to be the
largest contributor to fuel consumption in the transportation industry. As the volume of
international cargo trade has been increasing year-by-year in recent years, the emissions
of carbon dioxide (CO2), nitrogen oxides (NOX), and sulfur oxides (SOX) generated by
the fuel consumption of ships’ main engines and auxiliary engines (boilers) have also
increased, causing serious impacts on global climate and human health issues [3]. The
International Maritime Organization’s (IMO) fourth greenhouse gas (GHG) study shows
that shipping emissions continue to increase overall, despite the IMO’s implementation of
various acts and the establishment of emission control areas around the world [4], between
2012 and 2018, total GHG emissions from shipping increased by 9.6% year-on-year and
CO2 emissions increased by 9.3%. At the same time, the actual share of shipping in total
global emissions increased from 2.76% to 2.89% [5]. On the other hand, as the cost of fuel
consumption often occupies 20% to 61% of the ship’s operating costs [6], reducing ship fuel
consumption plays an important role in the cost reduction and development of shipping
enterprises and has always received wide attention. Therefore, it is urgent to promote more
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effective and applicable measures for fuel consumption during ship operation to improve
the energy efficiency of enterprise fleets and achieve emission reduction.

The IMO and shipping corporations are currently focusing their efforts on finding
operational and technical ways to increase ship energy efficiency. By using innovative
technologies to increase main engine efficiency, the technical side can increase ship energy
efficiency (e.g., propeller design optimization, hull design optimization, efficient power
systems, etc.) [7]. At the operational level, altering various parameters during navigation
at sea can increase the ship’s energy efficiency, such as ship speed optimization, longitu-
dinal inclination optimization, shipping route optimization, etc. The engineering design
optimization innovations required for technical solutions are quite expensive to invest in
and do not allow for the immediate acquisition of greater benefits [8]. As a result, shipping
companies often tend to reduce fuel consumption through operational techniques.

However, the application of effective and efficient operational techniques remains a
challenge, mainly because a variety of factors influence the fuel consumption during the
voyage, such as voyage speed, displacement, wind, waves, air temperature, etc., which
makes it difficult to quantify the intrinsic link between the influencing factors and the fuel
consumption rate through empirical formulas. For ships sailing through a fixed route,
shipping companies need to minimize fuel consumption during the voyage while making
sure to arrive on time. Accurate prediction of ship fuel consumption during the route is the
basis for optimizing energy efficiency and reducing emissions during the voyage. However,
there are still some challenges in making accurate predictions.

Three models that have been widely used in ship fuel consumption prediction in recent
years are summarized in Leifsson et al.’s study: the white box model (WBM), the black box
model (BBM), and the gray box model (GBM) [9]. The WBM is based on a priori knowledge
and physical principles of the ship’s power system, whose structure and parameters are
known, to obtain the fuel consumption under certain sailing conditions by calculating the
common influence of the resistance (hydrostatic resistance, wind, and wave resistance, etc.)
received from several aspects during the ship’s route, which is a method tool often used in
the ship design stage and sea trial stage to predict the ship’s fuel consumption, and has
good interpretability [10]. WBMs were developed by Li et al. using a Kwon-model-based
WBM for the prediction of ship fuel consumption, which uses multiple sources of data,
such as ship operations, machinery test data, and ocean weather, to achieve maximum fuel
consumption reduction using predictions on a given route [11]. WBMs still have a few
drawbacks for application, such as the need for a priori knowledge support in the model
building process and the neglect of the interactions between ship resistance, resulting in
poor applicability and the generalization of the WBM.

With the continuous updating and development of computer technology and mathe-
matical theoretical methods, the BBM has started to receive wide attention from researchers.
The BBM is completely data-driven and does not require the a priori knowledge found
in the WBM, but requires the support of a large amount of high-quality actual navigation
inspection data to build a reliable model. During the actual navigation, the available fuel
consumption data mainly comes from the cabin log data or sensor collection data. The
cabin log data is filled in manually by crew members at the specified time and according to
the fixed format, which inevitably has data errors, and the sampling period is long, which
does not accurately describe the actual situation of the ship’s fuel consumption. In recent
years, smart sensing devices with high acquisition rates have been increasingly used on
modern ships, and a data acquisition system that can collect real-time continuous data has
been developed in conjunction with IoT technology. Through this system, it is possible to
obtain a large number of the external environment and the ship’s own state characteristics
variables that affect fuel consumption during ship navigation, including, but not limited to,
longitude, latitude, speed over ground (SOG), course over ground (COG), wind speed, etc.
These data lay the foundation for data-driven fuel consumption prediction [12]. Selected
multisource monitoring data are then merged together and preprocessed (data cleaning,
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feature dimensionality reduction, data transformation) so that they can be used for the
training and analysis of predictive models [13].

BBM models are mainly divided into two categories: BBMs based on statistical model-
ing and BBMs based on machine learning (ML). The former establishes the relationship
between various influencing factors and fuel consumption by establishing regression mod-
els, which generally assume that fuel consumption is proportional to the third power of
speed, but the method does not take into account the influence of the sailing environment
and ship condition [14]. Lepore et al. used multivariate partial least squares (PLS) regres-
sion to predict the hourly fuel consumption of cruise ships, using multiple sources of data
collected from sensors during ship operation, such ocean and weather data [15]. Erto et al.
further added ship maintenance data to the multiple sources and modeled them by mul-
tiple linear regression (MLR) to obtain more accurate prediction results [16]. With the
development of ML technology in recent years, the ML-based BBM has started to be widely
used in the fuel consumption prediction of ships. The core idea is to accurately predict
new data based on the statistical model of historical data. Compared with the statistical
model of the BBM, it can better identify the linear and nonlinear relationships between
the influencing factors and fuel consumption. In addition, ML has a clear advantage in
handling high-dimensional data and therefore can include more influential data in the
modeling process. According to Petersen et al., the ML-based BBM is able to adapt to more
application scenarios and has better generalizability [17]. For example, Chaal et al. used the
ship’s operational data and the surrounding ocean and weather data to model the fuel con-
sumption of tankers with ML models such as decision trees, AdaBoost, KNN, and artificial
neural networks (ANNs), respectively, where the best prediction performance can reach
R2 = 0.96 [18]. Compared to the WBM and statistical-model-based BBM, which lose the
interpretability of the prediction results, it focuses more on the accuracy and generalization
of the prediction.

WBMs are the theoretical basis for revealing various influences and prediction targets
based on a priori knowledge of known structures and parameters. BBMs place more
emphasis on bias–covariance tradeoffs and obtain better model generalization through
powerful learning capabilities. GBMs effectively combine the advantages of both WBMs
and BBMs, generally including at least one WBM and one BBM, and, in theory, GBMs
should outperform both BBMs and WBMs [19]. For example, Caroddu et al. established a
WBM, BBM, and GBM to predict the fuel consumption of a Panamax chemical tanker, and
the experimental results showed that the GBM and BBM outperformed the WBM, and the
GBM used fewer data to achieve the best prediction results [20].

The purpose of this study is to propose a data-driven modeling method that can be
widely used in ship fuel consumption prediction based on ship fuel consumption sensing
monitoring data. The proposed predictive performance of the WBM, BBM, and GBM
was verified on real data collected on various types of high-precision sensors installed on
different parts of a ro-ro passenger ship. Another need of the model built is transparency
or interpretability, i.e., the underlying and working process of the prediction model is
interpretable and not only aiming at high prediction accuracy. Since BBMs and GBMs based
on black box theory lack good interpretability, they cannot provide companies or maritime
agencies with physically interpretable analysis of the impact of different influencing factors
on ship fuel consumption, making it difficult for the technicians involved to trust the
final prediction results. Therefore, this study introduces a framework of additive feature-
based interpretation methods, SHAP, to improve the understanding of the prediction
results of black box theory models. In addition, researchers can have redundant features
in the selection of prediction model input features. The vast majority of information
provided by redundant features is already represented by other features, and too many
input features can increase the capital investment in data collection for ship companies, as
well as significantly increase the memory storage requirements and computational costs
for data analysis [21]. Regression prediction performance depends on the efficiency of the
pattern between response and predictor variables, and redundant features that are highly
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correlated with each other also complicate prediction and affect the stability of predicted
fuel consumption [22]. Therefore, this study further removes the redundant features from
the input features with the help of the analysis results of SHAP. The main components of
this study are shown in Figure 1, and the main contributions are as follows:

1. In this study, 19 multisource sensing data were preprocessed so that they could be
used for ship fuel consumption prediction analysis;

2. In this study, a WBM based on the foundation of physical principles is established
to convert the ship resistance calculated from the external environment and the
energy transfer relationship between engine–propeller–ship into fuel consumption at
a specific speed; secondly, six BBMs covering statistical models and machine learning
models are established to map the relationship between multiple input features and
fuel consumption. Finally, the GBM effectively combines the WBM and BBM models
through a chaining strategy, which has better prediction performance and stability
than the WBM and BBM, and obtains a ship fuel consumption prediction model
suitable for practical engineering applications;

3. This study combines the high-performance GBM with the SHAP framework, solves
the difficult problem of the poor interpretability of the underlying working principle
of the model, quantitatively demonstrates the influence of input features on ship fuel
consumption, and further validates the effectiveness of the WBM on GBM prediction
performance improvement. On the other hand, based on the results of the importance
analysis of input features, it provides an effective reference method for the selection
of the best input features for ship fuel consumption prediction modeling, taking into
account the prediction performance and input cost.
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2. Material and Methodology
2.1. Data Description

The case ship used in this study is the Danish passenger ro-ro vessel MS Smyril, which
operates on the route from Torshavn, the capital of the Faroe Islands, to Island Suduroy,
with a one-way journey time of about 1 h 55 min and two to three round trips per day.

The MS Smyril has various sensors installed in different parts to collect various types of
data during the operation of the ship and has published the operation data for 246 voyages
from February to April 2010, with the main scale parameters of the ship obtained from
Lloyd’s Register of Shipping (shown in Table 1). The ship’s power system is shown in
Figure 2. The diesel main engine is a four-stroke MAN 32/40 type, which is connected to
the shaft generator through a gearbox, and the four auxiliary engines together with the
shaft generator provide power to the ship’s electrical system.
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Table 1. Hull main scale parameters.

Parameters Values Parameters Values

Ship Length 135.00 m Main Engine Model MAN Energy Solution 7L32/40
Length Between Perpendiculars 123.00 m Main Engine Bore/Stroke 320 mm × 400 mm

Molded Breadth 22.70 m Main Power 14,000 mkw × 750 rpm
Molded Depth 8.10 m Number of Auxiliary Engines 4

Net Tons 3801 t Auxiliary Engines Bore/Stroke 160 mm × 240 mm
Deadweight Ton 2067 dwt Auxiliary Power 2640 mkw × 1200 rpm
Designed Draft 5.6 m Number of Axle Belt Generators 2
Design Speed 21.00 kts Installed Power 13,440 Kw

Number of Main Engines 4 IMO No. 9,275,218
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Figure 2. Smyril power system.

The MS Smyril has various sensors installed in different parts, and a total of 19 kinds
of monitoring data, including the daily operation of the ship and the sea state environment
during the ship’s voyage, were collected through the sensors, as shown in Table 2, and all
data were collected during the voyage of the case ship.

Table 2. Nineteen types of monitoring data collected by sensors during the course of the route.

Sailing Parameters Units Sailing Parameters Units

Fuel Temperature C Port Rudder −10–10 V
Fuel Density kg/L Speed Over Ground (SOG) Kn

Fuel Volume Flow Rate L/s Starboard Pitch −10–10 V
Inclinometer degrees Starboard Rudder −10–10 V

Latitude Track Degree Magnetic degrees
Port Water Level m Track Degree True degrees

Starboard Water Level m True Heading degrees
Longitude Wind Angle degrees

Speed Through Water (STW) kn Wind Speed m/s
Port Pitch −10–10 V

2.2. Data Preprocessing
2.2.1. Missing Data Imputation

The accuracy of the data-driven ship fuel consumption prediction models is still
strongly influenced by the quality of the data. Many factors during the voyage, including
equipment stability and signal transmission, result in sensor systems collecting data that
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contain a large number of missing data points. The huge amount of sensing data can cause
infinite accumulation and amplification of small errors in the prediction process, which
greatly increases the uncertainty and accuracy of the calculation results. In the process of
ship operation, the sensor system collects data often in the form of time series. In this study,
a missing value is interpolated by the linear interpolation method [23], which is shown in
Equation (1).

y = y0 + (y1 − y0)
t− t0

t1 − t0
(1)

where y0 and y1 are the missing values of ship operating characteristics at moments t0
and t1, respectively, and y denotes the missing values of ship operating characteristics at
moment t ∈ (t0, t1).

2.2.2. Data Standardization

The sensed data were preprocessed with Z-score normalization so that the data was
transformed to have a distribution with a mean of 0 and a variance of 1. This avoids the
high-value features from dominating the low-value features in the prediction process due to
the different data magnitudes. The standardization Equations (2) and (3) are shown below:

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (2)

Z-score =
xi − µ

σ
(3)

where µ is the mean of the N sensor data samples and σ is the standard deviation of the N
sensor data samples.

2.3. White Box Models

Quickness is one of the important hydrodynamic properties of a ship. Ship rapidity,
which refers to the ability of a ship to maintain a certain speed of navigation by the thrusters
absorbing energy from the main engine to form thrust to overcome resistance, includes
both ship resistance and ship propulsion. The general approach to model the predicted fuel
consumption of a ship’s white box is based on the application of the physical principle basis
as well as the laws of fluid dynamics to calculate the results of the resistance encountered
by the ship from different sources. By modeling the total drag conditions, it is possible
to calculate the corresponding fuel consumption required to drive the ship at a given
speed [10]. The model structure and parameters of the WBM have been determined from
a priori knowledge and theoretical insights based on physical and hydrodynamic laws,
shipbuilding principles, and computational hydrodynamic methods [24], and the ship
model assumptions have been set according to the actual conditions of operation before
the model is built, which means that the parameters inside the model cannot be adjusted
during the ship’s voyage [25], and therefore are mainly applied in the initial stages of ship
design and during sea trials.

2.3.1. Model Assumptions

The WBM proposed in this study uses the actual parameters of the ship under study
and various assumptions of the model structure to parameter estimation to achieve the fuel
consumption prediction for the ship with the following assumptions, shown below:

1. The ship is in a steady state underway. It is assumed that when the ship is sailing on a
fixed course in a fixed area, the environmental condition is stable and the state of the
ship keeps a steady state underway, i.e., the forces are in balance.

2. The speed is regulated by changing the propeller pitch, i.e., the engine speed is constant.
3. The seawater temperature is taken as the global average ocean temperature of 3.5 ◦C.
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On the other hand, the WBM constructed in this paper is not specific to a particular
ship type, and related workers can select the parameters we listed in the model construction
according to the specific ship type to achieve the ship fuel consumption prediction, which
ensures the generality.

2.3.2. Total Ship Resistance Model Considering Environmental Factors

In the actual navigation process, the ship will be subject to the resistance of both water
and air media, so the total resistance of the ship can be divided into the water resistance of
the underwater part and the air resistance of the water part. Therefore, this study further
refines the ship resistance into five components: frictional resistance, residual resistance,
attached resistance, air resistance, and wave accretion resistance.

The water resistance is further divided into two parts: hydrostatic resistance and wave
resistance during navigation, which is influenced by the ship’s hull type and the roughness
of the hull surface. Hydrostatic resistance includes bare hull resistance and appendage
resistance, and appendage resistance refers to the additional resistance brought by the
appendage above the bare hull of the ship in the flow field. In hydrostatic resistance, from
the mechanism of resistance can be divided into frictional resistance, viscous pressure
resistance, and emerging wave resistance, where viscous pressure resistance and emerging
wave resistance are collectively referred as residual resistance. The ship movement process
due to the viscous role of water will be subject to water viscous shear stress, wherein the
combined force in the direction of movement is the hull friction resistance; viscous pressure
resistance refers to the fluid viscosity and the formation of the boundary layer on the
surface of the hull, and which causes the hull tail fluid flow separation to form a vortex to
reduce the pressure difference between the hull tail so that the ship’s head and tail pressure
difference is formed; wave resistance describes that the ship in the water will rise over the
waves, resulting in the ship before and after the pressure distribution not being symmetrical,
with the bow for the high-pressure area and the stern for the low-pressure area, so the role
in the ship movement is in the opposite direction of the differential pressure force.

The resistance above the water surface mainly comes from the resistance of air to the
hull superstructure, and the size of air resistance is related to the shape of the water part of
the ship and the relative wind speed [26]. The resistance is increased by the wave action
when the ship sails in the wind, and waves are wave resistance, which is influenced by the
wave height, wave period, and wavelength of the waves [27].

In summary, the total ship resistance model constructed in this study is shown in
Equation (4):

Rt = R f + Rr + Rap + Ra + Raw (4)

where Rt is the total ship resistance, R f is the frictional resistance, Rr is the residual
resistance, Rap is the attached resistance, Ra is the air resistance, and Raw is the wave
acceleration resistance. The detailed description about the model of each drag component
is shown in the first part of the supporting information. Detailed information about the
calculation models for each resistance component are in the Appendix A Section.

2.3.3. Ship Propulsion Model

When the ship–machine–propeller is paired together, it forms an energy balance
system. The propeller receives and converts energy to propel the ship; the energy balance
between the propeller and the main engine means that, when the ship is sailing normally,
the power issued by the main engine consuming fuel is driven by the shaft system to turn
the propeller, and the thrust obtained is balanced with the resistance of the ship to ensure
that the ship maintains a certain speed. When the ship is sailing at a constant speed, the
main engine provides power to the ship, the gearbox and the drive shaft transmit the
output power of the main engine to the propeller, and the propeller rotates to generate
thrust to overcome the resistance of the ship during sailing, the main engine of the ship,
the propeller, and the hull form a balanced system of energy, and this process is the
ship–machine–propeller matching relationship. The acquisition of propeller thrust and
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torque can be theoretically calculated according to an empirical formula. According to the
propeller working principle, its thrust calculation formula is shown in Equation (5):

T = KTρnp
2Dp

4 (5)

The propeller torque calculation formula is shown in Equation (6):

Q = KQρnp
2Dp

5 (6)

where: KT is the thrust coefficient; KQ is the torque coefficient; ρ is the water density in
kg/m3; Dp is the propeller diameter in m; np is the propeller speed in r/s. The thrust
coefficient KT and the torque coefficient KQ can be calculated by the interpolation of the
Wageningen B series plots.

The power from the main engine is transmitted to the propeller through the ship’s
shaft system first, and the power obtained by the propeller is less than the power issued
by the main engine of the ship due to the intermediate power transfer loss. In this power
system, the main engine is the energy source which outputs the main engine power by
consuming fuel. Then, the ship’s main engine power transmits the power to the propeller
through the drive shaft system, and the power obtained by the propeller will be affected
by the shaft system efficiency pair between the ship’s main engine and the propeller. The
propeller generates thrust by rotating the acquired power, where the ratio of propulsive
power transferred by the propeller to the acquired power is the product of the relative
rotational efficiency and the propeller open water efficiency. Propulsion power is further
transferred to the hull, and eventually, the hull gains effective power, where the ratio of the
effective power gained by the hull to the propulsion power transferred by the propeller is
the hull efficiency. The effective power of the hull is then converted into the final power to
overcome the resistance of the hull, and the detailed information about calculation of the
transfer efficiency in the ship propulsion system is shown in the Appendix B Section.

2.3.4. White Box Model of Ship Fuel Consumption

The host power can be deduced from the effective power according to the host power
transfer relationship and the transfer efficiency between the parts, and thus the fuel con-
sumption of the ship per unit of time can be derived, as shown in Figure 3.
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Therefore, based on energy conservation theory, ship stress analysis, and transmission
efficiency, the white box model of ship fuel consumption is shown in Equation (7):

be = PME · ge (7)

where be is the host unit time fuel consumption, PME is ship host power, and ge is the host
fuel consumption rate, which can be obtained from the host technical specifications.
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When the ship maintains a certain steady speed, i.e., uniform speed, it is known from
Newton’s law of motion that the effective thrust Tp produced by the propeller is equal to
the total resistance Rt of the ship:

TP = FP(1− t) = R (8)

The relationship between the effective power Pe of the hull and the power PME gener-
ated by the ship’s main engine is:

PME =
Pe

ηHηPηRηS
(9)

Pe = RtU (10)

where ηH , ηP, ηR, ηS is the hull efficiency, open water efficiency, relative rotation rate, and
shaft system efficiency, respectively.

2.4. Black Box Model

In recent years, with the accessibility of large amounts of data about ship energy
efficiency collected from onboard sensors, machine learning techniques are becoming more
mature in engineering applications. ML-based regression models are widely used in fuel
prediction studies, and BBM models are more suitable for handling high-dimensional data
compared to WBMs. As a result, a wider range of input features can be handled in the
prediction of ship fuel, including ship navigation information, the surrounding ocean,
and weather conditions. Thus, new data are accurately predicted based on the statistical
pattern relationship between input features and ship fuel consumption established from
the training set without requiring any prior knowledge about the system being modeled.

Ship fuel consumption black box models are data-driven models which are mainly
divided into two categories. The first category is the BBM based on statistical modeling,
and the widely used multiple linear regression (MLR) is used in this study. The second
category is the BBM based on the ML algorithm, which does not require any a priori
knowledge of ship performance and the model parameters are not physically meaningful
and interpretable. This study is not intended to exhaust all ML models, but to cover the
current ML algorithms that are widely adopted and stable in engineering, including the tra-
ditional ML algorithm Lasso (Least absolute shrinkage and selection operator). ExtraTrees
(Extremely Randomized Trees) are based on the Bagging ensemble learning algorithm,
and the algorithm flow is shown in Figure 4a. The XGBoost (eXtreme Gradient Boosting),
LightGBM (Light Gradient Boosting Machine), and Catboost (Categorical Boosting) are
based on the Boosting ensemble learning algorithm, and the algorithm flow is shown in
Figure 4b. Ensemble learning algorithms provide better generalization and stability by ef-
fectively combining different models with unique characteristics to address the limitations
of individual models. This study aims to find ML algorithms that are universally applicable
to fuel consumption prediction, and the algorithms all use default hyperparameters.

2.4.1. Multiple Linear Regression

The basic principle of multiple linear regression [28] is to model the relationship
between multiple independent variables using the least squares method. The general form
of a multiple linear regression model is:

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + ε (11)

where Xi(i = 1, 2, . . . , k) represents is the kth independent variable, β0 represents the
regression constant, βi represents the regression coefficient, and ε represents the random
error term, which is the random error after removing the effect of the kth independent
variables on Y. The regression coefficients in the above equation are estimated using the
least square method.
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2.4.2. Lasso

In 1996, Tibshirani [29] invented the Lasso regression approach, which regularizes the
sum of absolute values of the regression coefficients by a penalty function. This method
compresses the regression coefficients. The following optimization issues are resolved by
the L1 parametric penalized least squares algorithm [22] known as Lasso:

w∗ = (α, β) = argmin

(
n

∑
i=1

(yi − αi − Xiβ) + λ‖β‖1

)
(12)

where Xi is the i-th independent variable, yi(i = 1, 2, . . . , n) is the dependent variable, α
is the constant term, β is the regression coefficient, and ‖β‖1 represents the L1 paramet-
ric, which indicates the compression strength of the coefficients. For hyperparameter
λ ∈ (0, ∞), the larger the λ, the greater the penalty, and the fewer variables are retained
in the model. As the value of λ decreases, the number of variables retained in the model
starts to become larger.

2.4.3. ExtraTrees

Geurts et al. proposed ExtraTrees, a random forest-based system, in 2006 [30]. In
contrast to random forests, which use random sampling to choose the sample set as the
training set for each decision tree, in ExtraTrees, each decision tree uses the entire training
set, which has a high utilization rate of training samples and can somewhat lessen the final
prediction bias. This prevents random forests from not fully utilizing all of their samples.
To guarantee structural variations between each decision tree, ExtraTrees incorporates
more randomness into node splitting and potential similarity among decision trees. After
N rounds of training, N decision trees with various topologies are produced, and the
prediction outcomes of these diverse decision trees are then aggregated and averaged to
provide model output h(x).

h(x) =
1
N

N

∑
t=1
{h(x, θt)} (13)

2.4.4. XGBoost

In 2016, Chen et al. proposed an XGBoost algorithm based on GBDT (gradient-boosted
decision tree) [31], which prevents overfitting by introducing second-order derivatives and
regular terms with the objective function shown in Equation (12).

ŷi = φ(xi) =
K

∑
K=1

fk(xi), fk ∈ F (14)



J. Mar. Sci. Eng. 2023, 11, 1059 11 of 34

where F =
{

f (xi) = ωq(x)

}(
q : Rm → T, W = (ω1, ω2, . . . ωT) ∈ RT) is the regression tree

space. Each additional tree is equivalent to adding a new function to the model to fit
the residuals of the last prediction, thus minimizing the canonical loss. Unlike the GBDT,
XGBoost adds a regular term to the loss function as the objective function, which is shown
in Equation (15).

Obj(t) = ∑N
i=1 l

(
yi,

_
y
(t−1)

+ ft(xi)

)
+ Ω( ft) + constant (15)

where l denotes the differentiable loss function that measures the difference between the
predicted value

_
y i and the straight real value yi, N is the number of samples, and Ω( f )

represents the regular term of model complexity. To minimize Obj(t), the model as a whole
needs to be optimized. Using the Taylor expansion to fit the original objective function, a
second-order Taylor expansion can be performed on the objective function, as shown in
Equation (16).

f (x + ∆x) ' f (x) + f ′(x)∆x +
1
2

f ′′ (x)∆x2 (16)

where the canonical terms are:

Ω( f ) = γT +
1
2

λ‖W‖2 (17)

Ω( f ) is the complexity of the tree. The lower the value, the simpler the tree structure.
W represents the fraction of leaves and T represents the number of leaves, where L2
regularization is used.

After removing the constant term constant, the objective function is expressed as
Equation (18):

Obj(t) = ∑T
j=1

[(
∑i∈Ij

gi

)
Wj +

1
2

(
∑i∈Ij

hi + λ

)
Wj

2
]
+ γT (18)

The simplified objective function, Equation (19), is obtained by the leaf node traversal
and further making Gj = ∑i∈Ij

gi, Hi = ∑i∈Ij
hi:

Obj(t) = ∑T
j=1

[
GiWj +

1
2
(

Hj + λ
)
Wj

2
]
+ γT (19)

The weights of leaf node j will be calculated by deriving the objective function, trans-
forming it to 0, and substituting it into Equation (19), resulting in the final result, as in
Equation (20):

Obj∗ = −1
2∑T

j=1

G2
j

Hj + λ
+γT (20)

In the next step, to find the best cut point of the leaf node and to determine the best
construction of the tree, a greedy algorithm is used, as shown in Equation (21):

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)

HL + HR + λ

]
− γ (21)

G2
L

HL+λ is the score of the measure corresponding to the left subtree, G2
R

HR+λ is the score

of the measure corresponding to the right subtree, and (GL+GR)
HL+HR+λ is the score before the tree

is disaggregated. γ is a penalty term to adjust the complexity of the tree. The pseudo code
is shown below, as shown in Algorithm 1.
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Algorithm 1: Exact Greedy Algorithm for Split Finding

Input : I, instance set of current node
Input : d, dimension
gain← 0
G ← ∑ i∈I gi, H ← ∑ i∈I hi
for k = 1 to m do

GL ← 0, HL ← 0

for j in sorted
(

I, by xjk

)
do

GL ← GL + gi, HL ← HL + hi
GR ← G + GL, HR ← H + HL

score← max
(

score, G2
L

HL+λ +
G2

R
HR+λ −

(GL+GR)
HL+HR+λ

)
end

end
output : split with max score

2.4.5. LightGBM

In 2017, Microsoft Research proposed the LightGBM model [32], which is an ensemble
regression tree model based on gradient-boosting decision trees. LightGBM algorithm uses
a Leaf-wise leaf growth strategy with depth restriction to search for the leaf with the largest
splitting gain (usually the largest amount of data) from all existing leaves and then splits
it cyclically and repeatedly compared with GBDT’s traversal of all data and XGBoost’s
layer-by-layer splitting. The LightGBM algorithm sets a limit on the maximum depth of
the leaf-wise to reduce the possibility of overfitting while maintaining high efficiency. It
can directly support data parallelism and feature parallel learning, which greatly improves
the speed of searching for the best segmentation point required.

In addition, LightGBM is a histogram-based decision tree algorithm. First, the con-
tinuous floating-point feature values are discretized into n integers and constructed as a
histogram with the width equal to n. In the process of traversing the data, the discretized
values are used as indexes, and the statistics are accumulated in the histogram and further
traversed with the indexes of the histogram to search for the best segmentation points,
thus speeding up the learning process and reducing memory consumption, as shown in
Algorithm 2.

Algorithm 2: Histogram-based Algorithm

Input : I, training data, d: max depth
Input : m, feature dimension
nodeSet← {0} B tree nodes in current level
rowSet← {{0, 1, 2, . . .}} B data indices in tree nodes
for i = 1 to d do

for node in nodeSet do
useRows← rowSet[node]
for k = 1 to m do

H ← new Histogram()
B Build histogram
for j in useRows do

bin← I.f[k][j].bin
H[bin].y← H[bin].y + I.y[j]
H[bin].n← H[bin].n + 1

Find the best split on histogram H
. . .

Update rowSet and nodeSet according to the best spilt points
. . .
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2.4.6. Catboost

In 2017, the dominant Russian search engine Yandex proposed the Catboost algo-
rithm [33], which, in contrast to LightGBM, automatically converts category-based features
into numerical features by first performing statistical calculations on category-based fea-
tures to determine how frequently a category feature occurs before adding hyperparameters
to produce new numerical features. In order to extend the feature dimension by utilizing
the connections between features, Catboost also incorporates category-based features.

Catboost uses a standard improvement to Greedy TS by adding a priori distribu-
tion terms to reduce the effect of noisy data on the data distribution, which is shown in
Equation (22):

_
x

i
k =

∑
p−1
j=1 [xσj,k − xσp,k ]Yσj + ap

∑
p−1
j=1 [xσj,k = xσj,k ] + a

(22)

where p is the added prior term and a is usually a weighting factor greater than 0. For the
regression problem, Catboost performs a random permutation of the dataset, and the prior
term takes the mean of the dataset labels, effectively reducing the effect of noisy data on
the distribution.

The conventional gradient boosting algorithm is replaced by Catboost and transformed
into ordered boosting (OB), as shown in Algorithm 3. As a result of this algorithm’s
capacity to successfully combat the noise points in the training set, gradient estimation bias
is avoided. The issue of inescapable gradient bias in the iterative process is resolved, and
the model’s generalizability is enhanced. Here is the pseudo code:

Algorithm 3: Ordered Boosting

Input : {(Xk, Yk)}n
k=1 ordered according to, the number of trees I

σ← random permutation of [1, n]
Mi ← 0 for i = 1 . . . n
for t← 1 to I do

for i← 1 to n do
ri ← yi −Mσ(i)−1(xi);

for i← 1 to n do
∆M←
LeaenModel((xj, rj) :
σ(j) ≤ i);
Mi ← Mi + ∆M;

return Mn

2.5. Gray Box Model

The GBM is a combined WBM and BBM modeling approach that can be understood
as using data-driven techniques to improve existing white box models with uncertain
parameters or by adding black box components to the physical model output. In this
study, a serial approach to the GBM construction strategy is used, in which the WBM
precedes the BBM, and in which the WBM theory establishes the physical equilibrium
equation between propulsion power and ship drag to predict fuel consumption. The fuel
consumption predicted by the WBM is then fed into the BBM model as a new feature, and
the BBM predicts the fuel consumption based on the a priori information given by the
WBM and the navigation monitoring data collected by the sensors, at which point the black
box is regarded as a regression model, and each run of the GBM requires the initial run of
the WBM, as shown in Figure 5 [9]. The serial approach allows for combining the WBM
with various types of BBM models and is more intuitive [34].
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The initial dataset is the ship fuel consumption feature data X =
{

x1, x2, · · · , xp
}

, X′
denotes the feature data involved in the white box model, and X′′ denotes the feature data
involved in the black box model, X′ ⊆ X,X′′ ⊆ X. The WBM input is X′ and the output is
the ship fuel consumption hWBM(X′). The BBM input is a function of X′′ and the output is
the ship fuel consumption hBBM(X′′). The WBM fuel consumption is added to the BBM
black box input dataset and updated to obtain the GBM input dataset of the gray box model
of ship fuel consumption in tandem form as:

DGBM =

[
X′′

hWBM(X′)

]
(23)

Based on this new dataset, the predicted values of the fuel consumption based on the
gray box model are finally output by continuous training iterations based on the errors.
From this, it can be seen that each run of the GBM requires an initial run of the WBM.

2.6. SHAP Framework

BBMs and GBMs containing BBMs are often complex, are trained in a completely
data-driven manner, and while having high performance, the models often lack intuitive
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ship physical interpretability. In particular, the nonlinear prediction models constructed by
tree-based ExtraTrees, XGBoost, LightGBM, and Catboost have the values of input features
scattered among the branches and weights of each tree, and cannot measure the degree
of influence of input influences on fuel consumption with a single equation relationship,
which is not conducive to the identification of the importance of factors influencing fuel
consumption on ships, and therefore difficult to be accepted by researchers in the shipping
industry [35].

In 2017, Lundberg S et al. proposed a framework of additive feature interpretation
methods based on SHAP [36]. SHAP is a method of calculating the Shapley value based on
game theory, where each input feature is considered as a contributor, the contribution value
of each feature is calculated, and the final prediction of the model is obtained by summing
up the contribution value of each feature [37]. Compared with traditional feature impor-
tance methods (e.g., feature importance calculation methods such as random forests [34]),
SHAP has better consistency to present the local and global interpretation of each predictor
relative to the target variable. Each feature has a set of Shapley values that are used to
calculate the local interpretability. Thus, the contribution of each feature of each sample to
the fuel consumption prediction is well interpreted and also facilitates the researchers to
analyze the reliability of the BBM and GBM models. The final global interpretability will
be calculated by summing and averaging the Shapley values of all samples.

The feature importance of each feature i is calculated as shown in Equation (24):

ShapValues = ∑
S⊆N\{i}

|S|!(M− |S| − 1)!
M!

[ fx(S∪ {i})− fx(S)] (24)

where M is the number of input features, N is the set of all input features, and S is a set
of nonzero feature indices. fx(S) = E[ f (x)|xs] is the model’s prediction of the input x,
where E[ f (x)|xs] is the expected value of the function conditioned on a subset S of the
input features, and a larger SHAP value indicates a larger contribution of the feature.

2.7. Model Evaluation Standards

To evaluate the effectiveness of the ship fuel consumption prediction model, two
performance indicators are used: root mean square error (RMSE) and mean absolute error
(MAE). Among them, RMSE is the evaluation of the degree of variation of the data and
is the square root of the ratio of the square of the deviation of the observed value from
the true value and the number of observations n. It is the most representative evaluation
index in the regression model, especially for large data, as shown in Equation (25); MAE is
the average of the absolute value of the deviation of all individual observations from the
arithmetic mean, which better reflects the actual situation of the prediction value error, as
shown in Equation (26). R2 is then a measure of the percentage change in the dependent
variable in the regression model, which reflects the combined effect of the regression curve
on the observed data points, as shown in Equation (27), where the closer R2 is to 1, the
higher the predictive performance.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (25)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (26)

R2 = 1− ∑n
i=1 (yi − ŷi i)

2

∑n
i=1 (yi − ŷi)

2 (27)

where yi is the predicted output value—predicted ship fuel consumption (L/h), and ŷi is
the target value—actual fuel consumption rate of the ship (L/h), while n is the number of
samples in the dataset.
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2.8. Cross-Validation

To further improve the accuracy and reliability of model evaluation, K-fold cross-
validation is applied for training the model, and the main idea is to minimize any potential
bias of random sampling of training and validation data subsets. The training set is divided
into K equal-sized parts, with the K-1 part considered as the new training set and one part
as the validation set. Eventually, K models will be trained and the average accuracy of the
K models is taken to evaluate the model performance, and the value of K is usually set to
5, as shown in Figure 6. In addition, K-fold cross-validation can avoid the occurrence of
overfitting to some extent, and the results are more convincing.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 36 
 

 

2

2 1

2

1

ˆ( )
R 1

ˆ( )

n

i iii

n

i ii

y y

y y

=

=

−
= −

−




 (27) 

where 
iy  is the predicted output value—predicted ship fuel consumption (L/h), and ˆ

iy  is 

the target value—actual fuel consumption rate of the ship (L/h), while n is the number of 

samples in the dataset. 

2.8. Cross-Validation 

To further improve the accuracy and reliability of model evaluation, K-fold cross-

validation is applied for training the model, and the main idea is to minimize any potential 

bias of random sampling of training and validation data subsets. The training set is 

divided into K equal-sized parts, with the K-1 part considered as the new training set and 

one part as the validation set. Eventually, K models will be trained and the average 

accuracy of the K models is taken to evaluate the model performance, and the value of K 

is usually set to 5, as shown in Figure 6. In addition, K-fold cross-validation can avoid the 

occurrence of overfitting to some extent, and the results are more convincing. 

 

Figure 6. Diagram about cross validation. 

3. Results and Discussion 

3.1. Predicted Results for WBM, BBM, and GBM 

In this study, the monitoring data of the fuel-consumption-related ship status and 

environmental information were measured and recorded by sensors at the moments from 

20:48:14 on 16 February 2010 to 21:35:36 on 2 March 2010 and were selected. However, 

there is some variation in the sensor sampling frequency due to the varying standards of 

the sensors. Therefore, these data must be preprocessed before they can be used to model 

the ship’s fuel consumption. Firstly, the time parameter of the sensor is used as a criterion 

to measure whether it is duplicated or not, and multiple identical data at the same time 

point can be considered as duplicated data and rejected. Secondly, the minimum common 

multiple (3 s) of each sensing data is used to unify the time granularity, which makes it 

possible to extract the features related to ship fuel consumption at the same time point, 

ensuring that sensor data with different sampling frequencies can be analyzed on the 

same time horizontal axis, and 403,800 complete data are obtained. Finally, the linear 

interpolation method in Section 2.2 is used to supplement the data acquisition process 

with some missing data due to factors, such as equipment stability and signal 

Figure 6. Diagram about cross validation.

3. Results and Discussion
3.1. Predicted Results for WBM, BBM, and GBM

In this study, the monitoring data of the fuel-consumption-related ship status and
environmental information were measured and recorded by sensors at the moments from
20:48:14 on 16 February 2010 to 21:35:36 on 2 March 2010 and were selected. However,
there is some variation in the sensor sampling frequency due to the varying standards
of the sensors. Therefore, these data must be preprocessed before they can be used to
model the ship’s fuel consumption. Firstly, the time parameter of the sensor is used as
a criterion to measure whether it is duplicated or not, and multiple identical data at the
same time point can be considered as duplicated data and rejected. Secondly, the minimum
common multiple (3 s) of each sensing data is used to unify the time granularity, which
makes it possible to extract the features related to ship fuel consumption at the same time
point, ensuring that sensor data with different sampling frequencies can be analyzed on
the same time horizontal axis, and 403,800 complete data are obtained. Finally, the linear
interpolation method in Section 2.2 is used to supplement the data acquisition process with
some missing data due to factors, such as equipment stability and signal transmission, and
the data are normalized by Equations (2) and (3) to avoid the influence of the magnitude.

The WBM established in Section 3.1 was used for validation, and the performance
of the WBM was evaluated using the model evaluation metrics in Section 2.3, and the
experimental results are shown in Table 3. The results show that the WBM does not show
sufficient accuracy compared to the actual measurement results. The fact that the ship drag
component in the model was treated separately, ignoring the effect of its interaction on the
propulsion power, and that the effect of sea state (i.e., wind and waves) on the required
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propulsion power was not considered, is considered to be the source of large prediction
error that exists in the model.

Table 3. WBM performance indicators for predicting fuel consumption.

Fuel Consumption RMSR (L/h) MAE (L/h)

WBM 925.79 851.28

Next, the BBMs built by MLR and the Lasso, ExtraTrees, XGBoost, LightGBM, and
Catboost algorithms were validated. This study does not aim to find a specific combination
of hyperparameters for each type of ML algorithm based on experiments, so the default
hyperparameters of each model from the six ML algorithms are simply used, as shown
in Table 4. The model development environment for the study was implemented under
Windows 11 Professional operating system using Python 3.7 programmed under Jupyter
notebook software. The hardware configuration is a 12th Generation(R) Core(TM) i9-12900K
3.20 GHz processor, 64-bit operating system and 64.0 GB of RAM from Intel Corporation,
USA, with the XGBoost model developed using XGBoost 1.6.1 library, the LightGBM model
developed using LightGBM 3.3.2 library, the Catboost model developed using Catboost
1.0.6 library, and the rest of the models developed using Scikit-learn 1.1.1.

Table 4. The set of hyperparameters of 5 ML algorithms.

ML Algorithm Hyperparameter Set

Lasso Alpha: 0.01
ExtraTrees Criterion = MSE; Max Depth: 6
XGBoost Number of Iterations: 100; Max Depth: 6; Learning Rate: 0.1

LightGBM Number of Iterations: 100; Boosting type: GBDT; Learning Rate: 0.1;
Max Depth: −1; Drop Rate: 0.1

Catboost Iterations: 500; Loss Function: Logloss; Learning Rate: 0.03; Max
Depth: 6

Before the BBM can make predictions, the model needs to be trained with a portion
of the data so that the model learns the mapping relationship between fuel consumption
and the influencing factors. Therefore, the dataset is divided here into a training set, which
accounts for 70% of the original data, and a test set, which accounts for 30% of the original
data. The training set is used for the BBM model training and the test set is used to evaluate
the predictive performance of the model.

In order to ensure the robustness of the results to eliminate the error caused by
randomness and the effect of data time dependence on model selection, this study first
randomly splits the dataset into training and test sets five times. Thus, five random splits of
the dataset required five model training sessions, resulting in five trained models (with the
same type of ML algorithm). In addition, the K-fold cross-validation method in Section 2.8
is used in model training, where K is set to 5, and the process is as follows:

1. Randomly dividing the 70% training set into five parts without duplication;
2. Selecting one of them as the test set and the remaining four as the training set for

model training, obtaining a model after training on the training set, testing it on the
validation set with this model, and saving the evaluation metrics of the model;

3. Repeat step 2 five times (make sure each subset is given one chance to be the valida-
tion set);

4. The average of the five sets of test metrics is calculated as the final result of the model
accuracy evaluation and used as the performance metrics of the model under the
current five-fold cross-validation.

Finally, the average prediction performance of the five trained models (six BBM models
based on different ML algorithms) on the 30% test set was used as the final result of the
model evaluation, and the results were retained to three decimal places, as shown in Table 5.
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Table 5. Predicted performance metrics of the BBM and GBM on the test set built using different
machine learning algorithms in terms of fuel consumption.

Machine Learning Algorithms RMSE MAE

BBM

MLR 244.832 151.942
Lasso 264.852 183.179

ExtraTrees 149.706 101.120
XGboost 50.133 27.374

LightGBM 56.037 31.368
Catboost 47.394 25.192

GBM

MLR 228.989 145.062
Lasso 256.255 178.279

ExtraTrees 148.806 101.099
XGboost 49.989 27.208

LightGBM 55.850 31.071
Catboost 47.253 24.984

Comparing Tables 3 and 5, it can be found that both statistical-modeling-based and
ML-based BBM models can achieve much higher prediction performance than the WBM by
utilizing multiple input features compared to the WBM. Since the WBM is usually prebuilt,
this means that the parameters inside the model cannot be adjusted during the ship’s
voyage and some of the internal parameters are susceptible to environmental influences,
leading to errors in the overall model [25]. From Table 5, it can be observed that there are
some differences in the prediction performance of different BBMs. To build an accurate and
reliable BBM, it is necessary to choose a suitable prediction algorithm, and the ensemble
learning BBM shows better generalization ability, among which the prediction performance
of Boosting-based XGboost, LightGBM, and Catboost BBMs are more excellent, especially
the Catboost algorithm, with the RMSE and MAE of 47.394 L/h and 25.129 L/h, respectively,
on the test set recommended to be applied to the actual fuel consumption prediction process
and shows a better prediction performance than the other five BBM models.

Next, this study built the GBM based on Section 2.5 with the same training and test
sets as those used for the BBM. Table 5 also shows the prediction results of the six GBMs,
and it can be seen that, by using the prediction results of the white box model as prior
knowledge, the prediction performance can be further improved on the original basis,
and the effectiveness of the gray box model is verified. The enhancement of the prior
knowledge provided by the WBM is larger for the two traditional linear regression models,
MLR and Lasso, with the RMSE decreasing by 15.843 L/h and 8.597 L/h, respectively, and
the MAE decreasing by 6.880 L/h and 4.90 L/h, respectively. However, the improvement is
smaller for the models of Bagging and Boosting classes because the input information has
been fully learned and the prior knowledge of the WBM only serves to correct some of the
biases. Although the prediction accuracy of the WBM is lower, it can still give some prior
knowledge to the BBM, which makes the GBM obtain a higher prediction accuracy than
the BBM.

The prediction results of ship fuel consumption are the basis for the optimization of
ship energy efficiency, and the choice of the prediction algorithm will directly affect the
validity of the final prediction model. In order to more intuitively assess the consistency
between the six GBM prediction values and the real value of fuel consumption values, the
R2 score was calculated by Equation (27). Figure 7a–c depicts the fit of the predicted and
true values of the GBM based on the MLR, Lasso, and ExtraTrees algorithms on the test
dataset, and it can be clearly found that there are large deviations and the overall linear
relationship is more ambiguous.
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algorithms on the test set: (a) MLR model (R2 = 0.887), (b) Lasso model (R2 = 0.858), (c) ExtraTree
(R2 = 0.952), (d) XGBoost (R2 = 0.994), (e) LightGBM (R2 = 0.993), and (f) Catboost (R2 = 0.995).

The GBM models based on the XGBoost, LightGBM, and Catboost algorithms, on
the other hand, exhibit a significant linear relationship, as shown in Figure 7d–f, and can
provide stable prediction results, with Catboost’s fit being more concentrated and having
fewer sample points with larger deviations than LightGBM and XGBoost. In summary, the
high R2 values of the GBM based on the Catboost algorithm indicate that the predicted
values match well with the true values, proving that it has sufficient adaptability and
accuracy to predict the fuel consumption of ships.

This study was compared with similar work using the same sensing data, and with the
entire trip split, the RMSE for fuel consumption prediction using artificial neural networks
(ANNs) and Gaussian processes (GPs) in the study of reference [38] was 69.1 L/h and
104 L/h, respectively, while the RMSE for the LightGBM, XGBoost, and Catboost algorithms
for all six BBMs and GBMs in this study have lower RMSEs than their findings, especially
the RMSE of the GBM based on the Catboost algorithm at 47.25 L/h, and this corresponds
to a reduction in the RMSE of 46% and 119%, respectively, as shown in Figure 8.
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3.2. Results of Model Explainability Analysis

Although the GBM has excellent computational performance characteristics, the com-
plexity of the model is also increased, which is usually accompanied by poor model
interpretability. SHAP utilizes the knowledge of game theory, i.e., the marginal diminishing
effect of features, and is a logically rigorous feature interpretation method. Combining
SHAP with GBM can quickly and precisely obtain the degree of importance of input influ-
ences and fuel consumption, which provides a basis for the precise optimization of ship
energy efficiency in the future.

The importance results of nineteen input features of the GBM were obtained by SHAP,
and only the top ten input features that have the greatest impact on the fuel consumption
of the ship are listed in this section, as shown in Table 6. It can be found that the WBM
is always one of the ten most important features of the GBM. This indicates that the
GBM can effectively utilize the prior knowledge generated by the WBM during model
training, explaining the reason why the prediction effect of the GBM is better than that
of the BBM in Section 3. As the prediction accuracy increases, the feature’s importance
gradually converges. The first three feature compositions of XGBoost, LightGBM, and
Catboost, which have better prediction accuracy, are consistent, and the higher prediction
accuracy indicates that the relationship between the GBM mining influence factors and fuel
consumption is more accurate.
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Table 6. Prediction results of the six GBMs on the test set.

Rank MLR Lasso ExtraTrees XGBoost LightGBM Catboost

1 WBM STW Port Pitch Port Pitch Port Pitch Port Pitch
2 Fuel Temperature WBM Starboard Pitch Starboard Pitch Starboard Pitch Starboard Pitch
3 Port Pitch Fuel Temperature Fuel Temperature Fuel Temperature Fuel Temperature Fuel Temperature
4 Fuel Density Starboard Pitch STW Fuel Density Fuel Density SOG
5 Inclinometer Port Rudder SOG Inclinometer Inclinometer Fuel Density
6 SOG True Heading Fuel Density STW SOG STW
7 True Heading Starboard Rudder WBM SOG STW Starboard Water Level
8 Starboard Rudder Starboard Water Level Port Rudder Starboard Water Level Starboard Water Level WBM
9 Port Rudder Inclinometer Inclinometer Starboard Rudder WBM Inclinometer

10 Wind Speed SOG Starboard Rudder WBM Port Rudder Port Rudder

Therefore, the GBM based on the Catboost algorithm with the highest prediction
accuracy is chosen here to analyze the factors affecting fuel consumption from a physical
perspective, as shown in Figure 9, where the first five important influencing factors are
mainly analyzed. Of these, port pitch and starboard pitch are the two most important
factors, as they are the most direct indicators of the power used to move the vessel. The
“thermal efficiency” of the engine in the best operating environment can be effectively
converted into mechanical energy; that is, the proportion of power, combustion into
thermal energy into kinetic energy, the fuel temperature is low, and the engine combustion
work generated by heat energy will be more conducted into the air, thus affecting fuel
consumption. On the other hand, the fuel temperature will directly affect the fuel density.
The physical and chemical properties of the fuel show that the lower the temperature of
the oil body, the higher the density, and the smaller the volume, the higher the viscosity.
Conversely, the higher the temperature of the oil body, the density will continue to become
smaller and the viscosity will continue to decrease and the volume will continue to increase.
The fuel injection volume of the engine is determined by the plunger volume. When the
fuel density increases, the mass of fuel injected into the cylinder will increase, and it will
lead to poor atomization of fuel, causing the incomplete combustion of the engine, and the
fuel consumption rate will rise; on the contrary, when the fuel density becomes smaller,
the fuel consumption rate of the engine will decrease, which is the reason why there is
a strong correlation between fuel temperature, fuel density, and the fuel consumption of
the ship [39,40]. Ship speed (SOG) is identified as the fourth most important variable for
prediction, which is in line with the general conclusion in the relevant literature, where
sailing speed is the most important determinant of ship fuel, of which the cubic law is
particularly well-known [14,41]. It can also be found that the sea state information of wind
direction and wind speed have less influence on ship fuel consumption, ranking twelfth
and fourteenth in importance among the nineteen input features, and all six GBMs do not
include them among the ten most relevant features, which creates some deviation from the
expectation of the correlation hypothesis. This problem is effectively explained in a related
study by Soares and Coraddu, in which they argue that the design phase of the shipboard
automation system takes into account the time-domain variation of sea state conditions
to ensure a constant speed profile by varying the pitch setting and fuel consumption rate.
Therefore, under their assumptions, the two input features of port pitch and starboard
pitch, which are most important for fuel consumption effects, already include information
on the effects of environmental factors on fuel consumption [34,42]. The results show that
the combination of SHAP and GBM models can effectively help researchers understand the
prediction results and provide a quantifiable reference for increasing ship energy efficiency
and reducing emissions through operational optimization.
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After obtaining the total importance ranking of the input variables affecting ship fuel
consumption by combining SHAP with the Catboost-based GBM model, this study wanted
to know which influencing factors should be involved in the GBM to obtain accurate
prediction results. This is due to the fact that, as the number of input features increases in
the prediction process, the cost of sensor data acquisition as well as computational analysis
increases, but the improvement in prediction performance may be of diminishing marginal
benefit due to the existence of information redundancy among the input features, where
a large amount of information of some features is already contained in other features of
the input. To find the best input features to meet the application requirements, this study
builds GBM models based on the Catboost algorithm with nineteen different input sets,
where the first input set contains only the top-ranked features, while the second input set
contains the top two features, and then the third input set covers the top three features, and
so on, as shown in Appendix C. For these 19 GBMs, 70% of the data samples are still used
for training the model, and the remaining 30% are used for validating the model.

The prediction performance and generalization ability of the 19 trained GBM models
were evaluated on the test set, and the prediction results are shown in Table 7 where the
RMSE values and MAE gradually decreased by adding the input features one-by-one.
For the four most important input variables, the prediction performance was significantly
improved by gradually introducing port pitch, starboard pitch, fuel temperature, and the
SOG. From model A to model D, the RMSE and MAE decreased by 74.27% and 76.40%,
respectively. The changes in the RMSE and MAE among the 19 GBMs shown in Figure 10a
are generally consistent with the ranking of the importance of the input variables shown in
Figure 8. When a fifth influencing factor, fuel density, is added to model D, the improvement
in intermodel prediction performance is significantly smaller than that of the first four
models. The amount of change in intermodel prediction performance shown in Figure 10b
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shows that, when the characteristic wind speed is added to model M, the improvement
in prediction performance based on the RMSE and MAE decreases significantly and is
constant at a lower level. Therefore, it can be concluded that the best features for predicting
ship fuel consumption are the set of input influences corresponding to model M. Continuing
to add input features has a very limited improvement in prediction performance, and the
RMSE and MAE between predicted and observed values only increase by 2.21% and 1.76%
compared to model S, which contains all input features, but reduces the cost of collecting
and computing six features.

Table 7. Prediction performance of 19 GBMs based on different input sets.

Model RMSE (L/h) MAE (L/h)

A 237.888 144.486
B 146.880 90.410
C 75.420 41.962
D 61.193 34.096
E 59.555 33.095
F 54.889 29.642
G 54.400 28.746
H 53.708 28.516
I 51.829 27.349
J 49.874 26.435
K 49.666 26.230
L 49.093 25.934
M 48.319 25.434
N 47.966 25.290
O 47.628 25.258
P 47.556 25.211
Q 47.329 25.168
R 47.284 25.078
S 47.253 24.984
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Based on the results of this study, shipping companies and maritime organizations
can select the type of sensors to be installed to maximize the benefits by considering the
prediction accuracy, data acquisition, and calculation costs that are required in engineer-
ing applications.
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4. Conclusions

In this study, the MS Smyril passenger roll-on/roll-off vessel was used as the research
object. Based on the sensing data to obtain the ship’s characteristics and environmental fac-
tors, including the SOG, latitude and longitude, longitudinal inclination, wind, fuel density,
heading, and other nineteen influencing factors, three ship fuel consumption prediction
models, the WBM, BBM, and GBM, were established to map out the fuel consumption
per unit time and the law. The prediction performance of the three types of models is
compared horizontally, and the prediction performance of the BBM and GBM models based
on different algorithmic principles is compared vertically to determine the best model to be
applied to ship fuel consumption prediction. The SHAP method is also used to analyze the
importance of the input features affecting ship fuel consumption from a global perspective,
which solves the problem of the poor interpretability of the GBM. In addition, the model
prediction performance under different subsets of input features is compared based on the
importance ranking results of SHAP to determine the best input features for predicting
ship fuel consumption. The following conclusions can be drawn:

1. In this study, the WBM, BBM, and GBM based on six different ML algorithms were
established and tested on the sensor data from a passenger roll-on/roll-off vessel. The
experimental results show that the prediction error of the WBM is much higher than
that of the BBM and GBM and cannot be effectively used for the prediction of ship
fuel consumption during actual ship operation. The ensemble learning algorithms
based on Boosting, especially Catboost, show the best prediction performance, with
RMSE values below 50 L/h on the test dataset. The GBM makes further improvement
in prediction accuracy through the prior knowledge of the WBM, which can meet the
demand of ship fuel consumption prediction. In practical engineering applications,
companies only need to integrate the GBM model based on the Catboost algorithm into
the fuel consumption prediction system to achieve accurate fuel consumption prediction.

2. This paper introduces the SHAP framework combined with the GBM based on the
Catboost algorithm to provide a method that can accurately analyze the relative
importance of different influencing factors on fuel consumption. The experiment
verified the improved effect of the prior knowledge of the WBM on the predictive
performance of the GBM model and additionally found that the four most important
input factors affecting fuel consumption were port pitch, port pitch, fuel temperature,
and the SOG.

3. Nineteen GBMs based on different input features were established according to the
feature importance ranking provided by SHAP. Based on the prediction evaluation
index, the best input influences were selected from the 19 GBMs by considering the
prediction accuracy, data collection cost, and computation cost, which can predict
the fuel consumption of a ship with fewer input features while ensuring a certain
prediction accuracy, and provide a reference for sensor-based ship fuel prediction. It
provides a reference for the selection of input features in prediction of sensor-based
ship fuel.

It is worth noting that the SHAP-based GBM model proposed in this paper still needs
further research in the future to make the model work better in practical engineering
applications. On the one hand, we should consider trying to incorporate more high-quality
input influences (e.g., ship maintenance records, etc.) to continuously improve the stability
of the model prediction performance and expand its application scope. On the other hand,
the modeling approach proposed in this study is not specific to a particular ship type
and aims to establish a unified ship fuel consumption prediction model constructed by
combining high-performance sensing data that can be universally applied, so that relevant
researchers concerned can choose the arrangement of appropriate sensor equipment and
model structure assumptions to realize fuel consumption prediction of ships in conjunction
with actual conditions. The prediction performance of the model has been confirmed in a
specific case. By randomly dividing the original data into five training and test sets, it is
also further demonstrated that the proposed model is not affected by data randomness and
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time dependence, and more data can be collected from different voyages or ships in the
future to further verify the generality of the model and improve the ship fuel consumption
prediction model and the interpretable framework to achieve the best results of this study.
Therefore, the proposed model can provide a reference for the IMO and shipping companies
to address the environmental sustainability of shipping.
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Appendix A

The detail calculation processes of each resistance component are explained here.

1. Frictional resistance

Frictional resistance A is the frictional force formed on the hull surface by the tangential
stress caused by the viscosity of the water; the combined force formed by the frictional force
in each direction in the direction of the ship’s motion is the overall frictional resistance.
Considering the hull surface is difficult to express with the display function, it is difficult
to calculate the hull frictional resistance. Therefore, Fu Rude put forward the concept of
“equivalent plate”, assuming that the ship’s frictional resistance is equivalent to its role
in the same rate of movement and length, and the wet surface area is the same smooth
plate. However, in the actual modeling process, the surface of the ship is not absolutely
smooth, and will become “rough” in different degrees due to uneven painting, welding
seams, marine life adhesion, etc., making the actual frictional resistance greater than the
frictional resistance of the smooth hull. Usually, “hull surface roughness allowance” is used
to express this effect. So, the hull frictional resistance can be estimated by the frictional
force of “quite flat plate”, plus the increase of frictional resistance caused by the roughness
of hull surface, as shown in Equation (A1):

R f = (C f + ∆C f ) ·
1
2

ρU2S (A1)

where C f is the equivalent to flat plate friction drag coefficient; ∆C f is the surface roughness
allowance coefficient; ρ is the mass density of fluid (water) in kg/m3; U is the ship’s speed
in m/s; S is the wet surface area of the hull in m2.

The calculation of the frictional drag coefficient of the equivalent flat plate in Equation (A1)
is based on the most commonly used formula for calculating the frictional drag coefficient,
as shown in Equation (A2), which was presented at the 8th International Towing Tank

http://cogsys.imm.dtu.dk/propulsionmodelling/data.html
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Conference (ITTC) in 1957 by analyzing the drag test results of geometrically similar
ship models.

C f =
0.075

(lgRe− 2)2 (A2)

Re in Equation (A2) is the Reynolds coefficient, which is defined as (A3):

Re =
UL
v

(A3)

where L is the length of the ship in m and v is the kinematic viscosity coefficient of the fluid
(in this case water) in m2/s. The kinematic viscosity coefficients of seawater at different
temperatures are shown specifically in Table A1.

Table A1. Kinematic viscosity coefficient of seawater at different temperatures.

Temperature (◦C) Kinematic Viscosity (×10−6 m2/ s) Temperature (◦C) Kinematic Viscosity (×10−6 m2/ s)

5 1.5650 15 1.1907
6 1.5191 16 1.1617
7 1.4775 17 1.1338
8 1.4339 18 1.1071
9 1.3942 19 1.0813
10 1.3563 20 1.0565
11 1.3202 21 1.0327
12 1.2587 22 1.0098
13 1.2527 23 0.9878
14 1.2211 24 0.9664

The values in Equation (A1) can be referred to the following Table A2 subsidy coeffi-
cients for different captains.

Table A2. Kinematic viscosity coefficient of seawater at different temperatures.

Length of Ship (m) ∆Cf × 10−3

50~150 0.35~0.4
150~210 0.2
210~260 0.1
260~300 0
300~350 −0.1
350~450 −0.25

The wet surface area in Equation (A1) is calculated as shown in Equation (A4) below:

S = L× d×

(
2 + B

2d

)
1.625− CB

(A4)

where d is the draft in m; B is the ship type width in m; CB is the squareness factor. The
ship square factor can be derived from Equation (A5):

CB =
∇

L·B·d (A5)

where ∇ is the drainage volume in m3.



J. Mar. Sci. Eng. 2023, 11, 1059 27 of 34

In summary, the frictional resistance of the ship can be found, as shown in Equation (A6):

R f =

 0.075(
lg UL

v − 2
)2 + ∆C f

·ρU2L2Bd(4d + B)
6.5LBd− 4∇ (A6)

2. Residual resistance

The formula for calculating the residual resistance to the ship is shown in Equation (A7).

Rr = Cr ·
1
2

ρU2S (A7)

The relationship between the frictional drag coefficient and the residual drag coefficient
is shown in Equation (A8).

Cr =
(

25.02Fn
3 − 7.752Fn

2 + 1.246Fn + 0.2568
)

C f (A8)

where Fn is the Fourier number, which can be calculated by Equation (A9).

Fn =
U√
gL

(A9)

where U is the speed, g is the acceleration of gravity, and L is the captain.

3. Attachment resistance

The ship is equipped with a rudder, axle wrapper, and other appendages protruding
from the hull, and the resistance increment to these appendages is the appendage resistance.
When calculating the appendage resistance, in addition to calculating the resistance of each
appendage, also to calculate the interference resistance between each appendage and the
hull, so the accurate appendage resistance calculation is difficult; in general, one can use
the empirical formula or model test to determine it, where the empirical formula has the
following (A10) calculation method:

Rap = Cap

(
R f + Rr

)
(A10)

where Cap is the attachment coefficient and the value can be referred to the attachment
resistance coefficient of different types of ships in Table A3.

Table A3. Reference value of captain’s Subsidy under different circumstances.

Additional Equipment Single Paddle Boats (%) Twin Paddle Boats (%)

Paddle Shaft Package Holder – 2.5
Bilge Keel 3.0 2.5

Rudder – 2.0
Total 3.0 7.0

4. Air resistance

In the navigable environment, the wind comes from different directions and varies. For
the description of wind class, the Beaufort wind class (Table A4) is used internationally, and
the international common wind class classification table used in a wide range of life studies.
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Table A4. Reference value of captain’s Subsidy under different circumstances.

Wind Level Type m/s Specifications

0 Calm 0.0~0.2 Sea surface smooth and mirror-like
1 Light Air 0.3~1.5 Scaly ripples, no foam crests
2 Light Breeze 1.6~3.3 Small wavelets, crests glassy, no breaking
3 Gentle Breeze 3.4~5.4 Large wavelets, crests begin to break, scattered whitecaps
4 Moderate Breeze 5.5~7.9 Small waves, 1–4 ft., becoming longer, numerous whitecaps
5 Fresh Breeze 8.0~10.7 Moderate waves, 4–8 ft, taking longer form, many whitecaps, some spray
6 Strong Breeze 10.8~13.8 Larger waves, 8–13 ft, whitecaps common, more spray
7 Near Gale 13.9~17.1 Sea heaps up, waves 13–19 ft, white foam streaks off breakers

8 Gale 17.2~20.7 Moderately high (18–25 ft) waves of greater length, edges of crests begin to break
into spindrift, foam blown in streaks

9 Severe Gale 20.8~24.4 High waves (23–32 ft), sea begins to roll, dense streaks of foam, spray may
reduce visibility

10 Storm 24.5~28.4 Very high waves (29–41 ft) with overhanging crests, sea white with densely blown
foam, heavy rolling, lowered visibility

11 Violent Storm 28.5~32.6 Exceptionally high (37–52 ft) waves, foam patches cover sea, visibility more reduced

The wind will affect the hull above the water layer, and the resistance generated by the
interaction between the ship and the air in the part above the water line during navigation
is the air resistance. The air resistance is mainly related to the ship’s relative wind speed
and the hull’s shape above the waterline. However, compared with other components of
the resistance, the air resistance to the ship’s role is smaller, and the size of the air resistance
Ra is calculated as shown in the Formula (A11):

Ra =
1
2

Caρa Atv2
a (A11)

where Ca is defined as the air resistance coefficient; ρa is defined as the mass density of air,
usually taken as ρa = 1.226 kg/m3; At is defined as the projected area of the cross-section
of the part of the ship above the water surface; va is defined as the relative speed of the ship
and the air (the vector sum of the speed of the ship and the wind speed along the direction
of the ship’s navigation).

Combined with the ship navigation wind action diagram, the wind speed vwind is
decomposed and its angle ϕα with the ship’s forward direction is the relative wind angle.
The relative velocity of the ship and the wind is shown in Figure A1, which is calculated as
Equation (A12):

va = U + vwind cos ϕα (A12)
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Air resistance coefficient According to the wind tunnel experiment statistics (Table A5),
the general passenger ship takes 0.09, the cargo ship takes 0.10, and the fishing ship
takes 0.04.
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Table A5. Air drag coefficient of different types of ships.

Ship Type Average Value of Air Resistance Coefficient (×10−3)

General Cargo Ships 0.10
Bulk Carrier 0.08
Fishing Boats 0.04

Oil Tanker 0.08
Passenger Ship 0.09

Ferry 0.10
Container Ship (no container on deck) 0.08

Container Ship (with containers on deck) 0.10

5. Wave Incremental Resistance

The increase in resistance of the ship’s hull when sailing in waves relative to the
resistance when sailing in still water makes the ship operate in complex sea conditions
without a significant speed reduction. The principle of wave resistance increase is very
complicated; when the wind acts on the water where the ship is running, the sea floor
(coast) is affected by such seismic waves, and the sea level will form a periodic change in
height, thus generating waves. The wave increment resistance is usually considered in the
reserve power when the ship is designed, and the reserve power percentage is generally
taken. For a ship under certain wind and wave sea conditions, the increment of its average
effective power has the empirical Equation (A13):

∆P = 4.594(2ξw + 0.152)2 CB
L/B

B (A13)

where ξw is the wave height. The wave increase resistance is given by the power definition
equation P = R · v.

Raw = ∆P ·U = 4.594(2ξw + 0.152)2 CB
L/B

BU (A14)

Appendix B

This section shows the detailed calculation process of the transfer efficiency of each
part of the ship propulsion system.

1. Open water efficiency

The thrust coefficient KT and torque coefficient KQ, as the propeller’s geometric
parameters, reflect the propeller’s hydrodynamic performance. Without considering the
effect of high waves, KT and KQ depend only on the propeller’s inlet speed coefficient J,
which is calculated as shown in Equation (A15):

J =
hp

Dp
(A15)

where hp is the propeller process in m; Dp is the propeller diameter in m. The propeller
process, i.e., the distance the propeller rotates for one week to advance along the shaft, is
shown in Equation (A16):

hp =
vp

npDp
(A16)

For the propeller open water efficiency ηp, that is, the actual propeller work power
and the ratio of the received power, by definition, the calculation process can be shown in
Equation (A17).

ηp =
Tvp

Q2πnp
(A17)
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The above propeller open water characteristics are only the propeller operating char-
acteristics under ideal conditions, where the interaction between the ship and the propeller
will also affect the propeller operating characteristics, so other factors affecting the propeller
propulsion efficiency need to be considered; at the same time, the rotation of the propeller
increases the resistance of the ship, resulting in the propeller-generated thrust in addition
to offset the resistance generated by the movement of the hull, but also need to offset the
additional resistance generated by its rotation, so to calculate the effective thrust of the
propeller on the hull, it is also necessary to calculate the thrust reduction factor.

2. Shaft system efficiency

The power required by the propeller is transmitted from the ship’s main engine
through a series of transmission devices according to the corresponding transmission
efficiency; then, the total transmission efficiency between the ship’s main engine and the
propeller via the transmission shaft system is the shaft system efficiency ηs. Therefore, the
relationship between the ship’s main engine power and the power received by the propeller
can be expressed by the Equation (A18):

ηs =
PP

PME
(A18)

3. Relative rotational efficiency

When a ship is moving forward, the surrounding water flow is impacted by it and
creates a companion current. The presence of the hull will cause a gap between the propeller
feed speed and the ship’s speed, thus destroying the uniformity of the water flow at the
propeller disc.

The presence of a companion current will produce a significant difference in the thrust
or torque of the same propeller in the open water and aft. The ratio of thrust Q0 from the
open water propeller to thrust QB from the aft propeller, when producing the same thrust
at the same speed, is the relative rotation rate ηR, as shown in Equation (A19):

ηR =
QB
Q0

(A19)

The companion flow fraction ω is shown in Equation (A20):

ω =
VS −VP

VS
= 1− VP

VS
(A20)

where VP is the propeller feed speed; VS is the ship speed.
When ship model tests are not possible, the accompanying flow coefficient can be esti-

mated using empirical formulas. Two empirical formula estimation methods are given below:

• Taylor’s formula (for transport vessels):

For single-propeller vessels:

ω = 0.5CB − 0.05 (A21)

For double-propeller ships:

ω = 0.55CB − 0.20 (A22)

• Hankescher formula

For single-propeller standard merchant ships:

ω = 0.70CP − 0.18 (A23)
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For single-propeller fishing ships:

ω = 0.77CP − 0.28 (A24)

For twin-propeller standard fishing ships:

ω = 0.70CP − 0.3 (A25)

where CP is the rhombic coefficient.

4. Hull efficiency

Similarly, the propeller motion has a corresponding effect on the moving hull, which
is mainly reflected in the reduction of pressure in the rear part of the ship due to the suction
effect of the propeller when the propeller is running behind the ship and the resulting
increase of resistance. To overcome this part of the resistance increase, the thrust T from
the propeller is not fully used to overcome the hull resistance R to propel the ship; that is,
the thrust reduction.

The companion current and thrust reduction represent the interaction between the
hull and the propeller, and the joint effect of both and the propulsion efficiency is reflected
in the hull efficiency ηH . The defining equation for hull efficiency (A26) shows that

ηH =
1− t
1−ω

(A26)

where t is the thrust derating factor, and the thrust derating factor t is calculated as shown
in Equation (A27):

t =
∆F
Fp

=
Fp − Tp

Fp
= 1−

Tp

Fp
(A27)

where ∆F denotes the thrust reduction; FP is the thrust generated by the propeller; TP is
the effective thrust generated by the propeller.

When model testing is not possible, the thrust reduction fraction can also be estimated
using empirical formulas. Two empirical formulas for estimating the thrust reduction
fraction are listed below.

• Hankescher formula

For single-propeller standard merchant ships:

t = 0.50CP − 0.12 (A28)

For single-propeller fishing ships:

t = 0.70CP − 0.30 (A29)

For twin-propeller standard merchant ships:

t = 0.50CP − 0.18 (A30)

• Shang-He formula

For single propeller ships:
t = kω (A31)

where the coefficient k is determined by the form of the rudder:

k = 0.50 ∼ 0.70, for those equipped with streamlined or reactive rudders;
k = 0.70 ∼ 0.90, for double-plate rudders with square rudder posts;
k = 0.90 ∼ 1.05, for those equipped with a single-board rudder.
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For twin-propeller ships with shaft mounts:

t = 0.70ω + 0.06 (A32)

For twin-propeller ships with shaft wrapped frames:

t = 0.25ω + 0.14 (A33)

Appendix C

Table A6. Nineteen models based on different sets of inputs.

Model Input Influencing Factors

A Port propeller pitch
B Port propeller pitch, Starboard propeller pitch
C Port propeller pitch, Starboard propeller pitch, Fuel temperature
D Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG
E Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density
F Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW

G Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard
level measurements

H Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM

I Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer

J Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle

K Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle

L Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle

M Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude

N Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude, Wind speed

O
Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude, Wind
speed, Longitude

P
Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude, Wind speed,
Longitude, Port level measurements

Q
Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude, Wind speed,
Longitude, Port level measurements, True heading

R
Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude, Wind speed,
Longitude, Port level measurements, True heading, Track degree magnetic

S
Port propeller pitch, Starboard propeller pitch, Fuel temperature, SOG, Fuel density, STW, Starboard level
measurements, WBM, Inclinometer, Port rudder angle, Starboard rudder angle, Wind angle, Latitude, Wind speed,
Longitude, Port level measurements, True heading, Track degree magnetic, Track degree true
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