Research on Seabed Sediment Classification Based on the MSC-Transformer and Sub-Bottom Profiler
Abstract
:1. Introduction
2. Research Background
3. Construction of Seabed Sediment Classification Datasets Based on Sub-Bottom Profiler
3.1. A Method of Constructing Dataset Based on Overlay
3.2. Introduction to Data on Northern Slope of the South China Sea
- Acquisition of reflection intensity
- 2.
- Acquisition of water depth
- 3.
- Acquisition of types of seabed sediment
3.3. Construction of Dataset on Northern Slope of the South China Sea Based on Overlay
4. Sediment Classification Method Based on MSC-Transformer
4.1. Principle of MSC-Transformer
- Data Input
- 2.
- Encoding layer
- 3.
- Attention mechanism
- 4.
- Multi-head Attention Mechanism
- 5.
- Data Output
4.2. Construction of Loss Function and Optimizer
4.2.1. Loss Function
4.2.2. Optimizer
4.3. The Scalability of the MSC-Transformer
5. Experiment and Analysis
5.1. Experimental Environment and Parameter Setting
5.2. Data Division and Model Training
5.3. Experiment Results and Analysis
6. Conclusions
- (1)
- The improved Transformer can be combined with data obtained from sub-bottom profilers and applied to seabed sediment classification. MSC- Transformer proposed in this paper has shown good performance in sediment classification in the northern slope of the South China Sea, with Accuracy, F1, Recall, and Precision all four evaluation indicators above 96%.
- (2)
- In the experiment, this paper compares MSC-Transformer with common machine learning and deep learning neural networks such as BP, CNN, and RNN. The results showed that the Accuracy, F1, Recall, and Precision of MSC-Transformer were all higher than other neural networks. Meanwhile, in 10 independent repeated experiments, MSC-Transformer showed the smallest fluctuation in all indicators and high stability, which is more conducive to seabed sediment classification in practical applications.
- (1)
- Some scholars believe that one of the cores of the Transformer model is the complete Encoder-Decoder system. If you ignore the Decoder and only use the Encoder to complete the classification task of the seabed, this cannot be regarded as a formal Transformer. This paper tries to use the output parameters and input parameters of the Encoder, and add them to the Decoder to build a model. However, the model does not work properly. Therefore, under the premise of not affecting the prediction information of the seabed sediment classification, the MSC-Transformer model in this paper discards the Decoder. However, whether it is actually possible to achieve results by adding a Decoder remains to be further studied.
- (2)
- In the process of processing the types of seabed sediment classification, the selection of the learning rate of the model needs further study. The learning rate currently used is obtained through experiments, which can make the current model show good performance. Whereas, whether there is a more scientific method to calculate the learning rate requires further exploration by researchers in related industries.
- (3)
- Since the data used in the experiment are all collected from the northern slope of the South China Sea, the optimal parameters of the model are also debugged based on this dataset and good results have been achieved. Nevertheless, whether this model is applicable to datasets of other sea areas and substrate types needs to be further verified.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Q.; Liu, B.; Chen, Y.; Zhou, X. Seabed Classification with Improved BP Neural Network. Hydrogr. Surv. Charting 2009, 29, 40–43+56. [Google Scholar] [CrossRef]
- Kenny, A.J.; Cato, I.; Desprez, M.; Fader, G.; Schüttenhelm, R.T.E.; Side, J. An Overview of Seabed-Mapping Technologies in the Context of Marine Habitat Classification. ICES J. Mar. Sci. 2003, 60, 411–418. [Google Scholar] [CrossRef]
- Zheng, H.; Yan, P.; Chen, J.; Wang, Y. Seabed Sediment Classification in the Northern South China Sea Using Inversion Method. Appl. Ocean. Res. 2013, 39, 131–136. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L.; Xia, X.; Zhu, R. Classification of Seafloor Sediments Sonar Image Based on Transfer Learning. Comput. Integr. Manuf. Syst. 2022, 39, 229–233. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle Size Scales and Classification of Sediment Types Based on Particle Size Distributions: Review and Recommended Procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Lou, Z.; Zhou, C.; Wu, C. Advances and challenges in seabed sediment classification. In Proceedings of the 2020 Joint Academic Annual Meeting of Chinese Geosciences (26), Chongqing, China, 18 October–21 October 2020; Beijing Botong Electronic Publishing House: Beijing, China, 2020; Volume 2. [Google Scholar] [CrossRef]
- Zhao, M.; Hu, C. Single parmeter inversion and seaded sediment classification in frequency domain. Acta Acust. 2021, 46, 1124–1131. [Google Scholar] [CrossRef]
- Hou, Z.; Guo, C.; Wang, J.; Li, H.; Li, T. Tests of New In-Situ Seabed Acoustic Measurement System in Qingdao. Chin. J. Ocean. Limnol. 2014, 32, 1172–1178. [Google Scholar] [CrossRef]
- Pan, G. Remote Acoustic Classification of Seafloor Sediments: A Review. Ocean. Technol. 1997, 6, 16–21. [Google Scholar]
- Mitchell, N.C.; Clarke, J.E.H. Classification of Seafloor Geology Using Multibeam Sonar Data from the Scotian Shelf. Mar. Geol. 1994, 121, 143–160. [Google Scholar] [CrossRef]
- Chakraborty, B.; Schenke, H.W.; Kodagali, V.; Hagen, R. Seabottom Characterization Using Multibeam Echosounder Angular Backscatter: An Application of the Composite Roughness Theory. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2419–2422. [Google Scholar] [CrossRef]
- Tamsett, D. Sea-Bed Characterisation and Classification from the Power Spectra of Side-Scan Sonar Data. Mar. Geophys. Res. 1993, 15, 43–64. [Google Scholar] [CrossRef]
- Rzhanov, Y.; Fonseca, L.; Mayer, L. Construction of Seafloor Thematic Maps from Multibeam Acoustic Backscatter Angular Response Data. Comput. Geosci. 2012, 41, 181–187. [Google Scholar] [CrossRef]
- Brown, C.J.; Blondel, P. The Application of Underwater Acoustics to Seabed Habitat Mapping. Appl. Acoust. 2009, 70, 1241. [Google Scholar] [CrossRef]
- Preston, J. Automated Acoustic Seabed Classification of Multibeam Images of Stanton Banks. Appl. Acoust. 2009, 70, 1277–1287. [Google Scholar] [CrossRef]
- Anderson, J.T.; Van Holliday, D.; Kloser, R.; Reid, D.G.; Simard, Y. Acoustic Seabed Classification: Current Practice and Future Directions. ICES J. Mar. Sci. 2008, 65, 1004–1011. [Google Scholar] [CrossRef]
- Reut, Z.; Pace, N.G.; Heaton, M.J.P. Computer Classification of Sea Beds by Sonar. Nature 1985, 314, 426–428. [Google Scholar] [CrossRef]
- Buscombe, D.; Grams, P.E.; Smith, S.M.C. Automated Riverbed Sediment Classification Using Low-Cost Sidescan Sonar. J. Hydraul. Eng. 2016, 142, 06015019. [Google Scholar] [CrossRef]
- Atallah, L.; Probert Smith, P.J.; Bates, C.R. Wavelet Analysis of Bathymetric Sidescan Sonar Data for the Classification of Seafloor Sediments in Hopvågen Bay-Norway. Mar. Geophys. Res. 2002, 23, 431–442. [Google Scholar] [CrossRef]
- Huseby, R.B.; Milvang, O.; Solberg, A.S.; Bjerde, K.W. Seabed Classification from Multibeam Echosounder Data Using Statistical Methods. In Proceedings of the OCEANS ’93 IEEE Conference, Victoria, BC, Canada, 18–21 October 1993; Volume 3, pp. 229–233. [Google Scholar] [CrossRef]
- Pearman, T.R.R.; Robert, K.; Callaway, A.; Hall, R.; Lo Iacono, C.; Huvenne, V.A.I. Improving the Predictive Capability of Benthic Species Distribution Models by Incorporating Oceanographic Data—Towards Holistic Ecological Modelling of a Submarine Canyon. Prog. Oceanogr. 2020, 184, 102338. [Google Scholar] [CrossRef]
- Tang, Q.; Lei, N.; Li, J.; Wu, Y.; Zhou, X. Seabed Mixed Sediment Classification with Multi-Beam Echo Sounder Backscatter Data in Jiaozhou Bay. Mar. Georesour. Geotechnol. 2015, 33, 1–11. [Google Scholar] [CrossRef]
- Tang, Q.; Ji, X.; Ding, J.; Zhou, X.; Li, J. Research prospect of acoustic seabed classification using multibeam echo sounder. Adv. Mar. Sci. 2019, 37, 1–10. [Google Scholar]
- Li, M. Research on Sub-Bottom Profile Data Processing and Seabed Sediment Classification. Master’s Thesis, Tianjin University, Tianjin, China, 2021. [Google Scholar] [CrossRef]
- Zhang, T.; Qi, S.; Wang, X.; Tang, J. Technical Status and Development Trend of Deep Sea Sub-Bottom Profiler. Chin. J. Eng. Geophys. 2018, 15, 547–554. [Google Scholar]
- Yang, G.; Zhu, J.; Zhao, D.; Xiong, Z.; Wang, C.; Ou, X.; Jia, Y.; Li, S. Development and application of sub-bottom profiler technologies. Mar. Sci. 2021, 45, 147–162. [Google Scholar]
- Schock, S.G.; LeBlanc, L.R.; Mayer, L.A. Chirp Subbottom Profiler for Quantitative Sediment Analysis. Geophysics 1989, 54, 445–450. [Google Scholar] [CrossRef]
- Gutowski, M.; Bull, J.; Henstock, T.; Dix, J.; Hogarth, P.; Leighton, T.; White, P. Chirp Sub-Bottom Profiler Source Signature Design and Field Testing. Mar. Geophys. Res. 2002, 23, 481–492. [Google Scholar] [CrossRef]
- LeBlanc, L.R.; Mayer, L.; Rufino, M.; Schock, S.G.; King, J. Marine Sediment Classification Using the Chirp Sonar. J. Acoust. Soc. Am. 1992, 91, 107–115. [Google Scholar] [CrossRef]
- Stevenson, I.R.; McCann, C.; Runciman, P.B. An Attenuation-Based Sediment Classification Technique Using Chirp Sub-Bottom Profiler Data and Laboratory Acoustic Analysis. Mar. Geophys. Res. 2002, 23, 277–298. [Google Scholar] [CrossRef]
- Alevizos, E.; Snellen, M.; Simons, D.; Siemes, K.; Greinert, J. Multi-Angle Backscatter Classification and Sub-Bottom Profiling for Improved Seafloor Characterization. Mar. Geophys. Res. 2018, 39, 289–306. [Google Scholar] [CrossRef]
- Saleh, M.; Rabah, M. Seabed Sub-Bottom Sediment Classification Using Parametric Sub-Bottom Profiler. NRIAG J. Astron. Geophys. 2016, 5, 87–95. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y. Seafloor Sediment Classification Based on Multibeam Sonar Data. Geo-Spat. Inf. Sci. 2004, 7, 290–296. [Google Scholar] [CrossRef]
- Pang, Y.; Xu, F.; Liu, J. Seabed sediment classification based on gammatone filter banks time-frequency spectrum and convolutional neural networks. Appl. Acoust. 2021, 40, 510–517. [Google Scholar]
- Gan, Y.; An, J.; Xu, X. Survey of Short Text Classification Methods Based on Deep Learning. Comput. Eng. Appl. 2023, 59, 43–53. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhu, Z.; Li, J.; Feng, C.; Xing, Z.; Wu, Z. Seafloor classification based on combined multibeam bathymetry and backscatter using deep convolution neural network. Acta Geod. Cartogr. Sin. 2021, 50, 71–84. [Google Scholar]
- Berthold, T.; Leichter, A.; Rosenhahn, B.; Berkhahn, V.; Valerius, J. Seabed Sediment Classification of Side-Scan Sonar Data Using Convolutional Neural Networks. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; IEEE: Honolulu, HI, USA, 2017; pp. 1–8. [Google Scholar]
- Luo, X.; Qin, X.; Wu, Z.; Yang, F.; Wang, M.; Shang, J. Sediment Classification of Small-Size Seabed Acoustic Images Using Convolutional Neural Networks. IEEE Access 2019, 7, 98331–98339. [Google Scholar] [CrossRef]
- Qin, X.; Luo, X.; Wu, Z.; Shang, J. Optimizing the Sediment Classification of Small Side-Scan Sonar Images Based on Deep Learning. IEEE Access 2021, 9, 29416–29428. [Google Scholar] [CrossRef]
- Hong, J. Summary of Transformer research status. China CIO News 2022, 2022, 125–128. [Google Scholar]
- Wang, F. Research Progress and Application of LSTM Recurrent Neural Network. Master’s Thesis, Heilongjiang University, Harbin, China, 2021. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv 2020, arXiv:2005.12872. [Google Scholar]
- Huang, X.; Khetan, A.; Cvitkovic, M.; Karnin, Z. TabTransformer: Tabular Data Modeling Using Contextual Embeddings. arXiv 2020, arXiv:2012.06678. [Google Scholar]
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A Survey of Transformers. arXiv 2021, arXiv:2106.04554. [Google Scholar] [CrossRef]
- Liu, S. Python Machine Learning Algorithm Principle, Implementation and Case; Tsinghua University Press: Beijing, China, 2019; ISBN 978-7-302-53650-5. [Google Scholar]
- Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, L.; Chen, Y. Introduction and Practice of Deep Learning Framework PyTorch, 2nd ed.; Publishing Housen of Electronics Industry: Beijing, China, 2022; Volume 2, pp. 43–44. ISBN 978-7-121-43751-9. [Google Scholar]
Types | Abbreviation | Quantity | Gray-Values | Labels |
---|---|---|---|---|
Calcareous Bio-silt | TCa | 3915 | 165 | 0 |
Calcareous Bio-clay silt | YT(Ca) | 7698 | 197 | 1 |
Silty Sand | TS | 13,055 | 242 | 2 |
Medium Sand | MS | 11,270 | 243 | 3 |
Gravel Sand | GS | 14,060 | 251 | 4 |
Longitude | Latitude | Depth | Reflection | Labels |
---|---|---|---|---|
115.0059097 | 20.16825028 | 165 | 0.456465 | 0 |
115.0033883 | 20.16775583 | 180 | 0.170332 | 1 |
114.9922325 | 20.16547861 | 251 | 0.107705 | 2 |
115.0038692 | 20.16785806 | 167 | 0.124436 | 3 |
114.9051722 | 20.1493725 | 251 | 0.118240 | 4 |
… | … | … | … | … |
Parameters | Values |
---|---|
batch_size | 300 |
num_encoder_layers | 3 |
hidden_dim | 512 |
num_heads | 4 |
dropout | 0.1 |
Parameters | Configuration |
---|---|
Epochs | 3000 |
Learning Rate | 0.0005 |
Momentum | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhou, Q.; Wei, S.; Xue, X.; Zhou, X.; Zhang, X. Research on Seabed Sediment Classification Based on the MSC-Transformer and Sub-Bottom Profiler. J. Mar. Sci. Eng. 2023, 11, 1074. https://doi.org/10.3390/jmse11051074
Wang H, Zhou Q, Wei S, Xue X, Zhou X, Zhang X. Research on Seabed Sediment Classification Based on the MSC-Transformer and Sub-Bottom Profiler. Journal of Marine Science and Engineering. 2023; 11(5):1074. https://doi.org/10.3390/jmse11051074
Chicago/Turabian StyleWang, Han, Qingjie Zhou, Shuo Wei, Xiangyang Xue, Xinghua Zhou, and Xiaobo Zhang. 2023. "Research on Seabed Sediment Classification Based on the MSC-Transformer and Sub-Bottom Profiler" Journal of Marine Science and Engineering 11, no. 5: 1074. https://doi.org/10.3390/jmse11051074
APA StyleWang, H., Zhou, Q., Wei, S., Xue, X., Zhou, X., & Zhang, X. (2023). Research on Seabed Sediment Classification Based on the MSC-Transformer and Sub-Bottom Profiler. Journal of Marine Science and Engineering, 11(5), 1074. https://doi.org/10.3390/jmse11051074