Cascade Control of Active Heave Compensation Nonlinear System for Marine Crane
Abstract
:1. Introduction
2. Dynamic Model of AHC System
2.1. AHC System Description
2.2. Mathematical Model of AHC System
- 1.
- The hydraulic pipeline is short, and the friction loss and dynamic of the pipeline are neglected;
- 2.
- The pressure of each working chamber of the hydraulic cylinder is equal;
- 3.
- The temperature and bulk modulus of elasticity of hydraulic oil are constants;
- 4.
- The hydraulic cylinder ignores the external leakage, and the internal leakage is laminar flow [18].
- 1.
- The slide valve is an ideal four-side slide valve with zero opening, four throttle ports matching and symmetry;
- 2.
- The flow at the throttling window is turbulent;
- 3.
- Flow variation in response to valve spool displacement and valve pressure drop can occur instantaneously.
3. DOB-ANCC Controller Design
3.1. Adaptive Law Design for Uncertain Parameters
3.2. Disturbance Force Observer Design
3.3. DOB-ANCC Nonlinear Cascade Control Based on Backstepping Method
3.3.1. Step 1
3.3.2. Step 2
3.3.3. Step 3
4. Simulations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Wang, X.; Benbouzid, M.; Charpentier, J.F.; Aϊt-Ahmed, N.; Han, J. Improved Fractional-Order PID Controller of a PMSM-Based Wave Compensation System for Offshore Vessel Cranes. J. Mar. Sci. Eng. 2022, 10, 1238. [Google Scholar] [CrossRef]
- Calnan, C.; Bauer, R.J.; Irani, R.A. Reference-point algorithms for active motion compensation of towed bodies. IEEE J. Ocean. Eng. 2018, 44, 1024–1040. [Google Scholar] [CrossRef]
- Southerland, A. Mechanical systems for ocean engineering. Nav. Eng. J. 1970, 82, 63–74. [Google Scholar] [CrossRef]
- Woodacre, J.; Bauer, R.; Irani, R. Hydraulic valve-based active-heave compensation using a model-predictive controller with non-linear valve compensations. Ocean Eng. 2018, 152, 47–56. [Google Scholar] [CrossRef]
- Do, K.D. Boundary control design for extensible marine risers in three-dimensional space. J. Sound Vib. 2017, 388, 1–19. [Google Scholar] [CrossRef]
- Richter, M.; Schaut, S.; Walser, D.; Schneider, K.; Sawodny, O. Experimental validation of an active heave compensation system: Estimation, prediction and control. Control Eng. Pract. 2017, 66, 1–12. [Google Scholar] [CrossRef]
- Ren, H.P.; Jiao, S.S.; Wang, X.; Kaynak, O. Fractional order integral sliding mode controller based on neural network: Theory and electro-hydraulic benchmark test. IEEE/Asme Trans. Mechatron. 2021, 27, 1457–1466. [Google Scholar] [CrossRef]
- Bozkurt, B.; Ertogan, M. Heave and horizontal displacement and anti-sway control of payload during ship-to-ship load transfer with an offshore crane on very rough sea conditions. Ocean Eng. 2023, 267, 113309. [Google Scholar] [CrossRef]
- Ngo, Q.H.; Nguyen, N.P.; Nguyen, C.N.; Tran, T.H.; Ha, Q.P. Fuzzy sliding mode control of an offshore container crane. Ocean Eng. 2017, 140, 125–134. [Google Scholar] [CrossRef]
- Yang, T.; Sun, N.; Chen, H.; Fang, Y. Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Li, M.; Shi, W.; Pan, Y. Adaptive tracking control of hydraulic systems with improved parameter convergence. IEEE Trans. Ind. Electron. 2021, 69, 7140–7150. [Google Scholar] [CrossRef]
- Puller, T.; Lecchini-Visintini, A. A simplified model of a fueldraulic actuation system with application to load estimation. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2019, 233, 570–581. [Google Scholar] [CrossRef]
- Yang, G.; Yao, J. Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection. J. Frankl. Inst. 2019, 356, 9152–9179. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Jia, W.; Luo, M.; Ni, F. Stochastic Dynamics of Suspension System in Maglev Train: Governing Equations for Response Statistics and Reliability. Int. J. Struct. Stab. Dyn. 2023, 1, 2350192. [Google Scholar] [CrossRef]
- Yang, Y.; Hua, C.; Guan, X. Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. Fuzzy Syst. 2013, 22, 631–641. [Google Scholar] [CrossRef]
- Guo, K.; Wei, J.H.; Tian, Q.Y. Disturbance observer based position tracking of electro-hydraulic actuator. J. Cent. South Univ. 2015, 22, 2158–2165. [Google Scholar] [CrossRef]
- Yan, Y.; Fan, Y.; Qiu, H.; Yang, Z. Research on double cylinder synchronous linear loading system based on sliding mode control with exponentially converging disturbance observer. J. Phys. Conf. Ser. 2022, 2383, 012065. [Google Scholar] [CrossRef]
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
A1 | 1.113 × 10−2 | m2 | V01 | 1.15 × 10−2 | m3 |
A2 | 5.6 × 10−3 | m2 | V02 | 0.57 × 10−3 | m3 |
Cip | 1.4 × 109 | m3/(s·Pa) | kd | 1.25 × 10−3 | m/v |
βe | 1.4 × 109 | Pa | β | 4.956 × 10−1 |
Parameter | Value |
---|---|
k11 | 2 |
k12 | 15 |
k13 | 4 |
K21 | 8 |
η1 | 4 × 109 |
η2 | 5 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, Y.; Ma, J.; Zhan, Y. Cascade Control of Active Heave Compensation Nonlinear System for Marine Crane. J. Mar. Sci. Eng. 2023, 11, 1092. https://doi.org/10.3390/jmse11051092
Xu J, Wang Y, Ma J, Zhan Y. Cascade Control of Active Heave Compensation Nonlinear System for Marine Crane. Journal of Marine Science and Engineering. 2023; 11(5):1092. https://doi.org/10.3390/jmse11051092
Chicago/Turabian StyleXu, Jianan, Yiming Wang, Junling Ma, and Yong Zhan. 2023. "Cascade Control of Active Heave Compensation Nonlinear System for Marine Crane" Journal of Marine Science and Engineering 11, no. 5: 1092. https://doi.org/10.3390/jmse11051092
APA StyleXu, J., Wang, Y., Ma, J., & Zhan, Y. (2023). Cascade Control of Active Heave Compensation Nonlinear System for Marine Crane. Journal of Marine Science and Engineering, 11(5), 1092. https://doi.org/10.3390/jmse11051092