Environmental Contours in the Adriatic Sea for Design and Analysis of Marine Structures
Abstract
:1. Introduction
2. Wave Data and Methodology
2.1. Wave Data in the Adriatic Sea
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Det Norske Veritas. Recommended Practice DNV-RP-C205: Environmental Conditions and Environmental Loads; Det Norske Veritas: Oslo, Norway, 2019. [Google Scholar]
- Guedes Soares, C. Long Term Distribution of Non-Linear Wave Induced Vertical Bending Moments. Mar. Struct. 1993, 6, 475–483. [Google Scholar] [CrossRef]
- ISO 19901-1:2015; Petroleum and Natural Gas Industries, Specific Requirements for Offshore Structures: Part 1: Metocean Design and Operating Considerations. International Organization for Standardization: Geneva, Switzerland, 2005.
- NORSOK Standard N-003; Edition 3Actions and Action Effects. Norwegian Technology Standards Institution: Oslo, Norway, 2017.
- Baarholm, G.; Moan, T. Application of Contour Line Method to Estimate Extreme Ship Hull Loads Considering Operational Restrictions. J. Ship Res. 2001, 45, 228–240. [Google Scholar] [CrossRef]
- Wrang, L.; Katsidoniotaki, E.; Nilsson, E.; Rutgersson, A.; Rydén, J.; Göteman, M. Comparative Analysis of Environmental Contour Approaches to Estimating Extreme Waves for Offshore Installations for the Baltic Sea and the North Sea. J. Mar. Sci. Eng. 2021, 9, 96. [Google Scholar] [CrossRef]
- Harnois, V.; Thies, P.R.; Johanning, L. On Peak Mooring Loads and the Influence of Environmental Conditions for Marine Energy Converters. J. Mar. Sci. Eng. 2016, 4, 29. [Google Scholar] [CrossRef]
- Neary, V.S.; Ahn, S.; Seng, B.E.; Allahdadi, M.N.; Wang, T.; Yang, Z.; He, R. Characterization of Extreme Wave Conditions for Wave Energy Converter Design and Project Risk Assessment. J. Mar. Sci. Eng. 2020, 8, 289. [Google Scholar] [CrossRef]
- Katsidoniotaki, E.; Nilsson, E.; Rutgersson, A.; Engström, J.; Göteman, M. Response of Point-Absorbing Wave Energy Conversion System in 50-Years Return Period Extreme Focused Waves. J. Mar. Sci. Eng. 2021, 9, 345. [Google Scholar] [CrossRef]
- Vanem, E.; Hafver, A.; Nalvarte, G. Environmental Contours for Circular-Linear Variables Based on the Direct Sampling Method. Wind Energy 2020, 23, 563–574. [Google Scholar] [CrossRef]
- Haselsteiner, A.; Ohlendorf, J.-H.; Thoben, K.-D. Environmental Contours Based on Kernel Density Estimation. arXiv 2017. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M. Joint Met-Ocean Description for Design and Operations of Marine Structures. Appl. Ocean Res. 2015, 51, 279–292. [Google Scholar] [CrossRef]
- Montes-Iturrizaga, R.; Heredia-Zavoni, E. Environmental Contours Using Copulas. Appl. Ocean Res. 2015, 52, 125–139. [Google Scholar] [CrossRef]
- Eckert-Gallup, A.; Martin, N. Kernel Density Estimation (KDE) with Adaptive Bandwidth Selection for Environmental Contours of Extreme Sea States. In Proceedings of the OCEANS 2016 MTS/IEEE, Monterey, CA, USA, 19–23 September 2016; pp. 1–5. [Google Scholar]
- Jonathan, P.; Ewans, K.; Randell, D. Non-Stationary Conditional Extremes of Northern North Sea Storm Characteristics. Environmetrics 2014, 25, 172–188. [Google Scholar] [CrossRef]
- Hirdaris, S.E.; Bai, W.; Dessi, D.; Ergin, A.; Gu, X.; Hermundstad, O.A.; Huijsmans, R.; Iijima, K.; Nielsen, U.D.; Parunov, J.; et al. Loads for Use in the Design of Ships and Offshore Structures. Ocean Eng. 2014, 78, 131–174. [Google Scholar] [CrossRef]
- Chai, W.; Leira, B.J. Environmental Contours Based on Inverse SORM. Mar. Struct. 2018, 60, 34–51. [Google Scholar] [CrossRef]
- Bang Huseby, A.; Vanem, E.; Natvig, B. A New Approach to Environmental Contours for Ocean Engineering Applications Based on Direct Monte Carlo Simulations. Ocean Eng. 2013, 60, 124–135. [Google Scholar] [CrossRef]
- Derbanne, Q.; de Hauteclocque, G. A New Approach for Environmental Contour and Multivariate De-Clustering. In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, UK, 9–14 June 2019; Volume 3. [Google Scholar]
- Haselsteiner, A.F.; Ohlendorf, J.-H.H.; Wosniok, W.; Thoben, K.-D.D. Deriving Environmental Contours from Highest Density Regions. Coast. Eng. 2017, 123, 42–51. [Google Scholar] [CrossRef]
- Mackay, E.; Haselsteiner, A.F. Marginal and Total Exceedance Probabilities of Environmental Contours. Mar. Struct. 2021, 75, 102863. [Google Scholar] [CrossRef]
- Ross, E.; Astrup, O.C.; Bitner-Gregersen, E.; Bunn, N.; Feld, G.; Gouldby, B.; Huseby, A.; Liu, Y.; Randell, D.; Vanem, E.; et al. On Environmental Contours for Marine and Coastal Design. Ocean Eng. 2020, 195, 106194. [Google Scholar] [CrossRef]
- Eckert, A.; Martin, N.; Coe, R.G.; Seng, B.; Stuart, Z.; Morrell, Z. Development of a Comparison Framework for Evaluating Environmental Contours of Extreme Sea States. J. Mar. Sci. Eng. 2021, 9, 16. [Google Scholar] [CrossRef]
- Haselsteiner, A.F.; Coe, R.G.; Manuel, L.; Chai, W.; Leira, B.; Clarindo, G.; Guedes Soares, C.; Hannesdóttir, Á.; Dimitrov, N.; Sander, A.; et al. A Benchmarking Exercise for Environmental Contours. Ocean Eng. 2021, 236, 109504. [Google Scholar] [CrossRef]
- Tabain, T. The Proposal for the Standard of Sea States for the Adriatic. Brodogradnja 1974, 25, 251–258. [Google Scholar]
- Tabain, T. Standard Wind Wave Spectrum for the Adriatic Sea Revisited (1977–1997). Brodogradnja 1997, 45, 303–313. [Google Scholar]
- Hydrographic Institute of Republic of Croatia. Atlas of the Climatology of the Adriatic Sea; HHI: Split, Croatia, 1979. (In Croatian) [Google Scholar]
- Parunov, J.; Ćorak, M.; Pensa, M. Wave Height Statistics for Seakeeping Assessment of Ships in the Adriatic Sea. Ocean Eng. 2011, 38, 1323–1330. [Google Scholar] [CrossRef]
- Ćorak, M.; Mikulić, A.; Katalinić, M.; Parunov, J. Uncertainties of Wave Data Collected from Different Sources in the Adriatic Sea and Consequences on the Design of Marine Structures. Ocean Eng. 2022, 266, 112738. [Google Scholar] [CrossRef]
- Petranović, T.; Mikulić, A.; Katalinić, M.; Ćorak, M.; Parunov, J. Method for Prediction of Extreme Wave Loads Based on Ship Operability Analysis Using Hindcast Wave Database. J. Mar. Sci. Eng. 2021, 9, 1002. [Google Scholar] [CrossRef]
- Katalinić, M.; Parunov, J. Comprehensive Wind and Wave Statistics and Extreme Values for Design and Analysis of Marine Structures in the Adriatic Sea. J. Mar. Sci. Eng. 2021, 9, 522. [Google Scholar] [CrossRef]
- Farkas, A.; Degiuli, N.; Martić, I. Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential. Energies 2019, 12, 2357. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M.; Waseda, T.; Parunov, J.; Yim, S.; Hirdaris, S.; Ma, N.; Guedes Soares, C. Uncertainties in Long-Term Wave Modelling. Mar. Struct. 2022, 84, 103217. [Google Scholar] [CrossRef]
- Parunov, J.; Rudan, S.; Ćorak, M. Ultimate Hull-Girder-Strength-Based Reliability of a Double-Hull Oil Tanker after Collision in the Adriatic Sea. Ships Offshore Struct. 2017, 12, S55–S67. [Google Scholar] [CrossRef]
- Barstow, S.; Mørk, G.; Lønseth, L.; Schjølberg, P.; Machado, U.; Athanassoulis, G.; Belibassakis, K.A.; Gerostathis, T.; Stefanakos, C.; Spaan, G. WORLDWAVES: Fusion of Data from Many Sources in a User-Friendly Software Package for Timely Calculation of Wave Statistics in Global Coastal Waters. In Proceedings of the 13th International Offshore and Polar Conference and Exhibition, ISOPE2003, Honolulu, HI, USA, 25–30 May 2003; pp. 136–143. [Google Scholar]
- Barstow, S.; Mørk, G.; Lønseth, L.; Schjølberg, P.; Machado, U.; Athanassoulis, G.; Belibassakis, K.A.; Gerostathis, T.; Stefanakos, C.; Spaan, G. WORLDWAVES: High Quality Coastal and Offshore Wave Data within Minutes for Any Global Site. In Proceedings of the OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 8–13 June 2003. [Google Scholar]
- Barstow, S.; Mørk, G.; Lønseth, L.; Mathisen, J. WorldWaves Wave Energy Resource Assessments from the Deep Ocean to the Coast. J. Energy Power Eng. 2011, 5, 730–742. [Google Scholar]
- Haselsteiner, A.F.; Lehmkuhl, J.; Pape, T.; Windmeier, K.-L.; Thoben, K.-D. ViroCon: A Software to Compute Multivariate Extremes Using the Environmental Contour Method. SoftwareX 2019, 9, 95–101. [Google Scholar] [CrossRef]
- Haselsteiner, A.F.; Windmeier, K.-L.; Ströer, L.; Thoben, K.-D. Update 2.0 to “ViroCon: A Software to Compute Multivariate Extremes Using the Environmental Contour Method”. SoftwareX 2022, 20, 101243. [Google Scholar] [CrossRef]
- Klise, K.; Pauly, R.; Ruehl, K.M.; Olson, S.; Shippert, T.; Morrell, Z.; Bredin, S.; Lansing, C.; Macduff, M.; Martin, T.; et al. MHKiT (Marine and Hydrokinetic Toolkit)—Python [Computer Software]. 2020. Available online: https://github.com/MHKiT-Software/MHKiT-Python (accessed on 18 April 2023).
- IACS. IACS International Association of Classicfication Societies; IACS: London, UK, 2019; pp. 1–13. [Google Scholar]
- Jensen, J.J.; Mansour, A.E. Estimation of Ship Long-Term Wave-Induced Bending Moment Using Closed-Form Expressions. RINA Trans. 2002, 144, 41–55. [Google Scholar]
- Michel, R.K.; Osborne, M. Oil Tankers. In Ship Design and Construction; Lamb, T., Ed.; SNAME: Jersey City, NJ, USA, 2004; pp. 29.1–29.41. [Google Scholar]
- IACS. Rec. No. 34. Rev.2 Standard Wave Data (North Atlantic Scatter Diagramm); IACS: London, UK, 2022. [Google Scholar]
Ship Class | Length [m] | Breadth [m] | Draught [m] |
---|---|---|---|
Panamax | 174.4 | 31.4 | 11.3 |
Aframax | 229.7 | 41.9 | 13.1 |
Suezmax | 260.8 | 45.8 | 15.9 |
VLCC | 318.6 | 58.4 | 21.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikulić, A.; Parunov, J. Environmental Contours in the Adriatic Sea for Design and Analysis of Marine Structures. J. Mar. Sci. Eng. 2023, 11, 899. https://doi.org/10.3390/jmse11050899
Mikulić A, Parunov J. Environmental Contours in the Adriatic Sea for Design and Analysis of Marine Structures. Journal of Marine Science and Engineering. 2023; 11(5):899. https://doi.org/10.3390/jmse11050899
Chicago/Turabian StyleMikulić, Antonio, and Joško Parunov. 2023. "Environmental Contours in the Adriatic Sea for Design and Analysis of Marine Structures" Journal of Marine Science and Engineering 11, no. 5: 899. https://doi.org/10.3390/jmse11050899
APA StyleMikulić, A., & Parunov, J. (2023). Environmental Contours in the Adriatic Sea for Design and Analysis of Marine Structures. Journal of Marine Science and Engineering, 11(5), 899. https://doi.org/10.3390/jmse11050899