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Abstract: The construction of offshore wind power pile foundations on artificial islands is a challeng-
ing task due to soil consolidation and additional loads that result in negative skin friction (NSF). In
this study, a comprehensive pile–soil interaction model is established to investigate the development
of NSF in artificial islands under the action of self-weight consolidation of fill soil and surcharge
load. The one-dimensional consolidation theory and an ideal elastoplastic load transfer model are
employed to obtain the analytical solution for skin friction and axial force of the pile with respect to
time and depth. The predicted results are in good agreement with the field tests and finite element
methods. Finally, a parametric study is conducted to investigate the effect of pile installation time,
surcharge load, and pile head load on the development of NSF.

Keywords: negative skin friction; offshore wind power pile foundation; artificial islands; self-weight
consolidation; analytical solution

1. Introduction

In recent years, offshore wind power has received significant attention worldwide as
an abundant, clean, and sustainable energy source, and its development has been unprece-
dented [1,2]. Early offshore wind farms were located in shallow areas close to the shore,
with lower costs. However, as the development progressed, larger turbines were installed
further from the shore. Artificial islands provided a new solution to the construction
difficulty of offshore wind turbine foundations in deep waters [3]. The Ajos wind farm
built turbines on an artificial island instead of a traditional offshore foundation [4], while
TenneT proposed to connect multiple offshore wind farms to an artificial island to create
the North Sea Wind Power Hub [5], thereby reducing overall costs.

The construction of offshore wind power pile foundations on artificial islands is
affected by soil consolidation and experiences additional loads. Pile foundations bear loads
through skin friction and tip resistance [6,7], with skin friction along the pile generated
by relative displacement between the pile and surrounding soil. Normally, vertical loads
induce a downward displacement of the pile relative to the soil, resulting in positive skin
friction (PSF) that enhances the bearing capacity of the pile foundation. However, when
constructing offshore wind power pile foundations on artificial islands, the consolidation
characteristics of the soil can cause greater soil settlement, resulting in negative skin friction
(NSF) [8]. This phenomenon reduces the bearing capacity of the pile foundation and poses
a significant challenge to the overall stability of offshore wind power pile foundations built
on artificial islands. Therefore, it is necessary to study the NSF of offshore wind power pile
foundations built on artificial islands.

Several methods are currently available for predicting NSF, such as the empirical
method [9,10], the finite element method (FEM) [11,12], the elastic continuum theory [13,14]
and the load transfer method [15,16]. Field and model tests have shown that skin friction is
determined by the relative displacement of the pile–soil interface [17–19]. Consequently, it
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is essential to introduce a pile–soil interaction model that accurately evaluates NSF acting
on piles due to the consolidation of fill soil. The elastic continuum theory and load transfer
method, both effective in simulating pile–soil interaction, are widely used in predicting
NSF. The elastic continuum theory based on Mindlin’s solution [20] can effectively simulate
pile–soil interaction, but its complexity poses challenges for geotechnical engineers in pile
foundation design. Conversely, the load transfer method employs linear or nonlinear
springs to simulate pile–soil interaction, providing a simple, reliable, and effective solution
to nonlinear problems.

Depending on the soil type and origin, the most utilized load transfer curves include
hyperbolic [21], exponential [15], and elastoplastic models [22]. Kim and Mission presented
a simplified one-dimensional soil–pile model that combines nonlinear load transfer and
finite strain consolidation theories [16,23], showing that the proper selection of the β
value is more significant for NSF estimation than the choice of consolidation theory used.
Liu et al. [24] found that the NSF caused by self-weight consolidation of fill soil has a
significant influence on the bearing characteristics of pile foundation; the above models did
not consider the effect of the self-weight of the fill soil on the calculation of soil consolidation.
Wu et al. [22] addressed this issue by considering the self-weight consolidation of recently
filled soil and derived a semi-analytical solution for the NSF on the pile shaft using the
elastoplastic load transfer method. However, during the analysis of pile–soil interaction in
the plastic stage, the elastic state of the soil near the neutral plane (i.e., the position with
zero skin friction) was not considered. Thus, there is a necessity for a comprehensive model
that factors in the impact of the self-weight of the fill soil on the development of NSF.

This paper presents an analytical solution for studying the NSF of offshore wind
power pile foundations built on artificial islands, incorporating the effect of the self-weight
consolidation of fill soil. The one-dimensional consolidation theory is employed to derive
the one-dimensional consolidation analytical solution for the double-layer foundation.
To account for the coupling between the consolidation-induced soil settlement and the
pile–soil interaction, an ideal elastoplastic load transfer model is introduced, resulting
in a comprehensive pile–soil coupling deformation model that considers the impact of
self-weight consolidation of the fill soil. The predicted results were compared with the
field tests and FEMs, demonstrating the reasonableness and reliability of the proposed
method. Additionally, a parametric study is conducted to investigate the effect of the pile
installation time, the surcharge load, and the pile head load on the development of NSF for
offshore wind power pile foundations built on artificial islands.

2. Calculation Model

On the topic of artificial islands on a homogeneous foundation, due to the significant
differences in the physical and mechanical properties between the fill soil and the original
soil, the entire soil can be considered as a double-layer foundation soil. Consequently, the
consolidation of soil in artificial islands can be divided into two parts: (1) the settlement
of the fill soil under the surface surcharge load and its own gravity; and (2) the settle-
ment of the original soil under the fill gravity and surface surcharge. In this section, the
general assumptions and models used to simplify the problem will be introduced in the
following paragraphs.

2.1. Basic Assumptions

The main assumptions adopted in this study are as follows:

(1) The initial self-weight stress of the fill soil linearly distributes along the depth, as
depicted in Figure 1;

(2) The top surface of the soil layer is pervious, while the bottom surface is assumed to
be impervious, resulting in a single-sided drainage state for the soil;

(3) The disturbance caused by the installation of offshore wind power pile foundations
on artificial islands is neglected, and the pile head load (P0) remains constant during
the consolidation process;
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(4) The load-transfer model is used to describe the relationship between the relative
displacement of the pile–soil system and the skin friction acting on the pile shaft.
The load transfer relationship along the pile shaft is assumed to be ideal elastoplastic
behavior, as shown in Figure 2a, while the pile tip load-displacement relationship is
described by a linear elastic model, as shown in Figure 2b. In Figure 2a, τ represents
the skin friction acting on the pile shaft; Si represents the pile–soil relative displace-
ment in the i-th layer (i = 1, 2); τ+ui (τ−ui) represents the ultimate positive (negative) skin
friction in the i-th layer; and S+ui (S−ui) represents the corresponding ultimate relative
displacement. The coefficient ki represents the elastic shear stiffness and the same
shear stiffness coefficient is used for calculating PSF and NSF, respectively, and they
are assumed to be constant along the pile shaft. In Figure 2b, Pb represents the tip
resistance acting on the pile; Sb represents the relative displacement of the tip soil;
and k3 represents the compressive stiffness coefficient at the pile tip;

(5) Other assumptions are consistent with Terzaghi’s one-dimensional consolidation
theory [25].
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2.2. Calculation Models for Each Stage

Considering the varying stress states of the soil surrounding the pile and the unique
characteristics of NSF, three stress states for the soil can be identified. In combination with
the double-layer foundation soil, six calculation models can be proposed as follows:
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(1) Elastic shear stage: When the axial force at the top of the pile and soil consolidation
is relatively small, the relative displacement of the pile–soil system is less than the
ultimate relative displacement Sui, and the ultimate skin friction cannot be fully
mobilized. The soil surrounding the pile is in an elastic shear stage;

(2) Plastic–elastic shear stage: When the axial force at the top of the pile is large or the soil
is highly consolidated, the relative displacement of the pile–soil system in the upper
part of the pile exceeds the ultimate relative displacement Sui, and the ultimate skin
friction is fully mobilized. Part of the soil surrounding the pile begins to transition
into the plastic state, with the boundary depth of the plastic area denoted as z1;

(3) Plastic–elastic–plastic shear stage: As the axial force at the top of the pile or soil
consolidation continues to increase, both the NSF and PSF of the pile transition into
the plastic state. Due to the existence of the neutral plane, which is denoted as z0,
the soil near the neutral plane remains in an elastic state. The boundary depth of the
plastic area of NSF is denoted as z1, while the boundary depth of the plastic area of
PSF is denoted as z2, and z1 < z0 < z2.

By considering the states of z1 and z2 in the i-th layer of soil, six different stress stages
of the pile–soil system can be defined, as shown in Figure 3.
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3. Governing Equations and Solutions for Load Transfer
3.1. Solution for One-Dimensional Consolidation of Double-Layer Foundation

The one-dimensional consolidation model of the double-layer foundation is shown in
Figure 4a. In this model, kvi, cvi, Esi and hi represent the vertical permeability coefficient,
consolidation coefficient, compressive modulus, and thickness of the i-th layer of soil,
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respectively. H = h1 + h2 represents the total thickness of the double-layer foundation;
σ(z) represents the initial excess pore water pressure, and q(t) represents the uniformly
distributed load applied to the top surface of the soil, as shown in Figure 4b. The final
surface surcharge is qu, and tc denotes the loading time.
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The governing differential equation for one-dimensional linear soil consolidation of
the double-layer foundation is expressed as follows [26]:

∂ui

∂t
= cvi

∂2ui

∂z2 + R(t) (1)

where u and ui represent the excess pore water pressure at any depth and at any time of
the double-layer foundation and i-th layer soil, respectively. R(t) = dq/dt is the rate of
loading; t and z represent the variables of time and space, respectively.

The upper and bottom drainage boundary conditions are defined as:

u1(0, t) = 0 (2)

∂u2

∂z
(H, t) = 0 (3)

Moreover, the continuity of excess pore water pressure and velocity at the boundary of
adjacent soil layers should be considered, and the boundary conditions can be expressed as:

u1(h1, t) = u2(h1, t) (4)

kv1
∂u1

∂z
(h1, t) = kv2

∂u2

∂z
(h1, t) (5)

The initial excess pore water pressure condition of the soil can be described as:

u(z, 0) = q(0) + σ(z) (6)



J. Mar. Sci. Eng. 2023, 11, 1071 6 of 27

where σ(z) =

{
γ′z, 0 ≤ z ≤ h1

γ′h1, h1 < z ≤ H
, as shown in Figure 4a. By solving Equation (1) and

applying the boundary conditions of Equations (2)–(5), the general solution satisfying
different conditions can be obtained as follows:

u1(z, t) =
∞

∑
m=1

sin
(
λm

z
h1

)
em(t) (7)

u2(z, t) =
∞

∑
m=1

Am cos
(
µλm

H− z
h1

)
em(t) (8)

Am =
sin λm

cos(µcλm)
(9)

em(t) = e−βmt
(

Bm + Cm

∫ t

0
R(δ)eβmδdδ

)
(10)

Bm =
2
[∫ h1

0 σ(z)gm1(z)dz + b
∫ H

h1
σ(z)gm2(z)dz

]
h1

(
1 + bcA2

m

) (11)

Cm =
2

λm

(
1 + bcA2

m

) (12)

where, define the dimensionless parameter a = kv2/kv1, b = Es1/Es2, c = h2/h1,
µ =

√
cv1/cv2 =

√
b/a; λm represents the root of the characteristic equation√

abtan(λm)tan(µcλm) = 1, m represents a positive odd; βm = cv1λ
2
m/h2

1;
gm1(z)= sin(λmz/h1), gm2(z) = Amcos[µλm(H− z)/h1].

As shown in Figure 4b, the surface surcharge q(t) can be applied in two loading modes:
uniform loading and instantaneous loading. When the load is applied at the same speed in
a single stage, the mathematical expressions of q(t) and R(t) can be written as:

q(t) =


qu
tc

t, 0 ≤ t ≤ tc

qu, t > tc

(13)

R(t) =
{ qu

tc
, 0 ≤ t ≤ t−c

0, t > t+c
(14)

Substitute Equations (13) and (14) into Equations (11) and (12), and the mathematical
expressions of em(t) can be written as:

em(t) = e−λ
2
mTν

2γ′h1[µsin(λm)− µλmcos(λm) + bλmAmsin(µcλm)]

µλ2
m

(
1 + bcA2

m

) +
quCm

λ2
mTc

(
eλ

2
mTc − 1

) (15)

where Tv = cv1t/h2
1, Tc = cv1tc/h2

1. When the load is applied instantaneously, there are
q(t) = qu and R(t) = 0, which can be substituted into Equations (11) and (12), and the
mathematical expressions of em(t) can be written as:

em(t) = e−λ
2
mTν

2[quλm + γ′h1sin(λm)]

λ2
m

(
1 + bcA2

m

) (16)

In the analysis of pile foundation settlement, it is important to distinguish between
the settlement of the soil before and after the installation of the pile. Only the settlement
that occurs after the installation of the pile can contribute to the net settlement of the pile
foundation system. Therefore, the settlement before pile installation should be subtracted
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when calculating the relative displacement of soil–pile, and the depth only needs to be
calculated to the pile length L.

Assuming that the pile foundation is installed at time tp and tp ≥ tc, the settlement
vi(z, t) caused by consolidation can be obtained by integrating the effective stress of the
soil as follows:

v1(z, t) =
∫ h1

z

∞

∑
m=1

sin
(
λm

δ

h1

)
eTνmdδ + b

∫ L

h1

∞

∑
m=1

Amcos
(
µλm

H− δ

h1

)
eTνmdδ (17)

v2(z, t) = b
∫ L

z

∞

∑
m=1

Amcos
(
µλm

H− δ

h1

)
eTνmdδ (18)

where eTνm =
[
em
(
tp
)
− em(t)

]
/Es1.

3.2. Solution for Pile Foundation
3.2.1. Basic Governing Equations

In general, the equilibrium of an elastic pile element along its axis can be written
as [27]:

d2wi

dz2 =
U

EA
τ(z) (19)

where wi(z) represents the compression of the pile body, that is the vertical displacement
of the pile shaft; τ(z) represents the skin friction; E represents Young’s elastic modulus, U
and A represent the circumference and cross-sectional area of the pile, respectively. For
piles with a cross-sectional geometry other than circular, an equivalent circular pile can be
used [28].

This paper employs the ideal elastoplastic load transfer model, as shown in Figure 2, to
analyze pile behavior. The mathematical formula for this model can be written as follows:

τ(z) =

{
kiSi, Si ≤ Su

τu, Si > Su
(20)

The coefficient elastic shear stiffness ki are given by Randolph and Worth [27]:

ki =
Esi

2r(1 + νi)ln(R/r)
(21)

where νi represents the soil Poisson’s ratio; r represents the radius of the pile and R
represents the effective influence radius of the pile foundation. R can be calculated as
R = 2.5L′ρ(1− ν), where L′ and ρ are the effective pile length, the ratio of the shear
modulus of the middle part of the pile shaft to the pile tip, respectively. Based on the
recommendations of Castelli and Maugeri [29], ln(R/r) is generally taken as 4.

For piles in saturated soil, the ultimate positive (negative) skin friction τu can be
calculated using the effective stress method. The effective stress method considers the
reduction in the shear strength of the soil due to the excess pore water pressure.

The ultimate positive (negative) skin friction can be expressed as:

τu = βσ′v = β
(
γ′z + qu − u

)
(22)

where σ′v represents the vertical effective stress, β represents the parameter related to soil
type, pile material, and surface roughness of the pile shaft. Fellenius [30] expressed β as a
function of several parameters:

β = Mtanϕ′
(
1− sinϕ′

)
(OCR)0.5. (23)
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where M= tanδ′/ tanϕ′, ϕ′ represents the effective angle of internal friction of the soil,
δ′ represents the effective angle of external friction of the soil, and OCR represents the
over-consolidation ratio.

The pile–soil relative displacement Si can be expressed as the difference between pile
compression and soil settlement, namely:

Si = wi − vi (24)

Substituting Equation (24) into Equation (19), the following can be obtained.

d2Si

dz2 +
d2vi

dz2 =
Uki

EA
Si, elastic (25)

d2Si

dz2 +
d2vi

dz2 =
U

EA
τu, plastic (26)

The boundary conditions at the pile top and the pile tip can be expressed as:

Pz|z=0 = −EA
dw1

dz

∣∣∣∣
z=0

= P0 (27)

Pz|z=L = −EA
dw2

dz

∣∣∣∣
z=L

= Pb = k3 S2|z=L (28)

where L represents the length of the pile. The displacement and axial force of the pile shaft
at the interface of the adjacent pile segments are continuous, i.e.,

w1|z=h1
= w2|z=h1

(29)

−EA
dw1

dz

∣∣∣∣
z=h1

= −EA
dw2

dz

∣∣∣∣
z=h1

(30)

wei|z=zi
= wpi

∣∣
z=zi

(31)

−EA
dwei

dz

∣∣∣∣
z=zi

= −EA
dwpi

dz

∣∣∣∣
z=zi

(32)

where wei, wpi represent the pile displacement at the boundary of the elastic zone and
plastic zone, respectively.

3.2.2. Solution for Elastic Stage of the Pile–Soil System

At the initial stage, the soil surrounding the pile shaft is in the elastic shear state. The
main governing equations that describe this stage include Equations (25) and (27)–(30),
where z1 = z2 = 0, and the entire region of 0 ≤ z ≤ L is in elastic state. The governing
equation that describes this stage is shown as follows:

d2S1

dz2 − α
2
1S1 =

∞

∑
m=1

λmeTνm

h1
cos
(
λm

z
h1

)
, 0 < z ≤ h1 (33)

d2S2

dz2 − α
2
2S2 =

∞

∑
m=1

µbλmAmeTνm

h1
sin
(
µλm

H− z
h1

)
, h1 < z ≤ L (34)
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where αi =
√

Uki/(EA). By solving the governing equation, the analytical solution of the
relative displacement of pile–soil system is obtained as follows:

S1e = c1sin h(α1z) + c2cos h(α1z) +
∞

∑
m=1

χ1mcos
(
λm

z
h1

)
, 0 < z ≤ h1 (35)

S2e = c3sin h(α2z) + c4cos h(α2z) +
∞

∑
m=1

χ2msin
(
µλm

H− z
h1

)
, h1 < z ≤ L (36)

where χ1m = − λmeTνm
h1[α2

1+(λm/h1)
2]

, χ2m = − bµλmAmeTνm
h1[α2

2+(µλm/h1)
2]

. The expression of the undeter-

mined coefficients ci can be found in Appendix A.

3.2.3. Solution for Plastic–Elastic Stage of the Pile–Soil System

At a later stage, the soil surrounding the pile shaft enters a plastic–elastic shear state.
The main governing equations that describe this stage include Equations (25)–(32), where
0 < z1 < L, z2 = 0, the region 0 ≤ z ≤ z1 is in a plastic state, and the region z1 ≤ z ≤ L
remains in the elastic state. According to the value of the elastic–plastic boundary depth z1,
this stage can be divided into two cases.

If 0 < z1 < h1, the plastic–elastic boundary is located in the first soil layer, then the
analytical solution of the relative displacement of pile–soil system in this stage is obtained
as follows:

S1p = d1z3 + d2z2 + c1z + c2 +
∞

∑
m=1

[
χ3msin

(
λm

z
h1

)
+ χ4mcos

(
λm

z
h1

)]
, 0 < z ≤ z1 (37)

S1e = c3sin h(α1z) + c4cos h(α1z) +
∞

∑
m=1

χ1mcos
(
λm

z
h1

)
, z1 < z ≤ h1 (38)

S2e = c5sin h(α2z) + c6cos h(α2z) +
∞

∑
m=1

χ2msin
(
µλm

H− z
h1

)
, h1 < z ≤ L (39)

where d1 = Uβγ′
6EA , d2 =

Uβqu
2EA , χ3m =

Uβh2
1em(t)

EAλ2
m

, χ4m = −h1eTνm
λm

, respectively. The expres-
sion of the undetermined coefficients ci can be found in Appendix B.

If h1 < z1 < L, the plastic–elastic boundary is located in the second soil layer, then the
analytical solution of the relative displacement of pile–soil system in this stage is obtained
as follows:

S1p = d1z3 + d2z2 + c1z + c2 +
∞

∑
m=1

[
χ3msin

(
λm

z
h1

)
+ χ4mcos

(
λm

z
h1

)]
, 0 < z ≤ h1 (40)

S2p = d1z3 + d2z2 + c3z + c4 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
, h1 < z ≤ z1 (41)

S2e = c5sin h(α2z) + c6cos h(α2z) +
∞

∑
m=1

χ2msin
(
µλm

H− z
h1

)
, z1 < z ≤ L (42)

where χ5m = Am
µ2 χ3m, χ6m = bAm

µ χ4m, respectively. The expression of the undetermined
coefficients ci can be found in Appendix C.

3.2.4. Solution for Plastic–Elastic–Plastic Stage of the Pile–Soil System

At a later stage, the soil surrounding the pile shaft enters a plastic–elastic–plastic shear
state, where both the PSF and NSF of the pile reach the ultimate skin friction state. Due to
the existence of the neutral plane, there is still a part of the elastic region in the transition
section of PSF and NSF. The main governing equations that describe this stage include
Equations (25)–(32), where 0 < z1 < z2 < L; the soil in z1 < z ≤ z2 the region is in the
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elastic state, while the rest of the soil surrounding the pile shaft is in the plastic shear state.
According to the position of the elastic–plastic boundary depth z1 and z2, this stage can be
divided into three cases.

If h1 < z1 < z2 < L, both the plastic–elastic boundary of NSF and PSF are located in
the second soil layer. The analytical solution of the relative displacement of the pile–soil
system in this stage is obtained as follows:

S1p = d1z3 + d2z2 + c1z + c2 +
∞

∑
m=1

[
χ3msin

(
λm

z
h1

)
+ χ4mcos

(
λm

z
h1

)]
, 0 < z ≤ h1 (43)

S2p = d1z3 + d2z2 + c3z + c4 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
, h1 < z ≤ z1 (44)

S2e = c5sin h(α2z) + c6cos h(α2z) +
∞

∑
m=1

χ2msin
(
µλm

H− z
h1

)
, z1 < z ≤ z2 (45)

S2p = d1z3 + d2z2 + c7z + c8 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
, z2 < z ≤ L (46)

where the expression of the undetermined coefficients ci can be found in Appendix D.
If z1 < h1 < z2 < L, the plastic–elastic boundary of NSF is located in the first layer,

while the plastic–elastic boundary of PSF is located in the second layer. The analytical solu-
tion of the relative displacement of the pile–soil system in this stage is obtained as follows:

S1p = d1z3 + d2z2 + c1z + c2 +
∞

∑
m=1

[
χ3msin

(
λm

z
h1

)
+ χ4mcos

(
λm

z
h1

)]
, 0 < z ≤ z1 (47)

S1e = c3sin h(α1z) + c4cos h(α1z) +
∞

∑
m=1

χ1mcos
(
λm

z
h1

)
, z1 < z ≤ h1 (48)

S2e = c5sin h(α2z) + c6cos h(α2z) +
∞

∑
m=1

χ2msin
(
µλm

H− z
h1

)
, h1 < z ≤ z2 (49)

S2p = d1z3 + d2z2 + c7z + c8 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
, z2 < z ≤ L (50)

where the expression of the undetermined coefficients ci can be found in Appendix E.
If 0 < z1 < z2 < h1, both the plastic–elastic boundary of NSF and PSF are located in

the first soil layer. The analytical solution of the relative displacement of pile–soil system in
this stage is obtained as follows:

S1p = d1z3 + d2z2 + c1z + c2 +
∞

∑
m=1

[
χ3msin

(
λm

z
h1

)
+ χ4mcos

(
λm

z
h1

)]
, 0 < z ≤ z1 (51)

S1e = c3sin h(α1z) + c4cos h(α1z) +
∞

∑
m=1

χ1mcos
(
λm

z
h1

)
, z1 < z ≤ z2 (52)

S1p = d1z3 + d2z2 + c5z + c6 +
∞

∑
m=1

[
χ3msin

(
λm

z
h1

)
+ χ4mcos

(
λm

z
h1

)]
, z2 < z ≤ h1 (53)

S2p = d1z3 + d2z2 + c7z + c8 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
, h1 < z ≤ L (54)

where the expression of the undetermined coefficients ci can be found in Appendix F.
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4. Verification
4.1. Case Histories: Yang [31]

To validate the proposed method in this paper, its predicted results were compared
with the field test results and the FEM results reported by Yang [31]. There is no surcharge
load on the test site and no load was applied to the pile top, only considering the influence
of the self-weight of the fill soil, while ignoring the weight of the original soil. The soil
profile and pile physical parameters are shown in Tables 1 and 2, respectively.

Table 1. Physical parameters of the soils surrounding the trial pile.

Soil h(m) γ′
(
kN/m3) Es(kPa) kv

(
10−10m/s

)
ki(kPa/m) kb(kN/m)

fill soil 4.4 7.385 11,477 100 2207 –
original soil 45 9.527 34,364 3.48 6608 37,762

Table 2. Trial pile parameters.

r(m) L(m) E(GPa)

0.25 40 36

The comparison results are shown in Figure 5. Generally, the skin friction and axial
force calculation results are in good agreement with the measured data. Due to changes in
the soil parameters, the skin friction at the interface of the double-layer foundation exhibits
a discontinuity phenomenon. With increasing depth, the NSF above the neutral plane
changes significantly, and below the neutral plane, the PSF changes nonlinearly. Based on
the field test data, Yang [31] established a numerical model to simulate the distribution
of NSF, as shown in Figure 5. Compared to the predictions from the FEM, the proposed
analytical solution showed better agreement with field test data, validating its reliability
for predicting NSF in artificial islands influenced by soil consolidation.
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Figure 5. Comparisons of the present solution, field test data, and FEM results on distribution of
(a) skin friction; (b) axial force.

By comparing the two sets of data, it can be seen that with the increasing consolidation
time, the position of the neutral plane decreases, and the maximum NSF and axial force
of the pile both increase. The calculated value of the lower part of the pile is slightly
larger than the measured value, which is because the theoretical assumption assumes
that the soil permeability and compression coefficient remain constant, while in actual
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engineering, these two parameters will change during the consolidation settlement process,
resulting in calculated settlement values larger than actual values, thereby causing the
calculated values of the skin friction and axial force larger than the measured values.
At 41 days of consolidation, skin friction nears zero due to larger upper soil settlement
and unconsolidated lower soil under filling soil’s self-weight. With equal pile and soil
displacement at 35–40 m depth, skin friction becomes zero, and axial force on the pile
remains small.

4.2. Case Histories: Indraratna et al. [32]

Indraratna et al. [32] conducted field tests in layered soils to investigate the devel-
opment of NSF and surface settlement after embankment construction. Following pile
installation, 2 m of the pile length remained above ground, and a 2 m high embankment
was built within 3 days. Long-term monitoring of surface settlement and pile axial force
was carried out for 265 days. The soil profile and pile physical parameters are shown in
Tables 3 and 4, respectively.

The predicted results were compared with field test data by Indraratna et al. [32],
FEM results by Liang et al. [7], and Wu et al.’s [22] solution, as shown in Figure 6. After
25 days of soil filling, the present solution’s predictions closely matched the field test data.
However, at 156 days, some deviation from the field test data was observed, which might
be due to the use of a smaller permeability coefficient in the calculations. Chiou et al. [8]
suggested that actual drainage conditions could be three-dimensional, and the in situ soil
was non-homogeneous, fitting the field test data using a permeability coefficient 10 times
larger than the measured parameters. Wu et al. [22] did not account for the elastic region
near the neutral point when the soil surrounding the pile was in a plastic state, resulting in
significant discrepancies between the predictions and field test data after 156 days of soil
filling. In contrast, the present solution considered this stage, leading to a better fit with the
field test data. Overall, the proposed analytical method demonstrates its ability to provide
satisfactory predictions of skin friction and axial force, while offering better computational
efficiency and convergence compared to FEM.
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Table 3. Soil parameters around the pile.

Soil h(m) γ′
(
kN/m3) Es(kPa) kv

(
10−9m/s

)
ki(kPa/m) kb(kN/m)

fill soil 2 7 15,000 7.82 2885 –
original soil 40 7.7 22,000 1.17 4231 24,176

Table 4. Pile dimensions.

r(m) L(m) E(GPa)

0.2 27 30

5. Parametric Study

The response of a pile–soil system in artificial islands is influenced by various factors,
such as the installation time of the pile foundation, consolidation time, surcharge load,
pile head load, and soil parameters (soil compression modulus, permeability, drainage
boundary). However, practical geotechnical engineers are more interested in studying the
influence of controllable parameters that can effectively eliminate or alleviate the NSF on
the deep foundation. For this reason, this section presents the influence of three controllable
parameters, namely, the installation time of the pile, the surcharge load applied at the
ground, and the pile head load. In the parameter analysis process of this section, the soil
and pile parameters used are presented in Tables 1 and 2.

5.1. Case 1: Influence of the Pile Installation Time

Installing pile foundations at a certain interval after filling can effectively alleviate
NSF. However, it also extends the construction period. Therefore, in practical engineer-
ing, it is necessary to find a balance between effectively reducing NSF generated by soil
consolidation and ensuring that the construction period is not too long.

In this case study, the influence of pile installation time is investigated, as shown in
Figure 7. To disregard the effects of fill thickness and permeability coefficient on consoli-
dation, the dimensionless time factors Tp = cv1tp/H2 and Tv = cv1t/H2 are employed to
represent the pile installation time and soil consolidation time, respectively.
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Figure 7. Influences of pile installation time Tp on distribution of (a) skin friction; (b) axial force.

As shown in Figure 7a,b, given a constant consolidation time Tv, the maximum NSF
along the pile and maximum axial force both decrease as Tp increases. Consequently,
the position of the neutral plane gradually ascends, and its sensitivity to Tp becomes
increasingly significant.

Although the NSF developed along the pile remains significant when Tp = 0.5, which
corresponds to 50% of the complete consolidation time (Tv), it becomes negligible when
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Tp = 0.9, or 90% of Tv. Therefore, it is unnecessary to install piles only after complete soil
consolidation, as Tp = 90% Tv is already sufficient to eliminate most of the NSF.

The above analysis primarily discusses the final state of NSF after the complete
consolidation of the fill and the original soil. Next, the influence of Tv on NSF is investigated.
To make a comparison, two pile installation times, Tp = 0.001 and Tp = 0.5, are selected. As
shown in Figures 8a,b and 9a,b, when the pile is installed immediately after the filling (Tp
= 0.001), the soil consolidation has a significant impact on skin friction. The skin friction
along the pile increases sharply with depth as time progresses. However, when the pile
is installed after a period of soil consolidation (Tp = 0.5), the changes in skin friction are
relatively minor. Comparing the skin friction in these two states, it can be concluded that
NSF significantly increases when the pile is installed immediately after the fill compared to
when it is installed after a period of soil consolidation.
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Figure 8. Influences of soil consolidation time Tv for pile installation time Tp = 0.001 on distribution
of (a) skin friction; (b) axial force.
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Figure 9. Influences of soil consolidation time Tv for pile installation time Tp = 0.5 on distribution of
(a) skin friction; (b) axial force.

5.2. Case 2: Influence of Surcharge Load

In this case study, the influence of the surcharge load on the distribution of NSF
was investigated by installing the pile foundation when the soil was essentially fully
consolidated (Tp = 0.8) and applying a pile head load of P0 = 100 kN. As shown in Figure 10a,
with the increase in the surcharge load, the settlement of the soil caused by consolidation
increases, leading to an increase in NSF on the upper part of the pile and the PSF on the
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lower part of the pile, which will inevitably lead to an increase in the pile axial force,
as shown in Figure 10b. The position of the neutral plane will move downward as the
surcharge load increases.
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Figure 10. Influences of surcharge load qu on distribution of (a) skin friction; (b) axial force.

5.3. Case 3: Influence of Pile Head Load

In this case study, the influence of the pile head load on the distribution of NSF
was investigated by installing the pile foundation when the soil was essentially fully
consolidated (Tp = 0.8) and with a value of surcharge load qu = 200 kPa. The changes in
skin friction and axial force with different pile head loads are shown in Figure 11. As the
pile head load increases, the NSF gradually decreases, and the location of the neutral plane
moves upwards. When the pile head load is sufficiently large, no NSF will be generated.
Increasing the pile head load can effectively reduce the influence of soil consolidation on
the pile foundation.
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Figure 11. Influences of pile head load P0 on distribution of (a) skin friction; (b) axial force.

In order to fully account for the influence of surcharge load and pile head load on the
NSF, the effect of varying pile head loads on the neutral plane position in the pile foundation
was calculated for surcharge loads of 200 kPa, 300 kPa, and 400 kPa, respectively. As shown
in Figure 12, with the increase in the pile head load, the neutral plane position moves
upward, while the influence of the pile head load gradually weakens with the increase in
the surcharge load.



J. Mar. Sci. Eng. 2023, 11, 1071 16 of 27

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 16 of 28 
 

 

  
(a) (b) 

Figure 11. Influences of pile head load P on distribution of (a) skin friction; (b) axial force. 

In order to fully account for the influence of surcharge load and pile head load on the 
NSF, the effect of varying pile head loads on the neutral plane position in the pile founda-
tion was calculated for surcharge loads of 200 kPa, 300 kPa, and 400 kPa, respectively. As 
shown in Figure 12, with the increase in the pile head load, the neutral plane position 
moves upward, while the influence of the pile head load gradually weakens with the in-
crease in the surcharge load. 

 

Figure 12. Depth of the neutral plane. 

6. Conclusions 
In this paper, a pile–soil interaction model that incorporates the self-weight consoli-

dation of fill soil to investigate the development of NSF in offshore wind power pile foun-
dations on artificial islands is developed. Analytical solutions for the skin friction and ax-
ial force of the pile with respect to time and depth are derived, and the results are in good 
agreement with the data collected from field tests, FEMs, and other solutions. The above 
research found that: 

−15 −10 −5 0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

D
ep

th
 (m

)

Skin friction (kPa)

Tp = 0.8
Tv = 1.0
qu = 200 kPa

 P0 = 0 kN
 P0 = 100 kN
 P0 = 200 kN
 P0 = 300 kN
 P0 = 400 kN
 P0 = 500 kN

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

D
ep

th
 (m

)

Axial force (kN)

 P0 = 0 kN
 P0 = 100 kN
 P0 = 200 kN
 P0 = 300 kN
 P0 = 400 kN
 P0 = 500 kN Tp = 0.8

Tv = 1.0
qu = 200 kPa

150 200 250 300 350 400 450
15

20

25

N
eu

tra
l p

la
ne

 d
ep

th
 (m

)

Surcharge load (kPa)

 P0 = 100 kN
 P0 = 200 kN
 P0 = 300 kN
 P0 = 400 kN

Figure 12. Depth of the neutral plane.

6. Conclusions

In this paper, a pile–soil interaction model that incorporates the self-weight consol-
idation of fill soil to investigate the development of NSF in offshore wind power pile
foundations on artificial islands is developed. Analytical solutions for the skin friction and
axial force of the pile with respect to time and depth are derived, and the results are in
good agreement with the data collected from field tests, FEMs, and other solutions. The
above research found that:

(1) Compared to existing methods, considering the elastic state of the soil near the
neutral plane during the plastic stage of pile–soil interaction analysis provides a better
prediction of the distribution of NSF under vertical loads considering consolidation;

(2) Installing pile foundations immediately after soil filling results in NSF several times
greater than that of installing piles after a period of consolidation. To balance the
reduction of NSF and the shortening of construction time, pile installation can be
carried out when Tp = 90% Tv;

(3) As the surcharge load increases, the increase in NSF inevitably leads to an increase
in axial force on the pile, and the position of the neutral plane moves downward.
Increasing the pile head load can reduce NSF and raise the neutral plane. This measure
effectively mitigates the impact of soil consolidation on pile foundations. However, as
the surcharge load increases, the influence of the pile top load gradually diminishes.
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Appendix A

The hyperbolic function term is recorded as: Aa1 = sin h(α1h1), Ab1 = sin h(α2h1),
Ab2 = sin h(α2L), Ba1 = cos h(α1h1), Bb1 = cos h(α2h1), Bb2 = cos h(α2L).

The summation term is recorded as:

sum1 = −
∞

∑
m=1

(
µλmχ2m

h1
+ bAmeTνm

)
cos
(
µλm

H− L
h1

)
(A1)

sum2 =
∞

∑
m=1

χ2msin
(
µλm

H− L
h1

)
(A2)

sum3 =
∞

∑
m=1

χ1mcos(λm) (A3)

sum4 =
∞

∑
m=1

χ2msin(µcλm) (A4)

sum5 = −
∞

∑
m=1

λmχ1m + h1eTνm

h1
sin(λm) (A5)

sum6 = −
∞

∑
m=1

µλmχ2m + h1bAmeTνm

h1
cos(µcλm) (A6)

The intermediate term in solving the equation is:

F1 = − sum1 + αbsum2

α2Ab2 + αbB2b
(A7)

F2 = −α2Bb2 + αbA2b
α2Ab2 + αbB2b

(A8)

G1 =
Ba1P0 + (α2Ab1F1 + sum6 − sum5)EA

α1Aa1EA
(A9)

G2 =
(Bb1 + Ab1F2)α2

α1Aa1
(A10)

I1 =
−Aa1P0 + α1(sum3 − sum4 − Bb1F1)EA

α1(Ab1 + Bb1F2)EA
(A11)

I2 =
Ba1

Ab1 + Bb1F2
(A12)

Then, the expression of the undetermined coefficients ci can be expressed as:

c1 = − P0

α1EA
(A13)

c2 =
G1 + G2I1

1−G2I2
(A14)

c3 =
I1 + G1I2

1−G2I2
(A15)

c4 = F1 +
(I1 + G1I2)F2

1−G2I2
(A16)
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Appendix B

The hyperbolic function term is recorded as: Aa1 = sin h(α1h1), Aa3 = sin h(α1z1),
Ab1 = sin h(α2h1), Ab2 = sin h(α2L), Ba1 = cos h(α1h1), Ba3 = cos h(α1h1), Bb1 = cos h(α2h1),
Bb2 = cos h(α2L).

The summation term is recorded as:

sum1 =
∞

∑
m=1

λmχ3m
h1

(A17)

sum2 = −
∞

∑
m=1

µλmχ2m + bh1AmeTνm

h1
cos
(
µλm

H− L
h1

)
(A18)

sum3 =
∞

∑
m=1

χ2msin
(
µλm

H− L
h1

)
(A19)

sum4 =
∞

∑
m=1

χ1mcos(λm) (A20)

sum5 =
∞

∑
m=1

χ2msin(µcλm) (A21)

sum6 = −
∞

∑
m=1

λmχ1m + h1eTνm

h1
sin(λm) (A22)

sum7 = −
∞

∑
m=1

µλmχ2m + bh1AmeTνm

h1
cos(µcλm) (A23)

sum8 = d1z3
1 + d2z2

1 +
∞

∑
m=1

[
χ3msin

(
λm

z1

h1

)
+ χ4mcos

(
λm

z1

h1

)]
(A24)

sum9 =
∞

∑
m=1

χ1mcos
(
λm

z1

h1

)
(A25)

sum10 = 3d1z2
1 + 2d2z1 +

∞

∑
m=1

λm

h1

[
χ3mcos

(
λm

z1

h1

)
− χ4msin

(
λm

z1

h1

)]
(A26)

sum11 = −
∞

∑
m=1

λmχ1m
h1

sin
(
λm

z1

h1

)
(A27)

The intermediate term in solving the equation is:

F1 = − sum2 + αbsum3

α2Ab2 + αbBb2
(A28)

F2 = −α2Bb2 + αbA2b
α2Ab2 + αbB2b

(A29)

G1 = −P0 + (sum1 − sum10 + sum11)EA
α1Ba3EA

(A30)

G2 = −Aa3

Ba3
(A31)

I1 =
Bb1F1 −Aa1G1 − sum4 + sum5

Ba1 + Aa1G2
(A32)

I2 =
Ab1 + Bb1F2

Ba1 + Aa1G2
(A33)
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K1 =
α2Ab1F1 − α1Ba1G1 +−sum6 + sum7

α1(Aa1 + Ba1G2)
(A34)

K2 =
α2(Bb1 + Ab1F2)

α1(Aa1 + Ba1G2)
(A35)

Then, the expression of the undetermined coefficients ci can be expressed as:

c1 = −
(

sum1 +
P0

EA

)
(A36)

c2 = Aa3G1 +
P0

EA
+

(Ba3 + Aa3G2)(I1K2 − I2K1)

K2 − I2
+ sum1 + sum9 − sum8 (A37)

c3 = G1 +
(I1K2 − I2K1)G2

K2 − I2
(A38)

c4 =
I1K2 − I2K1

K2 − I2
(A39)

c5 =
I1 −K1

K2 − I2
(A40)

c6 = F1 +
(I1 −K1)F2

K2 − I2
(A41)

Appendix C

The hyperbolic function term is recorded as: Ab2 = sin h(α2L), Ab3 = sin h(α2z1),
Bb2 = cos h(α2L), Bb3 = cos h(α2z1).

The summation term is recorded as:

sum1 = −
∞

∑
m=1

λmχ3m
h1

− P0

EA
(A42)

sum2 = −
∞

∑
m=1

µλmχ2m + bh1AmeTνm

h1
cos
(
µλm

H− L
h1

)
(A43)

sum3 =
∞

∑
m=1

χ2msin
(
µλm

H− L
h1

)
(A44)

sum4 =
∞

∑
m=1

[χ3msin(λm) + χ4mcos(λm)] (A45)

sum5 =
∞

∑
m=1

[χ5mcos(µcλm) + χ6msin(µcλm)] (A46)

sum6 =
∞

∑
m=1

{
λm

h1
[χ3mcos(λm)− χ4msin(λm)]− eTνmsin(λm)

}
(A47)

sum7 =
∞

∑
m=1

{
µλm

h1
[χ5msin(µcλm)− χ6mcos(µcλm)]−AmeTνmcos(µcλm)

}
(A48)

sum8 = d1z3
1 + d2z2

1 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z1

h1

)
+ χ6msin

(
µλm

H− z1

h1

)]
(A49)
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sum9 =
∞

∑
m=1

χ2msin
(
µλm

H− z1

h1

)
(A50)

sum10 = 3d1z2
1 + 2d2z1 +

∞

∑
m=1

µλm

h1

[
χ5msin

(
µλm

H− z1

h1

)
− χ6mcos

(
µλm

H− z1

h1

)]
(A51)

sum11 = −
∞

∑
m=1

µλmχ2m
h1

cos
(
µλm

H− z1

h1

)
(A52)

The intermediate term in solving the equation is:

F1 = − sum2 + αbsum3

α2Ab2 + αbBb2
(A53)

F2 = −α2Bb2 + αbA2b
α2Ab2 + αbB2b

(A54)

G1 =
c3 + sum10 − sum11

α2Ab3
(A55)

G2 = − Bb3
Ab3

(A56)

Then, the expression of the undetermined coefficients ci can be expressed as:

c1 = sum1 (A57)

c2 = sum5 − sum4 + (sum6 − sum7)h1 + c4 (A58)

c3 = sum1 + sum6 − sum7 (A59)

c4 =
(z1 −Ab3)c3 + sum8 − sum9

Bb3 − 1
(A60)

c5 =
G1 − F1

F2 −G2
(A61)

c6 =
F2G1 − F1G2

F2 −G2
(A62)

Appendix D

The hyperbolic function term is recorded as: Aa1 = sin h(α1h1), Aa3 = sin h(α1z1),
Ab1 = sin h(α2h1), Ab2 = sin h(α2L), Ba1 = cos h(α1h1), Ba3 = cos h(α1h1), Bb1 = cos h(α2h1),
Bb2 = cos h(α2L).

The summation term is recorded as:

sum1 =
∞

∑
m=1

λmχ3m
h1

− P0

EA
(A63)

sum2 = 3d1L2 + 2d2L +
∞

∑
m=1

µλm

h1

[
χ5msin

(
µλm

H− L
h1

)
− χ6mcos

(
µλm

H− L
h1

)]
(A64)

sum3 = d1L3 + d2L2 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
(A65)
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sum4 =
∞

∑
m=1

[χ3msin(λm) + χ4mcos(λm)] (A66)

sum5 =
∞

∑
m=1

[χ5mcos(µcλm) + χ6msin(µcλm)] (A67)

sum6 =
∞

∑
m=1

{
λm

h1
[χ3mcos(λm)− χ4msin(λm)]− eTνmsin(λm)

}
(A68)

sum7 =
∞

∑
m=1

{
λm

h1
[χ5msin(µcλm)− χ6mcos(µcλm)]−AmeTνmcos(µcλm)

}
(A69)

sum8 = d1z3
1 + d2z2

1 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z1

h1

)
+ χ6msin

(
µλm

H− z1

h1

)]
(A70)

sum9 =
∞

∑
m=1

χ2msin
(
µλm

H− z1

h1

)
(A71)

sum10 = 3d1z2
1 + 2d2z1 +

∞

∑
m=1

λm

h1

[
χ5msin

(
µλm

H− z1

h1

)
− χ6mcos

(
µλm

H− z1

h1

)]
(A72)

sum11 = −
∞

∑
m=1

λmχ1m
h1

sin
(
λm

z1

h1

)
(A73)

sum12 =
∞

∑
m=1

χ2msin
(
µλm

H− z2

h1

)
(A74)

sum13 = d1z3
2 + d2z2

2 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z2

h1

)
+ χ6msin

(
µλm

H− z2

h1

)]
(A75)

sum14 = −
∞

∑
m=1

µλmχ2m
h1

cos
(
µλm

H− z1

h1

)
(A76)

sum15 = 3d1z2
2 + 2d2z2 +

∞

∑
m=1

λm

h1

[
χ5msin

(
µλm

H− z2

h1

)
− χ6mcos

(
µλm

H− z2

h1

)]
(A77)

The intermediate term in solving the equation is:

F1 = − sum2 + αbsum3

1 + αbL
(A78)

F2 = − αb
1 + αbL

(A79)

G1 =
c3 + sum10 − sum11

α2Ab3
(A80)

G2 = − Bb3
Ab3

(A81)

K1 =
F1z2 + sum13 − sum12

Bb4
(A82)

K2 = −Ab4
Bb4

(A83)
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K3 =
F2z2 + 1

Bb4
(A84)

M1 =
K1 −G1

G2 −K2
(A85)

M2 =
K3

G2 −K2
(A86)

Then, the expression of the undetermined coefficients ci can be expressed as:

c1 = sum1 (A87)

c2 = sum5 − sum4 + (sum6 − sum7)h1 + c4 (A88)

c3 = sum1 + sum6 − sum7 (A89)

c4 =
(z1 −Ab3)c3 + sum8 − sum9

Bb3 − 1
(A90)

c5 = M1 + M2c8 (A91)

c6 = K1 + K2c5 + K3c8 (A92)

c7 = F1 + F2c8 (A93)

c8 =
sum13 − sum12 + F1z2 −Ab4M1 − Bb4(K1 + K2M1)

M2Ab4 + (K3 + K2M2)Bb4 − F2z2 − 1
(A94)

Appendix E

The hyperbolic function term is recorded as: Aa1 = sin h(α1h1), Aa3 = sin h(α1z1),
Ab1 = sin h(α2h1), Ab4 = sin h(α2z2), Ba1 = cos h(α1h1), Ba3 = cos h(α1z1), Bb1 = cos h(α2h1),
Bb4 = cos h(α2z2).

The summation term is recorded as:

sum1 = −
∞

∑
m=1

λmχ3m
h1

− P0

EA
(A95)

sum2 = 3d1L2 + 2d2L−
∞
∑

m=1
bAmeTνmcos

(
µλm

H− L
h1

)
+

∞
∑

m=1

µλm
h1

[
χ5msin

(
µλm

H− L
h1

)
− χ6mcos

(
µλm

H− L
h1

)]
(A96)

sum3 = d1L3 + d2L2 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
(A97)

sum4 =
∞

∑
m=1

χ1mcos(λm) (A98)

sum5 =
∞

∑
m=1

χ2msin(µcλm) (A99)

sum6 = −
∞

∑
m=1

λmχ1m + h1eTνm

h1
sin(λm) (A100)
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sum7 = −
∞

∑
m=1

µλmχ2m + bh1AmeTνm

h1
cos(µcλm) (A101)

sum8 = d1z3
1 + d2z2

1 +
∞

∑
m=1

[
χ3msin

(
λm

z1

h1

)
+ χ4mcos

(
λm

z1

h1

)]
(A102)

sum9 =
∞

∑
m=1

χ1mcos
(
λm

z1

h1

)
(A103)

sum10 = 3d1z2
1 + 2d2z1 +

∞

∑
m=1

λm

h1

[
χ3mcos

(
λm

z1

h1

)
− χ4msin

(
λm

z1

h1

)]
(A104)

sum11 = −
∞

∑
m=1

λmχ1m
h1

sin
(
λm

z1

h1

)
(A105)

sum12 =
∞

∑
m=1

χ2msin
(
µλm

H− z2

h1

)
(A106)

sum13 = d1z3
2 + d2z2

2 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z2

h1

)
+ χ6msin

(
µλm

H− z2

h1

)]
(A107)

sum14 = −
∞

∑
m=1

µλmχ2m
h1

cos
(
µλm

H− z1

h1

)
(A108)

sum15 = 3d1z2
2 + 2d2z2 +

∞

∑
m=1

λm

h1

[
χ5msin

(
µλm

H− z2

h1

)
− χ6mcos

(
µλm

H− z2

h1

)]
(A109)

The intermediate term in solving the equation is:

B1 = − sum2 + sum3αb
αb

(A110)

B2 = −1 + αbL
αb

(A111)

K1 =
Ba3F1α1 + Aa3G1α1 − sum1 − sum10 + sum11

(Ba3F2 + Aa3G2)α1
(A112)

K2 = −Ba3F3α1 + Aa3G3α1

(Ba3F2 + Aa3G2)α1
(A113)

F1 =
Ba1(sum6 − sum7) + Aa1(−sum4 + sum5)α1(

A2
a1 − B2

a1

)
α1

(A114)

F2 =
Aa1Ab1α1 − Ba1Bb1α2(

A2
a1 − B2

a1

)
α1

(A115)

F3 =
Aa1Bb1α1 −Ab1Ba1α2(

A2
a1 − B2

a1

)
α1

(A116)

G1 =
Aa1(sum7 − sum6) + Ba1(sum4 − sum5)α1(

A2
a1 − B2

a1

)
α1

(A117)

G2 =
Aa1Bb1α2 −Ab1Ba1α1(

A2
a1 − B2

a1

)
α1

(A118)
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G3 =
Aa1Ab1α2 − Ba1Bb1α1(

A2
a1 − B2

a1

)
α1

(A119)

Then, the expression of the undetermined coefficients ci can be expressed as:

c1 = sum1 (A120)

c2 = sum9 − sum8 − sum1z1 + c3Aa3 + c4Ba3 (A121)

c3 = F1 + F2c5 + F3c6 (A122)

c4 = G1 + G2c5 + G3c6 (A123)

c5 =
K2M1 −K1M2

K2 −M2
(A124)

c6 =
M1 −K1

K2 −M2
(A125)

c7 = sum14 − sum15 + Bb4c5α2 + Ab4c6α2 (A126)

c8 = B1 + B2c7 (A127)

Appendix F

The hyperbolic function term is recorded as: Aa3 = sinh(α1z1), Aa4 = sin h(α1z2),
Ba3 = cos h(α1z1), Ba4 = cos h(α1z2).

The summation term is recorded as:

sum1 = −
∞

∑
m=1

λmχ3m
h1

− P0

EA
(A128)

sum2 = 3d1L2 + 2d2L−
∞
∑

m=1
bAmeTνmcos

(
µλm

H− L
h1

)
+

∞
∑

m=1

µλm
h1

[
χ5msin

(
µλm

H− L
h1

)
− χ6mcos

(
µλm

H− L
h1

)]
(A129)

sum3 = d1L3 + d2L2 +
∞

∑
m=1

[
χ5mcos

(
µλm

H− z
h1

)
+ χ6msin

(
µλm

H− z
h1

)]
(A130)

sum4 =
∞

∑
m=1

[χ3msin(λm) + χ4mcos(λm)] (A131)

sum5 =
∞

∑
m=1

[χ5mcos(µcλm) + χ6msin(µcλm)] (A132)

sum6 =
∞

∑
m=1

{
λm

h1
[χ3mcos(λm)− χ4msin(λm)]− eTνmsin(λm)

}
(A133)

sum7 =
∞

∑
m=1

{
λm

h1
[χ5msin(µcλm)− χ6mcos(µcλm)]−AmeTνmcos(µcλm)

}
(A134)

sum8 = d1z3
1 + d2z2

1 +
∞

∑
m=1

[
χ3msin

(
λm

z1

h1

)
+ χ4mcos

(
λm

z1

h1

)]
(A135)

sum9 =
∞

∑
m=1

χ1mcos
(
λm

z1

h1

)
(A136)
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sum10 = 3d1z2
1 + 2d2z1 +

∞

∑
m=1

λm

h1

[
χ3mcos

(
λm

z1

h1

)
− χ4msin

(
λm

z1

h1

)]
(A137)

sum11 = −
∞

∑
m=1

λmχ1m
h1

sin
(
λm

z1

h1

)
(A138)

sum12 =
∞

∑
m=1

χ1mcos
(
λm

z1

h1

)
(A139)

sum13 = d1z3
2 + d2z2

2 +
∞

∑
m=1

[
χ3msin

(
λm

z2

h1

)
+ χ4mcos

(
λm

z2

h1

)]
(A140)

sum14 = −
∞

∑
m=1

λmχ1m
h1

sin
(
λm

z2

h1

)
(A141)

sum15 = 3d1z2
2 + 2d2z2 +

∞

∑
m=1

λm

h1

[
χ3mcos

(
λm

z2

h1

)
+ χ4msin

(
λm

z2

h1

)]
(A142)

The intermediate term in solving the equation is:

B1 = − sum2 + sum3αb
αb

(A143)

B2 = −1 + αbL
αb

(A144)

F1 =
B1 − sum12 + sum13 + (sum14 − sum15)(B2 + z2)

Aa4 − Ba4(B2 + z2)α1
(A145)

F2 =
Ab4(B2 + z2)α2 − Bb4
Ab4 − Bb4(B2 + z2)α2

(A146)

G1 =
Aa4(sum14 − sum15) + Ba4(B1 − sum12 + sum13)α1

Aa4 − Ba4(B2 + z2)α1
(A147)

G2 =

(
A2

a44 − B2
a44

)
α1

Aa44 − Ba44(B2 + z2)α1
(A148)

Then, the expression of the undetermined coefficients ci can be expressed as:

c1 = sum1 (A149)

c2 = sum9 − sum8 − sum1z1 + c3Aa3 + c4Ba3 (A150)

c3 = F1 + F2c4 (A151)

c4 =
sum1 + sum10 − sum11 − Ba3F1α2

(Aa3 + Ba3F2)α2
(A152)

c5 = sum7 − sum6 + c7 (A153)

c6 = (sum 6 − sum7)h1 − sum4 + sum5 + B1 + B2c7 (A154)

c7 = G1 + G2c4 (A155)

c8 = B1 + B2c7 (A156)
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