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Abstract: The organic-rich shale of the Permian Taiyuan Formation (TYF) and Shanxi Formation
(SXF) in the Southern North China Basin (SNCB) is considered a potential shale gas source. The shale
was formed in a marine-continental transitional sedimentary environment, which has rarely been
studied, with the enrichment mechanisms of organic matter (OM) remaining unclear. This study
investigated the controlling factors and enrichment mechanisms of OM by analyzing the total organic
carbon (TOC) content, paleoclimate, paleoproductivity, sedimentation rate, redox, and paleosalinity.
The TOC of the TYF ranged from 0.92 to 7.43 wt.%, with an average of 2.48 wt.%, which was higher
than that of the SXF (TOC = 0.36–5.1 wt.%, average of 1.68 wt.%). These geochemical indices suggest
that both the TYF and SXF were deposited in warm and humid paleoclimates, with relatively high
biological productivity and sedimentation rates. During the deposition process, the TYF experienced
frequent transgression and regression events, leading to an enhancement of water reducibility, a
relatively high sedimentation rate, reduced OM oxidation, and rapid deposition of OM, which were
conducive to the preservation of OM. Moreover, a high biological productivity increased respiratory
oxygen consumption in the water column, which could lead to OM accumulation. However, the
regression event experienced by the SXF reduced the paleoproductivity and sedimentation rate
and increased water oxidation, leading to a decrease in OM. The main controlling factors for the
enrichment of OM in the TYF and SXF were the sedimentation rate, paleoproductivity, and redox
conditions, thus establishing the enrichment models for OM in the TYF and SXF. This study is
conducive to understanding shale enrichment mechanisms and guiding shale gas exploration.

Keywords: paleoenvironment; organic matter enrichment; enrichment model; shale; marine-continental
facies; southern north China basin

1. Introduction

Organic-rich shale is not only a source rock of high-quality conventional oil and
gas reservoirs but also a focus of shale oil and gas exploration. It can record important
paleoclimatic and paleoenvironmental information (such as paleotemperature, paleoredox,
and paleoproductivity) relating to when it is deposited, thus possessing significant value
from a scientific research perspective [1–3]. Furthermore, as noted above, study of organic-
rich shale also contributes critical information to oil and gas exploration activities, including
both understandings of source rock in conventional petroleum systems [4] and of reservoir
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rock in unconventional shale gas and shale oil systems [5], and is critical to the evolving
understanding of potentially exploitable gas hydrate resources [6,7]. Currently, significant
progress has been made in marine and continental shale gas research; however, there is
little research on marine-continental transitional shale gas. Marine-continental transitional
facies are widely distributed in China, often with multiple lithologies coexisting and rapid
changes in lithofacies, and the source and composition of organic matter are complex [8].
Therefore, compared with marine or terrestrial strata, they have distinct characteristics and
are a potentially important area of unconventional oil and gas exploration in China.

The accumulation of organic matter (OM) is a complex physicochemical process [9,10].
Previous studies have shown that owing to the complex geological, oceanographic, and
climatic histories, it is impossible for a single factor to explain OM accumulation in a
sedimentary environment [11]. The accumulation and preservation of OM are controlled
and affected by paleoclimate, paleoproductivity, sedimentation rate, redox, and paleosalin-
ity [12–14]. Generally, elemental geochemistry [2] and organic geochemistry [15] are used to
qualitatively reconstruct paleoenvironment [16–18]. Several redox-sensitive elements (such
as V, U, and Ni) and their ratios (such as U/Th, V/Cr, Ni/Co, and V/(V + Ni)) have been
widely used to explain ancient redox conditions [2,19]. Important geochemical indicators
that qualitatively characterize paleoclimate include the chemical index of alteration (CIA)
and the C-value [20–22].

Factors controlling OM enrichment in marine environments have been widely studied.
From different influence mechanisms, they can be divided into the “productivity model”
and the “conservation model” [23,24]. In the productivity model, organic matter input
is the main reason for its enrichment. In the preservation model, it is believed that the
factors of high salinity and anoxic sedimentary environments are the main conditions for
the enrichment of organic matter. Unlike marine shale, marine-continental transitional
shale is deposited in a sea-and-land interaction environment, with rapid facies changes on
the plane, and complex enrichment mechanism of OM, leading to large differences in OM
enrichment factors between marine shale and marine-continental transitional shale.

The SNCB is the largest sedimentary basin in China. The Permian is widely distributed
and well developed, and its sedimentary types are diverse and rich in biological fossils [25].
The main strata of shale gas in the SNCB are the TYF and SXF, and the shale kerogen is
generally type III [26,27]. There are few studies on Permian shale in the SNCB; the geological
conditions are complex, and the sedimentary and tectonic evolution are changeable [25].
Presently, the amount of research on shale gas in this area is low [25], and an OM enrichment
model has not been established, restricting the objective evaluation of shale gas resources
in the basin [28].

This study measured and analyzed TOC, major elements, trace elements, and rare-
earth elements to reconstruct the paleoclimate, paleoproductivity, sedimentation rate,
paleoredox, and paleosalinity of the Permian TYF and SXF in the SNCB to reveal the
enrichment mechanisms of OM in the SNCB, which provide an important basis for shale
exploration in this area.

2. Geological Background

Located south of the North China Block and its southern margin (Figure 1), the SNCB
is mainly controlled by the structure of the Qinling–Dabian orogenic belt [29]. From
the distribution characteristics of the Mesozoic and Cenozoic in the basin, the SNCB is
divided from north to south into five structural units: the Kaifeng Depression, the Taikang
Uplift, the Zhoukou Depression, the Bengbu Uplift, and the Xinyang Hefei Depression
(Figure 1) [29–31].
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Figure 1. Simplified structural block map of the SNCB with investigated well location.

From the Late Ordovician to the Middle Carboniferous, the SNCB was uplifted due
to the Caledonian movement. Owing to long-term weathering and denudation, most
parts of the region lack Upper Ordovician, Silurian, Devonian, and lower Carboniferous
strata [31,32]. Subsequently, Lower Permian marine-continental transitional strata were
immediately deposited on the Upper Ordovician limestone [32]. Controlled by regional
tectonic movements, the sedimentation process can be subdivided into three stages. First,
Late Carboniferous seawater invaded from the northeast to southwest, forming a unified
North China epicontinental sea basin. In this environment, the thickness of the Early
Permian sediments is 30–175 m. Second, the collision between the North China and
Siberian plates caused large-scale tectonic movement and regression from north to south.
The main sedimentary environment in the Permian was a shallow water delta, which
transitioned from the epicontinental sea through regression. Finally, the North China plate
was uplifted again by compression during the Late Permian, resulting in the complete
withdrawal of seawater from the North China platform and the formation of a continental
sedimentary environment [26,31–33]. In general, the sedimentary environment of the North
China platform from the Early to the Late Permian experienced both marine-continental
transitional and lacustrine environments.

The Mouye-1 (MY1) well, drilled in 2014, was the first shale gas exploration well in
the SNCB, and shale gas was found in the Upper Paleozoic strata. The Weican-1 well,
drilled in the same year, encountered OM-rich shale with a cumulative thickness of 465 m
in the Shihezi, TYF, SXF, and Benxi Formations. The Zhengxiye-1 (ZXY1) well, drilled in
2015, also saw good shale gas in the Permian SXF and TYF [34,35]. As of July 2020, the
MY1, Zhengdongye-2 (ZDY2), and ZXY1 wells had been drilled northwest of the SNCB to
explore for shale gas (Figure 1) [35]. The shale thicknesses in the TYF of the MY1, ZDY2,
and ZXY1 wells are 54 m, 31 m, and 12 m, respectively, and the thicknesses of the SXF
are 44 m, 14 m, and 16 m, respectively. From the cores, it is apparent that the lithology of
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the TYF is mainly grayish black mudstone, dark gray limestone, grayish black sandstone,
dark gray sandstone, and dark gray shale, with thin layers of siltstone, coal lines, and
barrier coastal facies. The lithology of the SXF is dominated by grayish black mudstone,
carbonaceous mudstone, silty mudstone, fine sandstone, and sandstone, which are delta
facies (Figure 2).
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Figure 2. The stratigraphic column of the Lower Permian Shanxi and Taiyuan Formations (MY1 well)
in the Southern North China Basin. (The stratigraphic column data mainly come from core logging
and later artificial correction based on the core).

3. Sampling and Methods

Overall, 62 core samples (39 from MY1, 16 from ZDY2, and 7 from ZXY1) were selected
from the study area, including 33 samples from the TYF and 29 samples from the SXF. The
samples from Well MY1 included both TYF and SXF. The samples from Well ZDY2 were
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mainly from the TYF, while those from Well ZXY1 were mainly from the SXF. The lithology
is mainly shale with a small amount of coal. The TOC content, major elements (ME), trace
elements (TE), and rare-earth elements (REE) of all samples were measured and analyzed.

3.1. TOC Analysis

First, powder with the size of 200 meshes was treated using chemical methods in
accordance with the Chinese Standard GB/T19145-2003, and then the sample (100 mg) was
treated with 5% HCl for 24 h to remove the inorganic carbon component. Finally, a Leco®

CS744 analyzer (Equipment source: LECO, St. Joseph, MI, USA) was used to measure the
organic carbon content with an accuracy of ±0.5%.

3.2. Major Element Analysis

The primary elements (Si, Al, Fe, K, Na, Ca, Mg, Mn, Ti, and P) were tested using
the XRF (X-ray fluorescence) method. The XRF tester was a Rigaku ZSX-100e. To mix the
organic matter-removed sample (powder) and Li2B4O7 evenly, they were poured into a
platinum crucible, placed in a high-frequency heating-dissolving machine, and heated to
1150 ◦C. The melted mixed sample was poured onto a glass sheet and finally placed into an
XPF instrument for testing.

3.3. Trace and Rare-Earth Element Analysis

The TE and REE contents were measured using an Agilent 7500a inductively coupled
plasma mass spectrometer (ICP-MS), with an analysis error lower than 5%. The sample
(powder) with the removed OM was subjected to acid dissolution (HF/HNO3/HClO4 =
2:2:1). The treated samples were then heated in a pressure-tight Teflon bomb at 200 ◦C
for 48 h, and the resulting liquid was analyzed using inductively coupled plasma mass
spectrometry (ICP-MS). The analytical procedures followed the Chinese National Standards
GB/T 14506.1~14-2010 (2010) and GB/T 14506.30-2010 (2010).

4. Results
4.1. TOC

The TOC content of the TYF shale was 0.92–7.43 wt.%, with an average of 2.48 wt.%
and a median of 2.24 wt.%. The TOC of coal was 54.45–66.55 wt.%, with an average of
60.5 wt.%. Approximately 51.52 wt.% of the samples were >2 wt.%, which indicates a good
source rock [4] (Table 1; Figure 3). The TOC of the SXF shale was 0.36–5.1 wt.%, with an
average of 1.68 wt.% and a median of 1.73 wt.%, and the TOC of coal was 58.95–61.29 wt.%
(average of 60.5 wt.%), of which approximately 35.48 wt.% of the samples were greater
than 2 wt.% (Table 1; Figure 3). Overall, the TOC content of the Lower Permian shale in the
SNCB is relatively high, with the TOC content of the shale in the TYF being higher than
that in the SXF.

Table 1. ME contents (wt%) of the TYF and SXF in the SNCB.

Well Sample Depth
(m)

TOC
(wt.%)

MEs (wt.%)

SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO

MY1 JX2 2804.81 4.19 41.52 33.71 0.73 0.22 0.10 1.27 2.43 1.15 0.09 0.22
MY1 JX3 2807.74 1 55.00 30.00 1.44 0.36 0.17 1.56 4.55 1.02 0.14 0.36
MY1 JX4 2810.32 0.76 49.12 25.90 6.66 0.73 0.27 1.81 3.85 0.80 0.23 0.74
MY1 JX6 2815.3 0.55 46.92 10.30 22.52 1.46 0.56 1.24 0.72 0.28 0.37 1.46
MY1 JX7 2819.27 0.53 56.31 27.11 2.43 0.50 0.18 1.99 5.40 1.08 0.09 0.50
MY1 JX8 2821.74 1.23 51.32 25.41 3.00 0.90 0.27 3.37 4.99 1.03 0.18 0.89
MY1 JX10 2827.13 1.09 49.31 31.40 2.20 0.40 0.25 2.67 3.93 0.93 0.18 0.40
MY1 JX11 2830.72 0.52 50.81 26.72 2.76 0.76 0.22 4.58 5.66 0.95 0.09 0.76
MY1 JX12 2831.66 0.44 48.82 24.51 3.62 1.03 0.46 3.59 5.35 1.03 0.23 1.05
MY1 JX14 2838.32 0.89 49.12 30.00 0.00 1.04 0.28 3.07 6.53 0.87 0.14 1.05
MY1 JX15 2840.23 0.48 52.61 29.31 2.65 0.53 0.24 3.32 5.61 0.97 0.09 0.53
MY1 JX16 2841.88 2.37 48.63 24.30 3.47 0.85 0.29 2.59 5.08 0.90 0.27 0.85
MY1 JX17 2844.32 2.39 50.92 21.11 4.59 1.08 1.76 3.59 2.99 0.85 0.23 1.08
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Table 1. Cont.

Well Sample Depth
(m)

TOC
(wt.%)

MEs (wt.%)

SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO

MY1 JX18 2847.16 0.62 56.80 26.30 2.60 0.56 0.22 3.53 5.81 0.75 0.09 0.57
MY1 JX19 2848.82 1.98 48.63 29.91 2.32 0.65 0.32 5.12 4.77 0.70 0.18 0.65
MY1 JX20 2849.51 54.45 2.18 1.79 0.67 0.15 0.21 0.19 0.22 0.03 0.00 0.15
MY1 JX21 2855.01 66.55 0.58 0.55 0.14 0.02 0.07 0.08 0.02 0.02 0.00 0.03
MY1 JX22 2852.36 2.21 42.72 25.72 0.44 0.32 0.06 1.46 10.65 0.92 0.09 0.32
MY1 JX24 2857.02 4.24 41.03 24.81 4.16 0.76 0.17 1.08 11.18 0.82 0.18 0.76
MY1 JX31 2884.3 5.1 44.73 22.71 5.52 1.16 0.43 1.29 9.08 0.88 0.55 1.16
MY1 JX32 2886.27 1.97 44.73 22.71 5.52 1.16 0.43 1.29 9.08 0.88 0.55 1.16
MY1 JX33 2889.34 2.56 45.03 23.11 4.27 1.01 0.13 1.70 8.50 0.73 0.14 1.01
MY1 JX34 2894.31 1.78 47.13 21.90 0.01 1.23 0.85 1.35 8.60 0.72 0.37 1.24
MY1 JX36 2913.2 3.74 43.54 21.41 4.73 1.16 0.34 1.62 5.11 0.77 0.32 1.16
MY1 JX37 2917.42 0.92 47.43 24.01 3.60 1.01 0.22 1.54 6.02 0.83 0.27 1.02
MY1 JX39 2923 1.87 48.52 21.31 0.01 1.08 0.70 1.99 6.05 0.75 0.23 1.08
MY1 JX40 2925.92 1.93 48.52 21.31 3.79 1.08 0.70 1.99 6.05 0.75 0.23 1.08
MY1 JX42 2931.5 1.75 43.54 20.61 1.56 0.65 0.15 1.78 4.10 0.55 0.09 0.65
MY1 JX43 2933.86 4.14 42.42 22.60 5.45 0.76 0.50 1.48 3.93 0.77 0.37 0.76
MY1 JX44 2935.4 61.29 54.21 28.61 0.97 0.60 0.29 1.51 4.89 1.12 0.09 0.61
MY1 JX45 2939.27 1.69 44.52 21.71 4.62 1.08 0.46 1.81 4.58 0.88 0.32 1.08
MY1 JX46 2941.28 2.25 48.63 24.30 4.39 1.08 0.39 1.78 5.13 0.92 0.27 1.08
MY1 JX47 2943.35 0.66 0.34 0.19 0.97 0.00 0.10 0.00 0.02 0.02 0.05 0.00
MY1 JX49 2948.32 58.95 38.53 19.50 4.60 0.70 0.57 1.21 4.41 0.50 0.73 0.70
MY1 JX50 2950.09 5.06 42.94 18.80 5.56 1.08 0.99 1.48 4.00 0.67 0.23 1.08
MY1 JX51 2953.09 1.67 44.73 21.01 5.20 1.13 1.02 2.21 4.07 0.72 0.41 1.14
MY1 JX52 2955.71 1.88 48.22 22.01 4.72 1.48 4.49 2.21 4.99 0.70 0.27 1.48
MY1 JX53 2958.16 2.55 53.31 20.20 0.10 1.06 2.27 2.05 5.40 0.67 0.37 1.06
MY1 JX54 2960.13 1.89 37.74 16.61 2.96 1.13 15.68 1.59 3.93 0.58 0.23 1.14

ZDY2 ZY2-
SX-2 2841.67 2.58 56.82 18.48 6.51 1.53 1.02 1.75 4.65 0.93 0.50 0.14

ZDY2 ZY2-
TY-8 2849.59 2.27 51.69 23.33 5.30 1.33 0.84 2.16 5.64 0.87 0.41 0.15

ZDY2 ZY2-
TY-11 2850.78 1.67 44.18 18.93 12.44 2.02 2.20 1.73 4.82 0.67 1.60 0.44

ZDY2 ZY2-
TY-24 2861.54 2.5 55.37 19.50 7.01 1.11 0.29 1.32 4.65 0.92 0.27 0.09

ZDY2 ZY2-
TY-33 2868.8 2.27 55.90 19.29 5.93 1.24 0.74 1.73 5.85 0.80 0.27 0.06

ZDY2 ZY2-
TY-37 2870.02 1.68 56.71 20.92 4.40 1.19 0.87 2.21 6.34 0.77 0.23 0.05

ZDY2 ZY2-
TY-46 2878.45 2.47 51.58 18.54 10.52 0.65 0.57 1.35 3.40 0.78 0.46 0.06

ZDY2 ZY2-
TY-48 2880.01 3.52 54.55 20.78 5.13 1.09 0.85 1.27 3.81 0.78 0.37 0.14

ZDY2 ZY2-
TY-52 2882.25 7.43 37.97 15.29 5.78 1.63 11.64 1.21 3.20 0.55 0.18 0.15

ZDY2 ZY2-
TY-61 2886.59 1.79 55.41 20.29 6.05 1.26 0.99 1.21 4.10 0.87 0.23 0.14

ZDY2 ZY2-
TY-69 2894.67 3.48 61.33 20.48 1.93 0.61 0.21 1.29 3.32 0.78 0.09 0.01

ZDY2 ZY2-
TY-75 2897.14 1.32 52.65 15.78 6.36 2.37 4.73 1.64 2.89 0.60 0.32 0.21

ZDY2 ZY2-
TY-80 2900.52 1.31 66.51 14.34 3.60 0.73 1.06 1.35 4.14 0.55 0.55 0.04

ZDY2 ZY2-
TY-87 2902.32 1.42 61.98 17.12 3.07 1.13 1.74 1.67 4.82 0.58 0.27 0.05

ZDY2 ZY2-
TY-92 2905.69 1.25 55.92 17.08 8.61 0.66 1.32 2.18 4.65 0.57 0.23 0.05

ZDY2 ZY2-
TY-98 2910.56 2.24 33.80 4.16 2.62 0.68 28.96 0.43 1.33 0.15 0.23 0.01

ZXY1 JX9 3267.87 0.36 60.61 23.01 4.02 0.91 0.22 2.67 6.77 1.03 0.18 0.92
ZXY1 JX13 3274.1 0.8 58.38 27.81 0.80 0.38 0.22 4.07 6.17 1.32 0.09 0.37
ZXY1 JX19 3288.17 0.9 57.61 21.84 5.59 1.18 0.46 0.94 9.56 0.97 0.37 1.19
ZXY1 JX39 3318.5 3.27 58.34 23.77 3.09 0.66 0.15 2.51 8.65 0.83 0.09 0.67
ZXY1 JX41 3321.08 1.57 53.83 16.36 13.20 1.46 0.90 1.16 5.93 0.53 0.46 1.47
ZXY1 JX44 3324.8 2.44 50.83 23.35 9.22 0.93 0.21 2.94 6.84 0.83 0.14 0.94
ZXY1 JX51 3340.75 3.88 53.91 22.50 6.62 0.53 0.83 0.92 4.60 0.97 0.37 0.54
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4.2. Major Elements

The primary ME oxides of the TYF and SXF shale samples were SiO2, Al2O3, TFe2O3,
K2O, CaO, MgO, MnO, Na2O, TiO2, and P2O5. The main ME oxides of the TYF were
SiO2, Al2O3, TFe2O3, K2O, and CaO, and their contents ranged from 0.34 to 66.51 wt.%
(average of 48.1 wt.%), from 0.19 to 28.61 wt.% (average of 19.27 wt.%), from 0.01 to
12.44 wt.% (average of 4.78 wt.%), from 0.02 to 6.84 wt.% (average of 4.45 wt.%), from 0.1
to 28.96 wt.% (average of 2.63 wt.%), respectively. The main ME oxides of the SXF were
SiO2, Al2O3, K2O, and TFe2O3, and their contents ranged from 0.58 to 60.61 wt.% (average
of 47.23 wt.%), from 0.55 to 33.71 wt.% (average of 23.12 wt.%), from 0.02 to 11.18 wt.%
(average of 5.74 wt.%), and from 0.01 to 22.52 wt.% (average of 3.96 wt.%), respectively
(Table 1). In general, the TYF and SXF are rich in SiO2 and comprise siliceous mudstone
and argillaceous and siliceous shales (Figure 4).
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4.3. Trace Elements

The enrichment factor (EF) values can be used to establish the degree of TE enrich-
ment [16]. The equation for EF is as follows:

EF = X/Y (1)



J. Mar. Sci. Eng. 2023, 11, 992 8 of 23

where X is the content of TEs in minerals or rocks, and Y is the content of TEs in the
corresponding basic rocks.

For the TYF, TFs with obvious enrichment (EF > 1) included Sr (EF = 0.47–14.99,
average of 1.58), Cr (EF = 0.58–3.63, average of 1.14), and TEs with deficit (EF < 1) were V,
Co, Ni, Ba, Cu, and Zn (Table 2). For the SXF, Ni, Co and Cr showed obvious enrichment
(EF > 1), which included EF (Ni) = 0.23–18.35, with an average of 2.21, EF (Co) = 0.35–3.04,
with an average of 1.86, and EF (Cr) = 0.08–3.04, with an average of 1.07 (Table 2). The TES
showing deficits (EF < 1) were V, Sr, Cu, and Zn. As shown in Figure 5, compared with the
SXF, the shale samples from the TYF show higher EF values in most TEs, except for Co, Ni,
and Ba, and the TYF is obviously enriched with Cr and Sr.

Table 2. TE contents of the TYF and SXF in the SNCB.

Well Sample
Depth

(m)
TOC

(wt.%)
TEs (ppm)

V Cr Co Ni Sr Ti Ba Cu Zn

MY1 JX2 2804.81 4.19 15 113 69 38
MY1 JX3 2807.74 1 159 61 70 55
MY1 JX4 2810.32 0.76 137 157 48 154
MY1 JX6 2815.3 0.55 169 517 17 175
MY1 JX7 2819.27 0.53 143 152 65 447
MY1 JX8 2821.74 1.23 214 222 62 986 46
MY1 JX10 2827.13 1.09 155 274 56 55
MY1 JX11 2830.72 0.52 156 213 57 482
MY1 JX12 2831.66 0.44 234 62 694 63
MY1 JX14 2838.32 0.89 114 258 52 813 129
MY1 JX15 2840.23 0.48 246 219 58 652 52
MY1 JX16 2841.88 2.37 219 54 107
MY1 JX17 2844.32 2.39 175 77 184 51 71
MY1 JX18 2847.16 0.62 217 45 577
MY1 JX19 2848.82 1.98 138 58 349 42 56
MY1 JX20 2849.51 54.45 41 123 2 27
MY1 JX21 2855.01 66.55 27 41 59 1
MY1 JX22 2852.36 2.21 129 193 55 134 55
MY1 JX24 2857.02 4.24 81 203 49 1090 105
MY1 JX31 2884.3 5.1 169 81 212 53 708 111
MY1 JX32 2886.27 1.97 187 77 256 53 791 125
MY1 JX33 2889.34 2.56 138 251 44 1220 94
MY1 JX34 2894.31 1.78 70 279 43 948 113
MY1 JX36 2913.2 3.74 133 69 218 46 506 61
MY1 JX37 2917.42 0.92 327 57 251 50 510 106
MY1 JX39 2923 1.87 417 94 240 45 434 54 83
MY1 JX40 2925.92 1.93 94 240 45 434 54 83
MY1 JX42 2931.5 1.75 60 331 33 473 56
MY1 JX43 2933.86 4.14 85 295 46 189
MY1 JX44 2935.4 61.29 166 58 280 67
MY1 JX45 2939.27 1.69 58 230 53 68
MY1 JX46 2941.28 2.25 135 264 55 69
MY1 JX47 2943.35 0.66 53 1
MY1 JX49 2948.32 58.95 67 274 30 82
MY1 JX50 2950.09 5.06 256 40 84
MY1 JX51 2953.09 1.67 147 78 323 43 84
MY1 JX52 2955.71 1.88 459 42 495 53
MY1 JX53 2958.16 2.55 194 156 429 40 90
MY1 JX54 2960.13 1.89 191 111 984 35 137
ZDY2 ZY2-SX-2 2841.67 2.58 125 77.86 17.5 30.2 197.9 56 675 18 88.4
ZDY2 ZY2-TY-8 2849.59 2.27 212 90.22 19.4 60.8 198.9 52 712 31.2
ZDY2 ZY2-TY-11 2850.78 1.67 219 85.56 19 80.9 301.9 40 773 27.4 162.2
ZDY2 ZY2-TY-24 2861.54 2.5 117 79.58 15.6 28.8 163.9 55 381 23.1 91
ZDY2 ZY2-TY-33 2868.8 2.27 106 72.8 21.3 37.2 190.9 48 514 25.8 86.6
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Table 2. Cont.

Well Sample
Depth

(m)
TOC

(wt.%)
TEs (ppm)

V Cr Co Ni Sr Ti Ba Cu Zn

ZDY2 ZY2-TY-37 2870.02 1.68 123 78.54 10.7 24.8 193.9 46 582 23.9 90.4
ZDY2 ZY2-TY-46 2878.45 2.47 137 66.24 28 47.3 251.9 47 318 30.3 50
ZDY2 ZY2-TY-48 2880.01 3.52 155 85.78 12.6 25.2 264.9 47 326 22.3 97.5
ZDY2 ZY2-TY-52 2882.25 7.43 117 60.84 16.2 42.6 439.9 33 680 24.2 123.4
ZDY2 ZY2-TY-61 2886.59 1.79 108 87.4 11.2 23.4 210.9 52 336 24 125.5
ZDY2 ZY2-TY-69 2894.67 3.48 92 64.06 3.6 8.6 227.9 47 308 16.1 96.1
ZDY2 ZY2-TY-75 2897.14 1.32 71 52.1 15.3 16.5 340.9 36 352 17.7 60.6
ZDY2 ZY2-TY-80 2900.52 1.31 94 74.18 16.8 22.8 360.9 33 415 13.3 99.8
ZDY2 ZY2-TY-87 2902.32 1.42 114 80.73 9.2 23.2 379.9 35 516 12 44
ZDY2 ZY2-TY-92 2905.69 1.25 125 79.81 18.2 43.7 367.9 34 566 27 90.3
ZDY2 ZY2-TY-98 2910.56 2.24 51 80.61 4.4 61.8 727.9 9 137 18.4 93.9
ZXY1 JX9 3267.87 0.36 145.6 83.58 19.07 41.8 246 62 769.8 33.1 97.98
ZXY1 JX13 3274.1 0.8 162.3 95.7 11.12 26.16 309 79 890.2 9.37 11.54
ZXY1 JX19 3288.17 0.9 142.4 80.71 13.44 24.77 185.69 58 908 29.1 102.72
ZXY1 JX39 3318.5 3.27 198.1 98.38 36.7 69.22 250.6 50 1355.8 15.02 68.96
ZXY1 JX41 3321.08 1.57 159.8 68.58 109.62 180.66 211 32 905.8 20.6 103.92
ZXY1 JX44 3324.8 2.44 192.6 89.34 31.92 100.52 292 50 1376.2 21.48 44.78
ZXY1 JX51 3340.75 3.88 194.1 88.68 15.33 48.08 268.6 58 534.8 25.3 36.28
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Figure 5. EF diagram of selected TEs for the TYF and SXF shales. The horizontal line (EF = 1)
separates the enrichment (above the line) or depletion (below the line) of an element.

4.4. Rare-Earth Elements

REEs and their related parameters for the TYF and SXF in the study area are listed
in Table 3. Total rare-earth concentration of the shale in the TYF (ΣREE) ranged from
90.31 to 381.436 ppm, with an average of 224.36 ppm; the range of ΣREE in the SXF
was 206.12–376.104 ppm, with an average of 304.21 ppm (Table 3). The average REE
concentrations of the shale samples from the TYF and SXF were higher than those of the
North American shale composite (NASC, 173.21 ppm) [36] and the post-Archean average
Australian shale (PAAS, 184.77 ppm) [37] (Table 3).
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Table 3. REE contents (ppm) of the TYF and SXF in the SNCB.

Well Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu L/H ∑REE (La/Yb)N

ZDY2 ZY2-SX-2 55.52 98.32 12.19 43.34 8.13 1.48 6.90 1.07 5.99 1.16 3.51 0.56 3.60 0.55 13.74 242.32 1.14
ZDY2 ZY2-TY-8 45.96 82.09 10.91 38.61 7.43 1.21 5.41 0.78 5.00 1.04 3.24 0.52 3.40 0.52 13.22 206.12 1.00
ZDY2 ZY2-TY-11 63.48 136.85 16.22 60.50 13.00 2.67 13.50 2.02 10.51 1.79 4.75 0.69 4.39 0.66 12.34 331.03 1.07
ZDY2 ZY2-TY-24 57.20 100.16 13.80 47.72 8.50 1.52 7.71 1.12 6.47 1.23 3.67 0.53 3.52 0.55 13.84 253.70 1.20
ZDY2 ZY2-TY-33 54.44 95.00 12.68 46.84 8.95 1.36 7.37 1.11 6.44 1.32 3.81 0.60 3.87 0.60 12.77 244.39 1.04
ZDY2 ZY2-TY-37 51.72 86.11 12.24 42.46 7.46 1.33 6.37 0.84 5.01 1.01 3.13 0.49 3.11 0.52 14.72 221.80 1.23
ZDY2 ZY2-TY-46 47.16 86.14 10.72 38.72 7.15 1.81 6.42 0.92 4.92 0.95 2.77 0.40 2.72 0.43 15.11 211.23 1.28
ZDY2 ZY2-TY-48 47.00 86.71 10.78 37.40 7.57 1.69 6.26 0.89 5.12 1.02 3.05 0.48 3.21 0.49 13.84 211.67 1.08
ZDY2 ZY2-TY-52 52.68 104.65 11.45 38.39 6.80 1.32 5.83 0.79 4.53 0.87 2.65 0.40 2.68 0.41 17.93 233.45 1.45
ZDY2 ZY2-TY-61 49.92 88.44 10.65 36.52 6.93 1.42 5.90 0.81 4.88 0.97 2.84 0.43 2.81 0.44 15.16 212.96 1.31
ZDY2 ZY2-TY-69 48.72 93.61 9.66 33.55 5.66 1.40 4.95 0.62 3.17 0.58 1.61 0.22 1.38 0.21 25.36 205.34 2.61
ZDY2 ZY2-TY-75 49.32 89.70 10.11 34.10 5.98 1.29 5.25 0.72 4.06 0.76 2.28 0.35 2.33 0.37 18.01 206.62 1.56
ZDY2 ZY2-TY-80 64.56 131.10 14.14 52.14 9.86 1.90 7.42 0.89 4.94 0.93 2.84 0.42 2.77 0.44 21.25 294.35 1.72
ZDY2 ZY2-TY-87 60.24 120.42 13.34 47.30 8.20 1.44 6.30 0.84 4.85 0.99 2.91 0.43 2.85 0.43 19.34 270.54 1.56
ZDY2 ZY2-TY-92 66.00 140.30 14.84 52.25 8.52 1.31 6.64 0.87 5.17 1.01 3.06 0.46 2.96 0.45 20.73 303.84 1.65
ZDY2 ZY2-TY-98 26.16 31.86 5.34 20.68 5.31 0.96 4.65 0.73 3.88 0.72 1.96 0.26 1.65 0.26 10.04 104.42 1.17
ZXY1 JX9 75.76 151.34 15.44 60.22 12.65 3.26 10.47 1.29 7.60 1.48 4.42 0.62 4.17 0.60 16.31 349.33 1.34
ZXY1 JX13 64.50 120.72 11.40 39.36 5.65 1.24 4.42 0.60 4.01 0.87 2.87 0.44 3.12 0.46 19.99 259.65 1.53
ZXY1 JX19 82.50 165.12 16.82 64.28 11.07 1.95 8.10 1.05 6.51 1.32 4.11 0.59 4.03 0.58 19.22 368.03 1.51
ZXY1 JX39 88.84 181.50 17.13 56.54 7.34 0.90 5.62 0.89 6.27 1.30 4.18 0.62 4.35 0.62 19.63 376.10 1.51
ZXY1 JX41 59.34 133.20 13.67 53.46 10.10 1.82 9.26 1.25 7.47 1.46 4.42 0.63 4.33 0.63 13.90 301.05 1.01
ZXY1 JX44 90.62 192.42 18.60 67.62 10.95 1.23 10.72 1.77 11.73 2.33 6.91 0.97 6.40 0.90 12.64 423.17 1.04
ZXY1 JX51 51.80 118.68 11.04 40.98 7.04 1.37 5.79 0.84 5.40 1.12 3.57 0.54 3.76 0.54 15.02 252.46 1.02

As shown in the diagram of the PASS-normalized REE distribution patterns (Figure 6),
the two curves show nearly the same trend, which may indicate that the REEs of the
shale samples from the TYF and SXF come from similar sources. The REE distribution
patterns have the characteristics of a relatively flat LREE (from La to Gd) and HREE (from
Tb to Lu). The range of L/H (LREE/HREE) for the TYF shale was 10.04–25.36, with an
average of 15.96. The L/H (LREE/HREE) of the SXF shale ranged from 12.34–19.99,
with an average of 16.04 (Table 2). Ce anomaly (δ Ce) and Eu anomaly (δ Eu) was
defined as δCe = CeN/(LaN × PrN)1/2 and δEu = EuN/(SmN × GdN)1/2, respectively [37].
The range of δ Ce and δ Eu for the TYF shale was 0.62–1.15 (average of 0.92) and 0.54–1.26
(average of 0.97), respectively; the δ Ce and δ Eu of the SXF shale ranged from 0.85 to 1.08
(average of 0.99) and from 0.66 to 1.34 (average of 0.98), respectively (Table 3), indicating
that the Ce and Eu anomalies for the TYF and SXF shale were weakly negative.
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5. Discussion
5.1. Paleoclimate

Paleoclimate can affect parent rock weathering, erosion, and sediment transport, and
ultimately control the input of terrestrial nutrients and sediment into an ocean [38,39].
The CIA is a typical parameter for reconstructing paleoclimatic conditions [20,21] and for
judging the degree of paleoweathering [40,41].



J. Mar. Sci. Eng. 2023, 11, 992 11 of 23

The formula is as follows:

CIA = 100 × Al2O3/(Al2O3 + CaO* + Na2O + K2O) (2)

The MEs used in the calculations are converted into mole fractions. CaO* is CaO in
silicate, that is, the mole fraction of CaO in the whole rock minus the chemically deposited
CaO. For CaO* correction, we used

CaO* = CaO − (10/3 × P2O5) (3)

After correction, the mole number of CaO* is the minimum value of Na2O and
CaO [42].

Previous studies have shown that the greater the CIA value, the greater the chemical
alteration and the climate changes to warmer and wetter conditions. When the CIA value
ranges from 50 to 65, the degree of petrochemical weathering is low, indicating a cold
and arid climate; when the CIA value ranges from 65 to 85, the degree of petrochemical
weathering is medium, indicating a semi-arid and semi-humid climate; and when the CIA
value ranges from 85 to 100, the degree of petrochemical weathering is high, indicating a
warm and humid climate [20,40]. The CIA range of the TYF shale samples was 74.12–90.02,
with an average of 85.58; The CIA range of the SXF shale samples was 80.49–95.03, with an
average of 84.88 (Table 4). The paleoclimate and weathering degree of a source rock can be
clarified by using the Al2O3−(CaO* +Na2O)−K2O ternary diagram (Figure 7). Both the
TYF and SXF indicate a warm and humid paleoclimate with moderate to strong weathering
(Figures 7 and 8).

Table 4. Paleoenvironmental condition analysis.

Environment Ratios
Geological Units

Index Limit ReferenceTaiyuan
Formation

Shanxi
Formation

Paleoclimate
CIA 74.12–90.02

(85.58)
80.49–95.03

(84.88)
Cold and arid

(50 < CIA < 65)

Semi-arid and
semi-humid

(65 < CIA < 85)

Warm and
humid

(85 < CIA < 100)
[20,40,41]

C-value 0.91–1.08
(1.01)

0.99–1.09
(1.01)

Cold and arid
(C-value < 0.4)

Semi-arid and
semi-humid

(0.4 < C-value
< 0.6)

Warm and
humid

(C-value > 0.6)
[21,22]

Paleo-
productivity

P/Ti 0.02–1.83
(0.24)

0.22–0.45
(0.11)

Babio

136.98–1376.11
ppm

(507.71 ppm)

446.89–1355.71
ppm

(828.38 ppm)

Sedimentary
Rate (La/Yb)N

0.99–2.6
(1.35)

1.01–1.53
(1.34)

Paleoredox
Cu/Zn 0.13–0.7

(0.34)
0.2–1.27

(0.48)
Anoxic:

Cu/Zn < 0.21

Dysoxic:
0.21 < Cu/Zn <

0.63

Oxic:
Cu/Zn > 0.63 [2]

V/(V + Ni) 0.45–0.91
(0.77)

0.47–1
(0.77)

Anoxic:
V/(V + Ni) >

0.6

Dysoxic:
0.46 < V/(V +

Ni) < 0.6

Oxic:
V/(V + Ni) < 0.46

Paleosalinity Sr/Ba 0.21–5.31
(0.78)

0.18–0.44
(0.29)

Fresh water:
Sr/Ba < 0.5

Brackish water:
0.5 < Sr/Ba < 1

Saline water:
Sr/Ba > 1 [42,43]

Ca/(Ca + Fe) 0.02–0.98
(0.26)

0.02–0.35
(0.11)

Fresh water:
Ca/(Ca + Fe) <

0.4

Brackish water:
0.4 < Ca/(Ca +

Fe) < 0.8

Saline water:
Ca/(Ca + Fe) >

0.8

Note: The format of the data is minimum–maximum, and the data in brackets represent the average values.
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Figure 7. Ternary diagram of molecular proportions Al2O3 − (CaO* + Na2O) − K2O. The left side
shows the CIA scale. The TYF and SXF shale samples display intermediate to strong weathering [20,40].
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Cu/Zn), and paleosalinity (Sr/Ba and Ca/(Ca + Fe)) in the core of the MY1 well.
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The C-value, which is a ratio of transition metals to alkali elements, is also a common
proxy for paleoclimate and is defined by the following formula [22]:

C-value = Σ(V + Ni + Mn + Fe + Cr + Co)/Σ(Ca + Mg + Ba + Sr + Na + K), (4)

When the C-value < 0.4, it indicates a cold and arid climate; when the C-value range is
0.4–0.6, it indicates a semi-humid semi-arid climate; and when the C-value > 0.6, it indicates
a warm and humid climate [21,22]. In this study, the C-value of the TYF shale samples
ranged from 0.91 to 1.08, with an average of 1.01; the C-value of the SXF shale samples
ranged from 0.99 to 1.09, with an average of 1.01 (Table 4). Based on the C-value results,
the TYF and SXF were deposited in a warm and humid paleoclimate, which was conducive
to the accumulation of OM (Figures 8–10).
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Figure 10. Stratigraphic distributions of TOC, paleoclimate indicators (C-value), paleoproductivity-
related proxies (P, P/Ti, Ba, and Babio), paleoredox indicators (V/(V + Ni and Cu/Zn), sedimentation
rate ((La/Yb)N), and paleosalinity indicators (Sr/Ba and Cu/(Cu + Zn)) in the core of the ZDY2 well.
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The above paleoclimate indicators (CIA and C-value) collectively indicate that the
SNCB experienced a warm and humid paleoclimate during the TYF and SXF deposition
period (Figures 7–9). Moreover, there are no obvious differences in the CIAs and C-values
for the TYF and SXF shale samples (Figure 8).

5.2. Paleoproductivity

Paleoproductivity, which is affected by water nutrients and biological activities, is a
major factor in the accumulation of OM in sediments. Al, Fe, P, Ba, Cu, Zn, Ca, and Mn can
be used to estimate the primary productivity [43,44]. However, firm restrictions exist for
the selection of elements. P and Ba are commonly used to qualitatively assess biological
productivity [2,16,17]. The elements Ba and P provide an effective assessment of the degree
of primary productivity [16,17,43]. Ba is preserved as barite, while P is related to algal
development [2,17].

Ba is generally combined with SO4
2− and exists in sediments or water bodies in the

form of barite (BaSO4). Barium in sediments can be divided into terrestrial, hydrothermal,
and biological sources [45]. However, only the source of Ba (Babio) accurately reflects the
level of primary productivity. It is necessary to extract abiotic elements from the total
elements before evaluating the primary productivity [46,47]. Schroeder et al. [47] proposed
Babio’s applicable formula as follows:

Babio = Batotal − Baalusilicate = Basample − Alsample × (Ba/Al)alusilicate (5)

where Alsample and Basample are the Al and Ba contents of the measured samples, respec-
tively, and (Ba/Al) alusilicate = 0.0075 is a correction factor, which is used to exclude the
influence of barium in terrigenous aluminosilicates. Some scholars have also used Ti instead
of Al as a correction factor [48].

As shown in Figure 8, the Babio content of the TYF shale samples is 136.98–1376.11 ppm,
with an average of 507.71 ppm (Table 4), while the Babio content of the SXF shale samples is
446.89–1355.71 ppm, with an average of 828.38 ppm (Table 4), indicating that the primary
productivity of the SXF is higher than that of the TYF. The value of La/Ce in ancient
seawater is 2.8, which is much lower than that in the hydrothermal sediments. The value
of La/Ce in hydrothermal sediments is only 0.25; in comparison, the value in normal sea
water is usually greater than one. The La/Ce ratio of the shale samples in the TYF is less
than 1, ranging from 0.44 to 0.82, with an average value of 0.54; the La/Ce ratio of shale
samples in the SXF ranges from 0.45 to 0.56, with an average value of 0.51. This indicates
that the shale was affected by strong hot-water sedimentation during the deposition pro-
cess and is the product of the mixture of hot-water sedimentation and normal seawater
sedimentation. Because of the influence of hydrothermal deposition in the study area, it
was not appropriate to use Babio to judge the paleoproductivity.

The element ratios, P/Ti, Cu/Ti, P/Al, and Cu/Al, are not affected by the supply
of terrigenous clastic sediments and can indicate biological productivity [14,49,50]. A
higher ratio suggests a higher level of paleoproductivity [51]. The P/Ti of the TYF shale
samples ranges from 0.02 to 1.83 (average of 0.24) (Table 4), which is slightly higher than
the P/Ti value of PAAS (0.12 [37]), indicating that biological productivity is relatively
high. The range of P/Ti of the SXF shale samples is 0.02–0.45 (average of 0.11) (Table 4),
which is slightly lower than PAAS, indicating that the paleoproductivity level is medium.
According to the P/Ti value, the primary productivity of the TYF is higher than that of the
SXF (Figures 8 and 11).
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Figure 11. Stratigraphic distributions of TOC, paleoclimate indicators (CIA and C-value),
paleoproductivity-related proxies (P, P/Ti, Ba, and Babio), paleoredox indicators (V/(V + Ni) and
Cu/Zn), sedimentation rate ((La/Yb)N), and paleosalinity indicators (Sr/Ba) in the core of the
ZXY1 well.

5.3. Sedimentation Rate

OM enrichment is affected by sedimentation rate to some extent [48,52]. A low sedi-
mentation rate and sustained residence time of sediments in a water column would lead
to significant differences between LREE and HREE, which can be characterized using the
(La/Yb)N ratio and normalized REE distribution curve [52–55]. The degree of REE frac-
tionation and distribution patterns can be used to establish the sedimentation rate [52,53].
REEs exist in water in combination with debris and suspended solids. Owing to the dif-
ferent residence times in water, the degree of REE fractionation is different [54,55]. When
the sedimentation rate is low, REEs have sufficient time to be adsorbed by clay minerals,
resulting in a high degree of fractionation, and when the sedimentation rate is high, the
situation is the opposite, meaning the sedimentation rate can be deduced from the degree of
REE fractionation. Since (La/Yb)N is a reliable indicator of the degree of REE fractionation,
when the value of (La/Yb)N is close to one, it indicates a high sedimentation rate and a
low degree of REE fractionation, and when the (La/Yb)N value is greater than or less than
one, it indicates a low sedimentation rate and a high degree of REE fractionation [56,57].
Besides that, a weak differentiation would lead to a flat REE distribution curve in sedi-
ments [54]. As shown in Figure 6, the REE distribution curve trends of the TYF and SXF are
relatively gentle, indicating that the shale sedimentation rate was relatively stable during
the deposition of the TYF and SXF. The (La/Yb)N value range of the TYF is 0.99–2.6, with
an average of 1.27, while the (La/Yb)N value of the SXF ranges from 1.01 to 1.53, with
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an average of 1.33, showing a relatively high sedimentation rate (Table 4). Because the
sedimentation rate of the TYF is closer to one, its sedimentation rate is higher than that of
the SXF (Figures 10 and 11). The high sedimentation rate of the TYF shortens the contact
time between OM and bacteria, which is conducive to the preservation of OM in oxic water.

5.4. Paleoredox Conditions

TEs, such as the metallic elements U, Th, V, Cr, Ni, Cu, and Zn, are sensitive to the
redox environment of water bodies because their solubility is controlled by the redox state
of water bodies [19]. U, V, Cr, Ni, Cu, Zn, and other elements are easily soluble in water
when the water body provides an oxidizing environment, but they are not soluble in water
under reducing conditions [2]. When the water body is an oxygen-poor environment, it is
enriched in sediments and almost does not migrate. This provides an indication of ancient
water environment and can be used to judge the oxidation–reduction environment of its
water body [2,19]. In this study, V/(V + Ni) and Cu/Zn were used to determine the redox
conditions of the sedimentary environment.

When the value of V/(V + Ni) is greater than 0.6, it indicates an anoxic environment;
when the value of V/(V + Ni) is between 0.46 and 0.6, it indicates a dysoxic sedimentary
environment; and when the V/(V + Ni) value is less than 0.46, it indicates an oxygen
deposition environment [58,59]. When the Cu/Zn value is less than 0.21, it indicates
an anoxic environment; when Cu/Zn ranges from 0.21 to 0.63, it indicates a dysoxic
environment; and when the value is greater than 0.63, it indicates an oxic sedimentary
environment [2,60]. The V/(V + Ni) value of the TYF samples was between 0.45 and 0.91,
with an average of 0.77, while the V/(V + Ni) value of the SXF samples was between 0.47
and 1, with an average of 0.76 (Table 4), indicating that the paleosedimentary environment
of both the TYF and SXF was dysoxic–anoxic (Figures 10–12). The Cu/Zn value of the
TYF samples ranged from 0.13 to 0.7, with an average of 0.34, while the Cu/Zn value
of SXF samples was between 0.2 and 1.27, with an average of 0.48 (Table 4), indicating a
dysoxic–anoxic environment (Figures 10–12). The values of V/(V + Ni) and Cu/Zn show
that the SNCB was in a dysoxic–anoxic environment during the TYF and SXF periods
(Figure 12), while the reducibility of the sedimentary environment of the TYF was slightly
greater than that of the SXF.
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5.5. Paleosalinity

The Sr/Ba ratio is an important index for judging the salinity of ancient water. Sr
is more soluble in water than Ba, meaning Sr migrates further into water, and the Sr/Ba
ratio can indirectly reflect continental and marine sediments [60–64]. A Sr/Ba value
less than 0.5 indicates a freshwater environment; a value of 0.5–1.0 indicates a brackish
water environment; and a value greater than 1.0 suggests a saline water environment [43].
The Sr/Ba value of the TYF samples ranged from 0.21 to 5.31, with an average of 0.78
(Table 4), indicating a freshwater–brackish water environment; the Sr/Ba value of the SXF
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samples ranged from 0.18 to 0.44, with an average of 0.29 (Table 4), indicating a freshwater
environment, implying that the TYF belonged to marine-continental transitional facies
while the SXF was continental (Figures 8, 10 and 13).
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Moreover, Ca/(Ca + Fe) can be used to reflect the salinity level of a water body [11,65].
Generally, the Ca/(Ca + Fe) ratio in a seawater environment is greater than 0.8, the ratio
in a marine-continental transitional environment is 0.4–0.8, and the ratio in a continental
freshwater environment is less than 0.4 [66]. The Ca/(Ca + Fe) value of the TYF ranged
from 0.02 to 0.98, with an average of 0.26, indicating that the sedimentary environment was
freshwater–brackish water, while the Ca/(Ca + Fe) value of the SXF ranged from 0.02 to
0.35, with an average of 0.11, indicating that the sedimentary environment was fresh water
(Table 4, Figures 8 and 10). The change in the paleosalinity indices (Sr/Ba and Ca/(Ca +
Fe)) both show that the paleosalinity of the TYF is higher than that of the SXF, and that OM
is more easily preserved in saline water environments with higher salinity.

5.6. Controlling Factors and Formation Mechanisms of OM Accumulation

OM enrichment is usually affected by many factors, such as primary productivity,
redox, paleosalinity, and sedimentation rate, which are complex physical and chemical
processes [9,16,18,65]. According to the paleosedimentary environmental indicators, the
paleoclimate conditions of the TYF and SXF in the SNCB were similar, both of which were
deposited in a warm and humid environment, with relatively high biological productivity
and sedimentation rates. Furthermore, the paleosalinity of the TYF and SXF was low
during the deposition period, with the environment dominated by a dysoxic–anoxic set of
circumstances belonging to marine-continental transitional and continental facies.

From the cross diagram of TOC and the above geochemical indexes (Figure 14), it
can be observed that for the TYF and SXF, TOC has a clear correlation with paleoproduc-
tivity (P/Ti) (Figure 14a), sedimentation rate ((La/Yb)N) (Figure 14b), and redox index
(Cu/Zn) (Figure 14c), and a weak correlation with paleosalinity (Sr/Ba) (Figure 14d) and
paleoclimate (C-value and CIA) (Figure 14e,f), indicating that the main controlling factors
of the enrichment of OM in the TYF and SXF are paleoproductivity, sedimentation rate,
and redox conditions, while paleoclimate and paleosalinity have relatively little impact on
OM accumulation. The correlation between the TOC content of the TYF and these three
indicators was better than that of the SXF, indicating that the OM concentration of the TYF
was higher (Figure 14).
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index (La/Yb)N, redox index (Cu/Zn), paleosalinity (Sr/Ba), and paleoclimate (C-value, CIA):
(a) TOC vs. P/Ti; (b) TOC vs. (La/Yb)N; (c) TOC vs. Cu/Zn; (d) TOC vs. Sr/Ba; (e) TOC vs. C-value;
and (f) TOC vs. CIA.

Using the study of the paleoclimate, paleoproductivity, sedimentation rate, redox,
and paleosalinity of the TYF and SXF, an OM enrichment model of the Permian TYF and
SXF in the SNCB was developed (Figure 15). Two large-scale transgressions occurred in
the early and late stages of TYF sedimentation, while the middle stage was the regression
stage [67]. Overall, the TYF sea level decreased. The frequent transgression and regression
events led to low-energy hydrodynamic conditions, enhanced the reduction of the water
body, increased the salinity, reduced the decomposition of OM, and saved more OM. At
the same time, the relatively high deposition rate shortened the residence time of aerobic
bacteria in OM, reducing the decomposition of OM (Figure 15). Moreover, a high biological
productivity increased respiratory oxygen consumption in the water column, leading to
OM accumulation. However, during the deposition of the SXF, the seawater retreated
from the SNCB and the lithofacies transitioned from marine to continental. The increase in
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terrestrial input led to a gradual decrease in salinity; the sedimentary environment changed
from an anoxic environment to a poor-oxygen environment, and there was a decrease in
paleoproductivity and sedimentation rate, which were not conducive to the deposition
and preservation of OM and also reduced TOC. Both the TYF and SXF were deposited in a
warm and humid paleoclimate, which was conducive to the growth and proliferation of
plants and provided favorable conditions for the later formation of coal seams (Figure 15).
In summary, the OM-rich shale of the TYF and SXF in the SNCB is not determined by
a single factor but is due to the interaction of many factors, such as paleoproductivity,
sedimentation rate, and redox, all of which directly or indirectly affect OM enrichment.
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6. Conclusions

1. The TYF and SXF were both deposited in warm and humid environments, with
relatively high productivity and sedimentation rates. Moreover, the TYF and SXF were
mainly characterized by dysoxic–anoxic environments, belonging to marine-continental
transitional and continental facies.
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2. The TYF shale mainly developed in a dysoxic–anoxic water environment, with
a relatively high sedimentation rate, which reduced the oxidation of OM, caused OM to
settle rapidly, and was conducive to OM accumulation. In addition, the high biological
productivity increased respiratory oxygen consumption in the water column, leading to
OM accumulation. However, the regression event of the SXF reduced the paleoproductivity
and sedimentation rate, resulting in a decrease in OM.

3. An OM enrichment model of the TYF and SXF is established. This study is conducive
to understanding shale enrichment mechanisms and guiding shale gas exploration in the
region. The study could also have broader, global implications for its contributions to the
general understanding of shales formed in marine-continental transitional environments.
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