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Abstract: The increasing demand for safe and efficient maritime transportation has underscored the
necessity of developing effective path-planning algorithms for Unmanned Surface Vehicles (USVs).
However, the inherent complexities of the ocean environment and the non-holonomic properties
of the physical system have posed significant challenges to designing feasible paths for USVs. To
address these issues, a novel path planning framework is elaborately designed, which consists
of an optimization model, a meta-heuristic solver, and a Clothoid-based path connector. First, by
encapsulating the intricate nature of the ocean environment and ship dynamics, a multi-objective path
planning problem is designed, providing a comprehensive and in-depth portrayal of the underlying
mechanism. By integrating the principles of the candidate set random testing initialization and
adaptive probability set, an enhanced genetic algorithm is devised to fully exploit the underlying
optimization problem in constrained space, contributing to the global searching ability. Accounting
for the non-holonomic constraints, the fast-discrete Clothoid curve is capable of maintaining and
improving the continuity of the path curve, thereby promoting strong coordination between the
planning and control modules. A thorough series of simulations and comparisons conducted in
diverse ocean scenarios has conclusively demonstrated the effectiveness and superiority of the
proposed path planning framework.

Keywords: path planning; unmanned surface vehicles; path smoothing; multi-objective; genetic algorithm

1. Introduction

With artificial intelligence at the helm, the advent of unmanned surface vehicles (USVs)
has garnered significant attention, fueled by their potential to revolutionize maritime oper-
ations by enhancing safety and efficiency [1–6]. However, the successful deployment of
USVs depends on the development of autonomous technology, which refers to the ability
of these vehicles to plan and execute their missions in complex environments without
human intervention, thereby enabling safe and efficient navigation [7,8]. Generally speak-
ing, the most common approaches that contribute to the autonomous level of USVs are
perception, localization and mapping, path planning and decision-making, and control
system design. Central to achieving autonomy in USVs is the challenge of path planning,
which involves determining an optimal path for the vehicle to traverse in order to accom-
plish its mission objectives while adhering to a set of predetermined rules and regulations.
Compared to other types of autonomous vehicles, such as unmanned ground vehicles
(UGVs), USV path planning may incorporate specialized techniques to handle challenges,
such as wave prediction models, collision avoidance strategies for vessels, or algorithms,
that account for hydrodynamic effects on the vehicle’s motion. This task is particularly
challenging due to the dynamic nature of maritime environments, which are subject to
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constantly changing weather conditions, currents, and other environmental factors that can
impact navigation [9]. Achieving this goal requires the development of sophisticated path
planning algorithms that enable these vehicles to navigate complex environments with
minimal human intervention, paving the way for a future of safe and efficient maritime
navigation [10].

The field of path planning for USVs has been an active area of research in recent years,
with numerous studies investigating the development of effective planning strategies for
USVs. In general, two primary categories of path planning algorithms have been proposed:
global approaches and local approaches [7]. Global approaches involve the generation
of a complete path for the USV based on prior knowledge of the environment, usually
represented as a map. Such methods typically employ high-level planning techniques that
treat the USV as a point object, neglecting its maneuverability and physical constraints.
These methods are, therefore, more suitable for planning routes for long-distance voyages,
where the emphasis is on efficient and safe navigation over extended periods. In contrast,
local approaches generate a path by utilizing local information collected during the mission,
enabling the USV to adapt to unexpected obstacles or changes in the environment. These
methods fully consider the physical bounds of the USV’s mechanical system, leading to
more precise tracking performance for the low-level controller. Although the design of such
methods is generally more complex, as it requires the integration of high-level planning and
low-level control techniques to ensure effective operation, it is more applicable in practice.

Presently, there is a growing affinity for deterministic approaches in path planning,
with various methods, such as A* and D* lite, basking in the limelight of scientific pop-
ularity. In particular, Yu and Wang [11] have put forward a hybrid algorithm that fuses
artificial potential field (APF) and D* lite to navigate complex environments. This approach
not only minimizes time cost but also enhances path safety through the APF. Nonethe-
less, it overlooks disturbances and energy consumption. Similarly, Yu et al. [12] have
proposed an improved D* lite that reduces expanded nodes, validated via simulations.
However, the simulation fails to consider ship dynamics, smoothness, and safety. Mean-
while, Song et al. [13] have utilized various smoothing techniques to mitigate the jagged
effect in A*, which has been demonstrated to be effective through both experiments and
simulations, making it a practical choice. Furthermore, Shah and Gupta [14] have pre-
sented a quadtree representation of the marine environment, which accelerates the A*
algorithm without significantly sacrificing solution optimality, as shown in simulations. To
facilitate path planning for working ships in offshore wind farms, Xie et al. [15] devised a
multi-direction A* algorithm modified by an artificial potential field. Compared with the
real-case trajectory, the minimum distance to the wind turbines has increased, and the path
length outside the wind farm decreased dramatically. To solve the path planning problem
under changing environments with multiple dynamic obstacles, Yao et al. [16] proposed an
Improved D* lite algorithm, which has demonstrated its efficacy in real-time path planning
through simulation results. Although deterministic approaches have emerged as popular
and reliable methods for path planning, these methods can be computationally expensive,
particularly when operating in large and complex environments. This can have a significant
impact on their performance, making them less suitable for real-time applications.

As a result, the meta-heuristic algorithms, including ant colony optimization (ACO) [17],
particle swarm optimization (PSO) [18], and genetic algorithms (GA) [19], have emerged as
promising alternatives for path planning in marine robotics. These algorithms offer a set of
high-level strategies to search for solutions, allowing them to optimize paths while consid-
ering multiple objectives with a comparatively low computational burden. Considering the
effects of currents, Krell et al. [20] devised an improved PSO method implemented in visibil-
ity graphs. For the safe navigation of ships, a quasi-reflection-based PSO was proposed by
Xue [21]. Incorporating the environmental loads, a hierarchical path planning framework
based on GA is developed by Wang and Xu [10]. For rapid path generation, a leader-vertex
ant colony optimization algorithm is proposed by Liang et al. [22], which ensures a leader
of the ant colony and optimizes the route by vertex method. For both global and local
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path planning, a series of studies on artificial fish swarm algorithms have been conducted
by Zhao et al. [7,8,23]. Under different current distribution, a comprehensive study has
been conducted by Ma et al. [24] using multi-objective dynamic augmented PSO. Organi-
cally bridging the planning and tracking, Wang et al. [25] devised an elite-duplication GA
(EGA) strategy to optimally generate sparse waypoints in a constrained space. However,
meta-heuristic algorithms commonly encounter a significant hurdle with regard to their
global searching capabilities, as they are prone to be trapped in local minima or subopti-
mum, thereby impeding the identification of the global optimum necessary for producing
high-quality trajectories. Additionally, the computational efficiency of existing methods
is not satisfactory enough to facilitate efficient path generation within high-dimensional
configuration spaces [26]. Therefore, there is an imperative need for innovative techniques
that can enhance the global searching capability and convergence rate of meta-heuristic
algorithms for path planning.

In addition, a noteworthy limitation of most existing methods is the neglect of the
non-holonomic constraints of the vehicle, which can lead to paths that are potentially
infeasible. Specifically, the USV, being a non-holonomic robot, often functions as an un-
deractuated system during its missions, resulting in limited maneuverability and motion
flexibility [27,28]. Analogous to unmanned ground vehicles (UGVs), this restricts the USV’s
motion to forward velocity and manipulation of the heading angle to attain its desired
position, thus precluding lateral movement. Consequently, it is of paramount importance
to ensure smooth and continuous transitions of yaw and curvatures at turning points in
order to devise an effective trajectory for a USV. For instance, sharp turns may be deemed
unfeasible for a USV due to the significant sideslip that ensues, deviating from the planned
path. Thus, the motion dynamics of the USV should be meticulously accounted for in the
path planning process [10].

Inspired by the aforementioned literature review, this paper proposes a novel GA-
variant meta-heuristic algorithm in combination with a fast-discrete Clothoid curve to
optimize path generation. The main contributions of this paper are illustrated as follows:

• By capturing the non-holonomic nature of USVs and the intricate ocean dynamics, a
sophisticated optimization model is carefully devised for the path planning problem,
whereby the effects of currents, increments of curvatures, and constraints of physical
system are addressed jointly.

• Introducing the random testing initialization algorithm and the adaptive design in
the selection procedure, the proposed GA-variant facilitates strong global searching
capabilities and a fast convergence rate, thereby contributing to the optimal generation
of waypoint sequence.

• Accommodating the non-holonomic constraints, the fast-discrete Clothoid curve is
able to preserve and enhance the continuity of the path curve, resulting in robust
coordination between the planning and control module.

This paper is organized in the following structures: Section 2 presents the detailed
modeling of the environment, USV, and the optimization model. Section 3 introduces the
methodology. Illustrative simulation results are shown in Section 4. The conclusion is
drawn in Section 5.

2. Problem Formulation
2.1. Environment Model

In this research, we consider the marine surface area represented as M in the Eu-
clidean space R2. M is divided into obstacle area Mo and obstacle-free motion area Mf ,
respectively. The relationship between these two grids is illustrated in Equation (1). The
path P of the USV is defined as a sequence of connected elementary waypoints, denoted
by pi(i = 1, 2, 3, . . . , m). By following the path P, the USV moves from the initial posi-
tion pS(xS, yS) to the final position pE(xE, yE) while avoiding numerous obstacle areas
Mo (Mo = {O1, O2, . . . , Ok}, where k denotes the number of obstacles).
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Mf +Mo = M (1)

Accordingly, to guarantee the safety, the generated path should be restricted to Mf
domain which is given as:

P = ∪m
i=1pi ⊂Mf (2)

2.2. Currents Model

According to previous research [20], ocean currents have a significant impact on the
energy consumption of USVs. Therefore, when carrying out activities, USVs tend to choose
a path that allows them to take advantage of the currents. Two types of currents exist: fixed
and time-varying. Fixed currents are common in inland water voyages while time-varying
currents are present in large-scale ocean environments. Assuming that the velocity of the
USV in the body frame is v = [u, v, r]T and the current velocity in the body frame is vc,
the USV velocity, taking the effects of the currents into account, can be expressed as:

vr = v + vc (3)

2.3. USV Model

Typically, the motion of the USV can be regarded as a rigid body motion on the
horizontal plane, as shown in Figure 1a, with three degrees of freedom: surge, sway, and
yaw. Consequently, the state-space model for the USV, accounting for the impact of the
current, can be derived as follows:

.
η = R(ψ)vr

M
.

vr + C
( .
vr
) .
vr + Dvr = τ

(4)

where the position and yaw angle in the earth-fixed inertial frame {n} are represented by the
vector η = [x, y, ψ]T , while the relative velocities in the body-fixed frame {b} are denoted
by vr = [ur, vr, r]T , and the control signals are represented by the vector τ = [τu, 0, τr]

T .
This paper considers the underactuated configuration of the USV, which means that the
surge force and yaw moment are the only control forces. With these assumptions, the
rotation matrix R(ψ), mass matrix M, Coriolis matrix C, and damping matrix D can be
expressed as:

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


M =

m− X .
u 0 0

0 m−Y .
v 0

0 0 Iz − N.
r

 =

m11 0 0
0 m22 0
0 0 m33


C =

 0 0 −(m−Y .
v)v

0 0 (m− X .
u)u

(m−Y .
v)v −(m− X .

u)u 0


=

 0 0 −m22v
0 0 m11u

m22v −m11u 0


D =

d11 0 0
0 d22 0
0 0 d33



(5)

To represent the USV’s orientation relative to the earth-fixed inertial frame, we use a
rotation matrix R(ψ) that transforms the body-fixed frame. The mass matrix M = MT > 0
takes into account the USV’s inertial properties and hydrodynamic added mass. The matrix
D incorporates damping coefficients, while the Coriolis matrix C captures the Coriolis and
centripetal effects and can be obtained from M.
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Due to its non-holonomic nature, a USV typically has limited maneuverability and
motion flexibility during most operations [28]. Similar to UGVs, the non-holonomic con-
straint restricts its lateral motion, meaning that the USV can only use its forward velocity
while adjusting the heading angle to reach a desired position.

In Figure 1b, let di = [xi+1 − xi, yi+1 − yi, 0]T denote the position vector between
two points, and pi and pi+1 represent the waypoints. The angles between di and pi and
pi+1 are defined as bi, i and bi, i+1, respectively. In order to ensure a continuous path, the
straight line and turning motions require that two consecutive positions pi and pi+1 lie on
a common arc of constant curvature, which can be expressed as:

bi, i = bi, i+1 (6)

Moreover, the turning angle at any point on the path must be restricted in the dynamic
bounds, which gives:

∆ψi ≤ ∆ψmax (7)

2.4. Optimization Terms
2.4.1. Cruising Time

Since the path length and energy consumption objectives are interdependent, modify-
ing the design variables affects both objectives equally. To jointly represent these objectives,
we have adopted the cruising time t as the first objective. Let vi be the velocity of the USV
at pi and vc be the current velocity. The resultant velocity is denoted by vr = vi + vc. The
cruising time ti between pi and pi+1 can be calculated as follows:

ti =
||pi+1 − pi||

vi,c
(8)

Then, the total cruising time is calculated by:

T =
m−1

∑
i=1

ti (9)

The calculation of vc is performed using the current distribution function. In most
cases, vi is considered to be a constant value in the same direction as pi. Therefore, ti repre-
sents the nominal cost of travel time and does not accurately reflect the actual travel time.

2.4.2. Smoothness and Continuity

The additional cost incurred due to yaw is closely linked to the motion control per-
formance of the USV. In order to enhance the smoothness of the trajectory, an objective
function is introduced. To achieve this, constraint (9) is added as a quadratic penalty
term to the objective function. The turning angle ∆ψi between waypoints pi and pi−1 in
the path P is calculated as ∆ψi = |ψi − ψi−1|, where ψi = atan((yi − yi−1)/(xi − xi−1))
and ψi−1 = atan((yi−1 − yi−2)/(xi−1 − xi−2)). The smoothest path is achieved when the
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changes in ∆ψi (i = 2, 3, . . . , m) and curvature |bi−1, i−1 − bi−1, i| are minimized. Hence,
the objective function for achieving the smoothest path is defined as:

ϑ =
m

∑
i=2

∆ψi +
m

∑
i=2
|bi−1, i−1 − bi−1, i| (10)

2.4.3. Path Safety

To ensure the safe movement of the USV, it is crucial to find a collision-free path that
also maintains a safe distance from the obstacles. In addition to satisfying the conditions
outlined in Equation (2), the minimum clearance from obstacles, denoted as di, is used to
determine the safety of the solution. Specifically, we define two circular areas with radii
dmin and dmax around each path waypoint pi. The distance between each path waypoint
pi and its closest obstacle Oi (Oi ⊂Mo) is represented by di =||pi, Oi||, (i = 1, 2, 3, . . . , m) .
The safety of each point along the path can then be evaluated by:

Di =


0, di ≥ dmax

dmax−di
dmax−dmin

, dmin < di < dmax

1, di ≤ dmin

, i = 1, 2, 3, . . . , m (11)

Therefore, to ensure the safety of the path, the third objective is to minimize the
minimum value of Di, see the following:

D = argmin {D1, D2, . . . , Di}, i = 1, 2, 3, . . . , m (12)

2.5. Problem Statement

The path planning model for the problem is formed as:

minJ = T + ϑ +D (13)

s.t.
Mf = M −Mo

P = ∪m
i=1pi ⊂Mf , i = 1, 2, 3, . . . , m

p1 = (x1, y1) = (xS, yS)

pm = (xm, ym) = (xE, yE)

v + νc ≥ 0

vr = v + vc, i = 1, 2, 3, . . . , m

bi, i = bi, i+1, i = 1, 2, 3, . . . , m− 1

ti =
||pi+1−pi ||

vi,c
, i = 1, 2, 3, . . . , m− 1

T =
m−1
∑

i=1
ti, i = 1, 2, 3, . . . , m

ψi = atan((yi − yi−1)/(xi − xi−1)), i = 2, 3, . . . , m

∆ψi = |ψi − ψi−1|, i = 2, 3, . . . , m

∆ψi ≤ ∆ψmax

ϑ =
m
∑

i=2
∆ψi +

m
∑

i=2
|bi−1, i−1 − bi−1, i|, i = 2, 3, . . . , m

di = ||pi, Oi||, (i = 1, 2, 3, . . . , m)

Di =


0, di ≥ dmax

dmax−di
dmax−dmin

, dmin < di < dmax

1, di ≤ dmin

, i = 1, 2, 3, . . . , m

D = argmin {D1, D2, . . . , Di}, i = 1, 2, 3, . . . , m

(14)
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3. Solver Design
3.1. Adaptive-Elite Genetic Algorithm

The genetic algorithm (GA) was initially proposed by Professor J. Holland in 1973
as a meta-heuristic optimization method. By simulating the evolutionary process of an
artificial population, the GA manipulates each individual in the population through genetic
operations, such as selection, crossover, and mutation. The process generates a new
population with the best-performing individuals from the previous generation as the
parents. The population evolves through several generations, and the individuals with the
best fitness values are selected as the optimal solutions.

The GA’s strength lies in its ability to search a large solution space using stochastic
searches and evolutionary operations, such as crossover and mutation, making it effec-
tive in handling non-linear and non-convex optimization problems. Moreover, the GA’s
population size enables it to mitigate the impact of hyperparameter selection by allowing
the algorithm to sample from a diverse set of solutions. Given that the optimization prob-
lem presented in this paper is an NP-hard nonlinear problem, we choose the GA as the
primary framework.

3.1.1. Chromosome Representation

In evolutionary algorithms, chromosomes can be represented in various ways, such
as binary-coded, real-coded, and decimal-coded. In our paper, we utilized the real-coded
chromosome to directly represent the USV’s path. Specifically, we use a sequence of points
that begins at an origin position and ends at a destination point. Each point, denoted as
pi = (xi, yi), is saved along with its x and y coordinates and a pointer to the next point in
the path. Figure 2 illustrates this representation.
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3.1.2. Initialization

The original population for the algorithm is obtained through population initialization.
In the case of the original GA, a certain number of solutions are randomly generated in
the solution space without the use of a heuristic function. This can lead to a random and
unfocused solving process, resulting in a high proportion of poor solutions and low-quality
genes in the population. This, in turn, requires a long convergence time during subsequent
evolution and makes the solving process prone to being trapped in a local optimum.

To address this issue, we have developed a modified initialization method for GA
inspired by failure analysis techniques used in software systems. Specifically, we have
incorporated a candidate set adaptive random testing (ART) approach to improve the
diversity of the initial population. By enhancing the initial diversity, the ART-based
initialization method allows the GA to explore a broader range of potential solutions.
This exploration can improve the algorithm’s ability to escape local optima and discover
better solutions in the search space. Consequently, it enhances the chances of finding
high-quality solutions and can potentially accelerate the convergence toward optimal or
near-optimal solutions. In summary, compared to standard random initialization, the
ART-based initialization method in the GA offers the advantage of generating an initial
population that is more diverse and better distributed throughout the search space. This
increased diversity can facilitate improved exploration of the solution space and potentially
lead to better overall performance and convergence in the GA.

The main steps of the initialization process are illustrated as follows:
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Step 1: m candidate individuals C = c1, c2, . . . , cm are randomly generated.
Step 2: The objective distances between each candidate individual and the current

individuals in the population set P = p1, p2, . . . , pn are calculated.
Step 3: The shortest distance between each candidate individual and the population

set is identified.
Step 4: The candidate individual with the maximum distance value is selected and

added to the population set P.

3.1.3. Selection Operator

In a genetic algorithm, the selection operator is responsible for choosing individuals
from a population for the crossover operator. This selection process is carried out based on
a predefined regulation called the Roulette Wheel Selection (RWS) method. To perform
Roulette Wheel Selection (RWS) in a genetic algorithm (GA), first, we compute the fitness
values for each individual in the population and normalize them to obtain probabilities.
Then, calculate the cumulative probabilities by summing up the normalized fitness values.
After that, generate a random number between 0 and 1, and select individuals whose
cumulative probability exceeds this random number. Repeat the selection process as
needed to obtain the desired number of parents. Use the selected parents for crossover
or recombination to generate offspring for the next generation. This iterative process
allows individuals with higher fitness to have a greater chance of being selected, promoting
the propagation of favorable traits in the GA. The RWS method ensures that the fitter
individuals have a higher chance of being selected for the crossover, thus improving the
overall quality of the population in the subsequent generation. The selection probability of
each individual can be expressed as follows:

Pi
select = F(xi)/

n

∑
i=1

F(xi) (15)

where xi denotes the individual and f (xi) is the corresponding fitness value. As can be seen
from Equation (15), better individuals have more chances to be selected by RWS, which
leads to better solutions.

3.1.4. Hybrid Crossover

Crossover operators are utilized to combine two solutions and generate a new off-
spring with better performance in terms of a predefined objective. These operators can be
applied to solutions with the same or different number of waypoints. The first crossover op-
erator involves calculating the mean of the two parent solutions to produce a new offspring.

x f =
xp

1 + xp
2

2
, y f =

yp
1 + yp

2
2

(16)

where two parents have gene coordinates denoted by xp
1 , yp

1 , and xp
2 , yp

2 , respectively.
The gene coordinates of the offspring are represented by x f and y f . First, two parent
chromosomes are selected according to the selection operator. Second, we select one of the
parents as a reference chromosome. In this procedure, if the number of waypoints in the
parents are the same, we choose the reference randomly. Otherwise, the one with smaller
waypoint number is chosen. Then, waypoints of the offspring

(
x f , y f

)
are calculated by

taking the mean of each waypoint of the reference chromosome and the nearest waypoint of
the other parent. To determine the gene coordinates of the offspring

(
x f , y f

)
, the average

of each gene in the selected parent and the closest gene in the other parent are computed.
To enhance the variability of the population and explore the entire available space, the

second crossover operator is utilized in which the two parents are randomly merged:

x f = kxp
1 + (1− k)xp

2 , y f = kyp
1 + (1− k)yp

2 (17)
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where vector k consists of random numbers ranging from −1 to 1. When the number
of genes differs between the parents, a similar approach to the first operator is used
to combine genes with minimal distance. The primary aim of the first operator is to
escape local optima, while the second one explores the environment randomly, preventing
premature convergence.

3.1.5. Mutation Operator

The mutation operator in a Genetic Algorithm has a critical function in maintaining
diversity within the population. The primary goal of the mutation operator is to randomly
modify the value(s) of one or more genes within an individual’s chromosome. By intro-
ducing such changes, the mutation operator assists in preventing the GA from becoming
trapped in a local optimum, which would hinder the search for the global optimum. In the
absence of the mutation operator, the GA may converge to a suboptimal solution that is in
close proximity to the initial population. Hence, mutation serves as a crucial component of
GA by promoting exploration of the search space and preventing premature convergence
to suboptimal solutions. This paper introduces two mutation operators to facilitate the
genetic process:

The first operator is a random mutation that selects one position on chromosomes and
changes the value in the free space as shown in the following figure:

A different mutation operator is utilized to enhance the path’s smoothness and length
by adjusting the position of a gene. The operator integrates the present position (pi) of a
gene with the directions towards the genes located on either side, pi−1 and pi+1, using the
subsequent expressions:

x f
i = xp

i + m
(

xp
i−1 − xp

i

)
+ n

(
xp

i+1 − xp
i

)
y f

i = yp
i + m

(
yp

i−1 − yp
i

)
+ n

(
yp

i+1 − yp
i

) (18)

where m and n are random positive coefficients from 0 to 1. As illustrated in Figure 3b, this
mutation operator leads to the creation of paths with shorter lengths and better smoothness.
Combining both mutation operators result in a powerful tool that enhances both the
searching and convergence capabilities of the algorithm.
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3.1.6. Fitness Design

In this paper, a multi-objective fitness function is devised. For this purpose, a weighted
linear combination of the mentioned objectives is considered:

F = c1wtT + c2wθϑ + c3wdD (19)

The formula involves several parameters, including T (cruising time), ϑ (smoothness
objective), and D (safety level), where wt, wθ , and wd represent weight values, and their
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sum is equal to 1. To maintain consistency in the indicators’ magnitudes, coefficients c1, c2,
and c3 have been set to 0.1, 1, and 100, respectively, as shown in the equation.

Selecting appropriate weight values is a vital aspect of the algorithm’s performance.
However, relying solely on empirical methods can be subjective. In an effort to achieve
more balanced results, the Delphi weighting method [19] was employed to determine the
weight of each indicator. As a result, the weight coefficients for cruising time, smoothness,
and safety are 0.395, 0.275, and 0.330, respectively.

3.1.7. Determination of pc and pm

The conventional Genetic Algorithm for USV path planning relies on two essential
parameters, namely, the crossover rate and mutation rate, to regulate pc and pm of indi-
viduals in each iteration. However, using fixed values for these parameters may pose
certain challenges. For instance, employing a large crossover and mutation probability can
make it difficult to retain the best individuals, slow down population convergence, and
consequently, delay the generation of the inspection path, thereby impacting operational
efficiency. Conversely, a small pc and pm can negatively affect the searching process, leading
to the local optimum. This, in turn, causes the USV to travel longer distances, reducing
its efficiency.

To tackle the aforementioned challenges, a modified approach is suggested. This
approach involves adjusting pc and pm during the algorithm execution. Specifically, in the
early stages of the algorithm, pc and pm are increased to improve the global search ability,
while in the final stage, the probabilities are decreased to facilitate good convergence.
Adaptive probabilities allow the GA to dynamically adjust the rates of crossover and
mutation based on the progress of the algorithm. Initially, higher probabilities promote
exploration by encouraging diverse offspring. As the GA progresses, the probabilities can
be reduced, shifting the focus towards exploitation of promising solutions. This balance
between exploration and exploitation helps the GA efficiently search for optimal or near-
optimal solutions.

To achieve this, adaptive functions are formulated as follows:

pc = pc0e−
a
F (20)

where pc0 represents the initial pc, a is the scaling coefficient, and F here is the average
fitness of the population. Similarly, the mutation probability can be obtained with same
structure as follows:

pm = pm0e−
b
F (21)

where pm0 represents the initial pm and b is the scaling coefficient. These functions dynami-
cally adjust the crossover probability based on the mean fitness degree of the population
at each generation. As a result, the USV can achieve a balance between exploration and
exploitation, leading to faster convergence and better results.

3.2. Fast-Discrete Clothoid Curve

To ensure real-time performance and accommodate the USV’s kinematic constraints,
we introduce a Fast-Discrete Clothoid Path (FDCP) to construct and connect the path.
The FDCP employs a sequence of control points, referred to as waypoints, which are
linked together using Clothoid segments. However, accurately generating Clothoids can
be difficult due to their non-linear nature and multiple solutions. Thus, instead of directly
computing the parameters of the Clothoid segments, our algorithm utilizes a variational
approach that produces a polyline with linear discrete curvature, which approximates the
Clothoid segment. This approach allows for efficient and precise path planning for the
USV, while taking into account the vehicle’s non-holonomic features.

To determine the position of intersection points, the following conditions must be
met when inserting or updating point C between neighboring points B and D, as shown
in Figure 4. To simplify the calculations, a normalized configuration is used where point
B is located at (−1, 0) and point D at (1, 0). For each of the five control points denoted as
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P, its left and right neighbors are identified as Pl and Pr, respectively. The insertion point
C must satisfy the following conditions to approximate the Clothoids accurately between
these control points:

• C must lie on the perpendicular bisector between B and D.
• The curvature at each point should vary linearly.
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From the abovementioned conditions, we have the following equation:

ρC =
1
2
(ρB + ρD) (22)

where ρ denote the curvature at each point, it can be approximated by:

ρP = 2
π − φP

|Pl P|+ |PPl |
(23)

where φP is the angle between |Pl P| and |PPl |, and |Pl P| is the scalar value of the length
between Pl and P. According to the geometric relations in Figure 4, we obtain:

φB = π − α + γ

φC = π − 2γ

φD = π − β + γ

(24)

Substituting φP in previous equation using Equation (16), we have:

ρB = 2 α−γ
|AB|+|BC|

ρC = 2 2γ
|BC|+|CD|

ρD = 2 β−γ
|CD|+|DE|

(25)

As more and more points are inserted, the polyline gets refined and the angles between
segments approach π. Therefore, with a large number of sample points, we can approximate
|BC| = |CD| = 1. Solving Equation (14), γ can be obtained by:

γ =
β(|AB|+ 1) + α(|DE|+ 1)

2|AB||DE|+ 3(|AB|+ |DE|) + 4
(26)

Point C is now inserted on the perpendicular bisector between B and D in distance
|CD| tan γ. By iteratively inserting the intersection points (such as point C), we can approx-
imate the Clothoid path with satisfactory computational performance.

Clothoid curves provide a continuous change in curvature, resulting in a smooth
transition between straight segments and curved segments of a path. This helps reduce
abrupt changes in the path and improves the vehicle’s stability and comfort. Moreover, by
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gradually changing the curvature, Clothoid curves minimize lateral acceleration during
turns. This reduces the forces acting on the USV, enhancing safety and stability during ma-
neuvering. Additionally, Clothoid curves enable more precise and controlled maneuvering.
They allow for gradual changes in heading angle, facilitating smooth turns, and transitions
between different paths or waypoints.

The flowchart of the methodology is illustrated by Figure 5.
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4. Results and Discussion

In this section, illustrative simulations have been carried out to evaluate the perfor-
mance of our proposed method progressively through convergence test and simulation
under a time-varying environment. The simulations are conducted via MATLAB 2021a
environment with a PC configured with Intel (R) Core (TM) i7-13400 CPU and 16-GB RAM.

4.1. Convergence and Quality Test

In this section, simulations have been carried out to analyze the convergence character-
istic of our proposed method. We have selected some other state-of-the-art methods from
existing reliable references for comparison, including conventional genetic algorithm, D*
lite [16], Hybrid A* [29], and RRT* [30]. The selected environment maps are presented in
Figure 6, the start and goal points are marked as blue and red dots, respectively. It is worth
noting that since we only test the convergence behavior and solution quality, the effects of
time-varying currents are not considered. To maintain the efficiency and without loss of
solution quality, we set the maximum number of waypoints in each path is 20 according
to [31]. Table 1 shows the dimensions and coordinates of the given points.

Table 1. Environment setting.

Map Size Start Destination

Scenario 1 300 × 400 (150, 300) (200, 90)
Scenario 2 300 × 400 (50, 330) (250, 250)
Scenario 3 400 × 400 (290, 350) (390, 60)
Scenario 4 400 × 400 (150, 240) (350, 120)
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The parameters are set as follows:

• In this case, the ocean current is fixed with velocity of 0.3 m/s and direction of −70◦.
• Proposed: Population size = 100; generation = 200; pc0

= 0.8; pm0
= 0.05; dmin = 5 m;

dmax = 30 m; wt = 0.395; wθ = 0.275; wd = 0.330; a = 150; and b = 50.
• Traditional GA: Population size = 100; generation = 200; pc = 0.8; and pm = 0.05.
• D* lite: search directions = 8.
• Improved hybrid A*: Minimum turning radius = 4 m; Motion primitive length = 4 m.
• RRT*: Max-iteration = 2500; Max-Connection distance = 1 pixel.

The tabulated data presented in Table 2 provides quantitative results for the proposed
algorithm. The results reveal that the algorithm exhibits a significant reduction in time cost
with 0.36 s, 0.613 s, 0.484 s, and 0.391 s for the four scenarios, respectively. This represents
a considerable improvement of over 60% when compared to the traditional GA. The
algorithm’s increased speed is primarily due to the new initialization process. Additionally,
the algorithm’s robustness is evaluated through the standard deviation (SD) of the time cost,
which is 0.012 s, 0.022 s, 0.022 s, and 0.008 s for each case, respectively. Furthermore, the
proposed algorithm is shown to provide a satisfactory minimum path length of 253.5 pixels,
352.0 pixels, 356.0 pixels, and 298.0 pixels for each scenario, respectively. Although other
methods may produce slightly smaller values in some cases, the proposed algorithm
provides more practical and reasonable solutions. It is important to note that the relatively
low path lengths produced by D* lite and Hybrid A* are due to their reliance on optimal
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search based on A*, which aims for the shortest path. However, this approach often results
in paths that are too close to obstacles.

Table 2. Statistical results.

Methods Performance Scenario 1 Scenario 2 Scenario 3 Scenario 4

Proposed

Time (s) 0.360 0.613 0.484 0.391
Time SD (s) 0.012 0.022 0.022 0.008

AVG length (pixels) 253.880 354.020 358.460 300.210
Minimum length (pixels) 253.500 352.000 356.000 298.000

GA

Time (s) 0.905 1.113 1.132 1.179
Time SD (s) 0.068 0.074 0.102 0.115

AVG length (pixels) 273.590 373.000 368.490 395.340
Minimum length (pixels) 251.000 348.000 353.500 296.500

D* lite

Time (s) 3.789 14.946 2.589 3.683
Time SD (s) 0.155 0.603 0.037 0.064

AVG length (pixels) 253.296 356.718 353.480 299.841
Minimum length (pixels) 253.296 356.718 353.480 299.841

Hybrid A*

Time (s) 4.731 1.093 9.127 3.612
Time SD (s) 0.096 0.035 0.376 0.065

AVG length (pixels) 253.676 351.758 369.485 303.112
Minimum length (pixels) 253.676 351.758 369.485 303.112

RRT*

Time (s) 0.449 1.906 1.571 3.346
Time SD (s) 0.171 0.457 0.552 1.309

AVG length (pixels) 324.637 487.845 497.646 458.019
Minimum length (pixels) 287.810 403.188 413.889 358.982

The visualized results of the simulations are presented in Figure 7. The red curve
depicts the smoothed path generated by the proposed method. The results demonstrate
that the curve is smooth without any abrupt turns. On the other hand, the results generated
by GA, D* lite, Hybrid A*, and RRT* exhibit relatively large angle changes, particularly
RRT*, which exhibits the poorest performance in terms of smoothness. Furthermore, the
proposed method produces a safer path than the other methods. This is primarily due
to the inclusion of a safety distance term in the cost function, which forces the path to
remain at a safe distance from its nearest obstacle. In contrast, the results produced by
other methods often remain too close to the obstacles in some sections of the path.

Table 3 presents a comparative study of path quality, focusing on two key features:
minimum clearance d from obstacles and path smoothness. The minimum clearance from
obstacles measures the safety level of the results by calculating the distance between each
path segment and its nearest obstacle. It is important to note that the safety distance utilized
in the simulation is set at 5 m. Path smoothness measures the degree of smoothness of the
path. The results presented in Table 3 reveal that the proposed method produces the safest
path with the minimum distance from obstacles of 12.649 m, 11.663 m, 10.557 m, and 5.0 m
for each scenario, respectively. In contrast, traditional GA and RRT* fail to satisfy the safety
requirement in most cases. Moreover, the methods given by D* lite and Hybrid A* exhibit
the worst performance in terms of safety, failing in all scenarios. Therefore, they are not
suitable for real-world applications. In terms of path smoothness, the proposed method
produces the smoothest paths (as seen in Figure 7) with values of 174.547, 149.454, 129.088,
and 211.538 for each case, respectively, significantly outperforming the other methods. For
instance, the proposed method’s path smoothness value is 5–6 times smaller than that of
Hybrid A* and D* lite.
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Table 3. Comparison of path quality.

Methods Performance Scenario 1 Scenario 2 Scenario 3 Scenario 4

Proposed
d 1 (m) 12.649 (#) 11.663 (#) 10.557 (#) 5.000 (#)

Smoothness (deg) 174.547 149.454 129.088 211.538

GA
d (m) 1.000 (5) 1.414 (5) 1.414 (5) 5.099 (#)

Smoothness (deg) 590.291 343.702 528.768 227.737

D* lite
d (m) 1.000 (5) 1.000 (5) 1.000 (5) 0 (5)

Smoothness (deg) 945 720 720 450

Hybrid A*
d (m) 1.000 (5) 1.000 (5) 0 (5) 1.000 (5)

Smoothness (deg) 1223 1404 1912 1263

RRT*
d (m) 1.414 (5) 1.000 (5) 5.831(#) 2.236 (5)

Smoothness (deg) 303.395 555.388 426.283 762.342
1 A safety distance of 5 m is established. If the minimum clearance requirement is met, a symbol of # is displayed
within the bracket, while 5 is used when it is not met.
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4.2. Testing in USV Model

In this subsection, simulation studies and comprehensive comparisons are provided
by conducting experiments on a prototype USV Otter (see Figure 8, www.maritimerobotics.
com (accessed on 1 May 2023), Table 4 shows the maneuvering derivatives). It is worth
mentioning that the paths generated by D* lite and Hybrid A* are not suitable for real
application because they would collide with the obstacles. Therefore, the paths given by
GA and RRT* are selected for the simulation.
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Figure 8. USV model.

Table 4. Maneuvering derivatives of Otter.

Inertial Related Value Damping Related Value

m11 85.28 d11 −77.55
m22 162.50 d22 −0.02
m33 41.45 d33 −41.45

In simulations, Figure 9 demonstrates the alterations in course angle and speed for
scenario 1 and scenario 2. The proposed method generates a path with gentle and steady
changes in course and velocities, as depicted in the figures. The small deviation between the
actual and desired signals suggests the feasibility of the proposed method in conjunction
with the USV control system. However, the path created by GA exhibits sudden changes in
both signals, resulting in a significant deviation at the point of the sudden course alteration.
On the other hand, RRT* generated the poorest solution, with jagged changes in course
angle and a substantial deviation between the reference and actual signals. Additionally,
the simulation shows unstable velocity. Similar results are obtained by scenario 3 and
scenario 4.

In Table 5, the energy and time cost of the simulations are displayed. The proposed
method exhibits the lowest energy and time cost among all cases, as demonstrated in the
table. This outcome is mainly attributed to the novel cost function incorporated into the
proposed method, which directs the USV to move along the current direction. Conversely,
the results produced by RRT* display the poorest performance with the highest energy
consumption and computational time. This inferior performance is primarily due to the
numerous abrupt changes in course angle and unnecessary turns.

www.maritimerobotics.com
www.maritimerobotics.com
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Table 5. Energy cost and time cost during the mission.

Proposed GA RRT*

Energy cost (kJ) Time cost (s) Energy cost (kJ) Time cost (s) Energy cost (kJ) Time cost (s)
Scenario 1 27.4 194.8 29.8 219.9 42.7 349.9
Scenario 2 36.8 298.9 39.1 310.0 94.0 849.6
Scenario 3 37.4 266.6 39.6 289.8 65.8 530.0
Scenario 4 31.7 246.9 35.0 285.0 82.4 708.9

4.3. Simulation in Time-Vary Ocean Environments

In this section, we will evaluate the method under time-varying ocean currents. We
have selected some state-of-the-art methods from existing reliable references for compari-
son, including improved artificial fish swarm algorithm [8] and multi-objective enhanced
GA (MOEGA) [32]. The ocean current model used in this paper is based on the numerical
solution of water jet structure [33]:
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φ(x, y) = 1− tan h(
y− B(t) cos(k(x− ct))

(1 + k2B(t)2 sin2(k(x− ct)))
1
2
) (27)

where B(t) and k are the properly adimensionalized amplitude and wavenumber of the
undulation in the stream function. The specific expression for B(t) is:

B(t) = Bo + ε cos(ωt + θ) (28)

with Bo = 1.2, c = 0.12, k = 0.84, ω = 0.4, ε = 0.3 and θ = π/2. The velocity field is
obtained by the following expression:

U(x, y, t) = −∂φ

∂y
V(x, y, t) =

∂φ

∂x
(29)

where U(x, y, t) and V(x, y, t) are the x– and y- components of the velocity vector at time
in the location (x, y).

The parameters are set as follows:

• Environment: map size: 500 * 500, Start = (80, 150), Goal = (480, 330), and the ocean
current is set as Equation (27) for Case 1 while we multiply −1 on the y component for
Case 2.

• Proposed: Population size = 100, generation = 200, pc0
= 0.8, pm0

= 0.05, dmin = 5 m,
dmax = 30 m, wt = 0.395, wθ = 0.275, wd = 0.330, a = 150, and b = 50.

• IAFSA: Population size = 100, δ = 0.618, step = 1; visual = 10, and try_number = 8.
• MOEGA: Population size = 100, generation = 200, pc = 0.8, pm = 0.05, dmin = 5 m,

dmax = 30 m, wt = 0.395, wθ = 0.275, and wd = 0.330.

Table 6 presents the quantitative outcomes, including path distance, cruising time (T),
smoothness (ϑ), and minimum distance to obstacles (d), for both Case 1 and Case 2. The
visualized solutions for each case are also depicted in Figures 10 and 11. According to the
results in Table 6, the proposed algorithm delivers solutions with higher quality paths (as
highlighted in bold in the table), outperforming other methods in terms of cruising time,
smoothness, and safety in most scenarios. However, it is noteworthy that the proposed
algorithm results in the lowest safety value (8 m to the obstacle) due to the significant impact
of energy consumption on optimization. It should be noted that an 8 m safety distance is
acceptable in real application [34]. Moreover, the IAFSA method yields the worst outcomes,
which may be attributed to its random behavior during the algorithm process, leading to
abrupt points along the path. As demonstrated in Figures 10 and 11, our proposed model
leverages the currents to reduce energy consumption by selecting intersection points that
align with the current direction. Overall, the presented results indicate that the proposed
method exhibits superior performance to the other two algorithms.

Table 6. Statistical measurements of the paths.

Indicators Proposed IAFSA MOEGA

Case 1

Distance (m) 458.166 471.691 483.598
T (s) 209.198 214.430 221.039

ϑ (deg) 123.130 212.378 145.872
d (m) 18.682 5.000 16.279

Case 2

Distance (m) 540.065 543.593 566.971
T (s) 245.489 254.095 257.724

ϑ (deg) 155.034 164.404 228.242
d (m) 8.062 18.934 17.029
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5. Conclusions

This paper presents a thorough investigation into the path planning problem for
USVs. The proposed algorithm generates a path that is both optimally safe and quickly
convergent, exhibiting strong adaptability to complex environments. In comparison to the
existing literature, our method outperforms other algorithms across all problem variations.
Additionally, the fast-discrete Clothoid curve is utilized to maintain path curve continuity
and ensure reliable coordination between the planning and control modules, while also
accommodating non-holonomic constraints. Simulation studies and comprehensive com-
parisons in various ocean scenarios have been conducted to illustrate the effectiveness and
superiority of the proposed path planning framework.
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