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Abstract: Island microgrids play a crucial role in developing and utilizing offshore renewable energy
sources. However, high operation costs and limited operational flexibility are significant challenges.
To address these problems, this paper proposes a novel dual−layer distributed optimal operation
methodology for islanded microgrids. The lower layer is a distributed control layer that manages
multiple controllable distributed fuel−based microturbines (MTs) within the island microgrids. A
novel adaptive consensus control method is proposed in this layer to ensure uniform operating status
for each MT. Moreover, the proposed method can achieve the total output power of MTs to follow the
reference signal provided by the upper layer while ensuring plug−and−play capability for MTs. The
upper layer is an optimal scheduling layer that manages various forms of controllable distributed
power sources and provides control reference signals for the lower layer. Additionally, a two−stage
twin−delayed deterministic policy gradient (MATD3) algorithm is utilized in this layer to minimize
the operating costs of island microgrids while ensuring their safe operation. Simulation results
demonstrate that the proposed methodology can effectively reduce the operating costs of island
microgrids, unify the operational status of MTs, and achieve plug−and−play capability for MTs.

Keywords: island microgrid; offshore renewable energy; optimized scheduling; consensus control;
deep reinforcement learning

1. Introduction

Microgrid technology is an effective solution for addressing the problem of insufficient
local power supply while enhancing the utilization of renewable energy resources. Com-
pared to onshore microgrids, island microgrids possess a more abundant renewable energy
supply [1]. However, harsh maritime climate conditions expose the equipment in island
microgrids to humid, saline, and moldy operating environments. Such environments can
result in higher operating costs and a higher probability of damage to power equipment
used in island microgrids [2]. In addition, the high percentage of renewable energy supply
also makes the island power system more vulnerable and reduces the security of island
microgrid operations [3]. However, given the importance of islands in marine resources and
safety, it is crucial to ensure the safety and flexibility of island microgrid operation. There-
fore, this study proposes a novel dual−layer distributed optimization operation method for
island microgrids based on adaptive consensus control and a two−stage MATD3 algorithm
to enhance the operational flexibility and economic efficiency of island microgrids. We
hope this study can provide a valuable reference for the future planning and development
of island microgrids.

J. Mar. Sci. Eng. 2023, 11, 1201. https://doi.org/10.3390/jmse11061201 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11061201
https://doi.org/10.3390/jmse11061201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-7400-6603
https://orcid.org/0000-0001-8529-2847
https://orcid.org/0000-0002-1634-6415
https://doi.org/10.3390/jmse11061201
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11061201?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1201 2 of 31

Although microgrids incorporate various energy sources, such as solar and wind,
microturbines (MTs) remain a primary energy source for ensuring normal microgrid oper-
ation [4]. Island microgrids often deploy multiple distributed MTs to achieve safety and
flexibility. Owing to its simplicity and speed, the centralized control structure is most
commonly used for multiple distributed MTs in microgrids. Reference [5] proposed a
centralized control architecture for microgrids by utilizing a phase−locked loop to obtain
the system frequency and compared it with the rated frequency to determine the total
power deficit. Accordingly, the power reference instruction for each distributed power
source was obtained based on this power deficit. In [6], an adaptive droop strategy was
proposed for microgrids based on a centralized control scheme that could compensate
for the impact caused by the voltage drop of the feeder to improve the reactive power
distribution accuracy. However, the centralized control scheme depended on the central
controller and communication lines. Any failure to these components might disrupt the
control of distributed MTs, resulting in abnormal microgrid operation. The distributed
control method based on consensus control provides an alternative approach to control
distributed MTs without relying on a central controller. In such methods, each distributed
MT communicates with adjacent distributed MTs to achieve control of all distributed MTs.
Moreover, it does not affect the operation of the microgrid system, even during partial
communication loss [7]. Therefore, the distributed control method based on consensus
control is more suitable for use in harsh environmental conditions on island microgrids
to improve their safety and flexibility. In ref. [8], a cloud−edge collaboration−based dis-
tributed control method was proposed which could alleviate the tremendous computational
pressure caused by excessively centralized computation tasks while solving the optimal
control strategy for the power grid. However, this method required the construction of
a cloud−based service platform, which was expensive to build. Refs. [9,10] achieved the
plug−and−play function of distributed MT with guaranteed frequency recovery and op-
timal tide of the island microgrid, respectively. However, neither of them considered the
operational economics of the island microgrid. In ref. [11], a dual−layer consensus control
method was proposed for a multi−microgrid that achieves capacity−based allocation of
MT output power within and between microgrids. Based on this architecture, ref. [12]
adopted a new consensus control method with an equal micro−increment rate in the upper
layer control to reduce the operational cost of distributed power sources. However, the
operating costs of other devices in the microgrid were not considered; therefore, further
research is needed to determine whether the method could reduce the overall operating
cost of the microgrid.

Generally, the optimal scheduling problem for island microgrids is a mixed−integer
nonlinear programming problem (MINLP) [13]. Classical optimization methods [14],
planning−based methods [15,16], and heuristic algorithms [17–19] are commonly em-
ployed to solve such a problem. However, the environmental conditions of island microgrid
operation tend to be complex, and the amount of data that algorithms need to handle is
large, making it difficult for the above method to achieve efficient optimal scheduling of
microgrids in real time [20]. With the development of machine learning algorithms, deep
reinforcement learning algorithms have demonstrated good adaptability in solving grid
problems with complex models [21]. For instance, ref. [22] improved the double deep Q
network (DDQN) algorithm by using convolutional neural networks (CNNs) and multiple
buffer zones, which greatly improved the learning ability of the algorithm. However,
the action space of the algorithm was discrete, and the accuracy of the optimal strategy
obtained often depended on the degree of discretization of the action space. In ref. [23], a
model−actor−critic reinforcement learning neural network architecture combined with
event−triggered control was constructed. This architecture could significantly accelerate
the learning speed of the reinforcement learning neural network while reducing the com-
putational and communication requirements of the control process. In ref. [24], the deep
deterministic policy gradient (DDPG) algorithm was used to provide effective scheduling
strategies for household microgrids. However, it overlooked the overestimation problem
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that might occur when the DDPG algorithm updated iteratively. In ref. [25], the MT and en-
ergy storage were simultaneously controlled by using an improved soft actor−critic (SAC)
algorithm. However, since MT and energy storage were two different energy forms, using
the same neural networks and deep reinforcement learning parameters would adversely
affect the learning efficiency of the SAC algorithm. A summary of the existing methods for
optimal operation of island microgrids is shown in Table 1.

Table 1. Summary of the existing methods for optimal operation of island microgrids.

Ref. No Method Advantages Disadvantages

[5] Centralized control Guaranteed power distribution
by capacity

Failure of the central controller will
cause the whole system to

be abnormal

[6] Adaptive droop strategy

Compensates for the impact caused
by the voltage drop of the feeder to

improve the reactive power
distribution accuracy

Failure of the central controller will
cause the whole system to

be abnormal

[8] Cloud−edge collaboration

Alleviates the tremendous
computational pressure caused by

excessively centralized
computation tasks

Requires the construction of a
cloud−based service platform,

which is expensive to build

[9] Multi−agent system based
multi−layer architecture

Achieves the plug−and−play
function of distributed MT with
guaranteed frequency recovery

No consideration of the operational
economics of island microgrids

[10] Distributed control using two
sensors

Achieves the plug−and−play
function of distributed MT with

guaranteed optimal tide

No consideration of the operational
economics of island microgrids

[11] Dual−layer consensus control
Achieves capacity−based allocation

of MT output power within and
between microgrids

No consideration of the operational
economics of island microgrids

[12] Equal micro−increment dual−layer
consensus control

Reduces the operational cost of
distributed power sources

No consideration of the operating
costs of other devices in

the microgrid

[22] Improved DDQN algorithm Greatly improves the learning
ability of the algorithm

The action space of the algorithm is
discrete, and the computational

accuracy is low

[23]
Model−actor−critic reinforcement

learning combined with
event−triggered control

Reduces the computational and
communication requirements of the

control process

The calculation process is
more complicated

[24] DDPG algorithm Provides effective scheduling
strategies for household microgrids

Overlooks the overestimation
problem that might occur when the

DDPG algorithm updated
iteratively

[25] Improved SAC algorithm Provides effective scheduling
strategies for microgrids

The training process can adversely
affect the learning efficiency of the

SAC algorithm

To the best of our knowledge, although there have been some studies on the opti-
mal operation of island microgrids, they mostly consider island microgrids containing a
single MT. In fact, few studies have been conducted on the optimal operation methods
for island microgrids comprising multiple distributed MTs. Therefore, this paper pro-
poses a novel dual−layer distributed optimization operation method for island microgrids
containing multiple distributed MTs. The proposed method combines consensus con-
trol and multi−agent reinforcement learning algorithms and reasonably improves them.
Consequently, the proposed method can improve the effectiveness of optimal scheduling
decisions while improving the economy and flexibility of island microgrid operation. The
main contributions of this paper include:
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1. A two−layer distributed optimal operation framework is established for island micro-
grids, which develops upon the operating environment model of an island microgrid.
The lower layer is a distributed control layer, and it uses the consensus control method
with the goal of unifying the operating status of distributed MTs. The upper layer is
the optimal scheduling layer, and it aims to maximize the economic benefits of island
microgrids by using a two−stage MATD3 algorithm.

2. A novel adaptive consensus control method is proposed in the lower layer, which allo-
cates the output power of distributed MTs according to their capacities while ensuring
that the total output power of the MTs follows a reference signal provided by the
upper layer. Additionally, the proposed method guarantees the plug−and−play capa-
bility of distributed MTs, which means that the above functionalities are maintained
even when distributed MTs are plugged in or plugged out from the system.

3. A two−stage MATD3 is proposed in the upper layer, which can maximize the opera-
tional economy of island microgrids by adjusting the reference signals of distributed
MTs and energy storage. Moreover, the method incorporates a pre−training stage to
enhance the training effectiveness of the algorithm, while also mitigating the sensitiv-
ity of the MATD3 algorithm to the parameters, thereby reducing the complexity of
parameter tuning.

The remainder of the paper is organized as follows. Section 2 presents the modeling
of the islanded microgrid. Section 3 introduces a dual−layer distributed optimization
operation method for the islanded microgrid. Section 4 provides a simulation analysis of
the proposed method. Finally, conclusions are drawn in Section 5.

2. Island Microgrid Model

Generally, an island microgrid includes both land−based energy and sea−based
energy. In this context, the island microgrid designed in this study consists of photovoltaic
(PV) power generation, wind turbine (WT) power generation, MTs, tidal power generation,
wave power generation, energy storage (ES), and loads, as depicted in Figure 1.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 32 
 

 

MT. In fact, few studies have been conducted on the optimal operation methods for island 

microgrids comprising multiple distributed MTs. Therefore, this paper proposes a novel 

dual−layer distributed optimization operation method for island microgrids containing 

multiple distributed MTs. The proposed method combines consensus control and 

multi−agent reinforcement learning algorithms and reasonably improves them. Conse-

quently, the proposed method can improve the effectiveness of optimal scheduling deci-

sions while improving the economy and flexibility of island microgrid operation. The 

main contributions of this paper include: 

1. A two−layer distributed optimal operation framework is established for island mi-

crogrids, which develops upon the operating environment model of an island mi-

crogrid. The lower layer is a distributed control layer, and it uses the consensus con-

trol method with the goal of unifying the operating status of distributed MTs. The 

upper layer is the optimal scheduling layer, and it aims to maximize the economic 

benefits of island microgrids by using a two−stage MATD3 algorithm. 

2. A novel adaptive consensus control method is proposed in the lower layer, which 

allocates the output power of distributed MTs according to their capacities while en-

suring that the total output power of the MTs follows a reference signal provided by 

the upper layer. Additionally, the proposed method guarantees the plug−and−play 

capability of distributed MTs, which means that the above functionalities are main-

tained even when distributed MTs are plugged in or plugged out from the system. 

3. A two−stage MATD3 is proposed in the upper layer, which can maximize the opera-

tional economy of island microgrids by adjusting the reference signals of distributed 

MTs and energy storage. Moreover, the method incorporates a pre−training stage to 

enhance the training effectiveness of the algorithm, while also mitigating the sensi-

tivity of the MATD3 algorithm to the parameters, thereby reducing the complexity of 

parameter tuning. 

The remainder of the paper is organized as follows. Section 2 presents the modeling 

of the islanded microgrid. Section 3 introduces a dual−layer distributed optimization op-

eration method for the islanded microgrid. Section 4 provides a simulation analysis of the 

proposed method. Finally, conclusions are drawn in Section 5. 

2. Island Microgrid Model 

Generally, an island microgrid includes both land−based energy and sea−based en-

ergy. In this context, the island microgrid designed in this study consists of photovoltaic 

(PV) power generation, wind turbine (WT) power generation, MTs, tidal power genera-

tion, wave power generation, energy storage (ES), and loads, as depicted in Figure 1. 

 

Figure 1. Structure of the island microgrid designed in this study. 

First, we model the distributed MTs, ES, and busbar of the island microgrid. 

• Distributed MTs 

PV WT

Distributed microturbines Energy storage

Resident load

Reinforcement 

learning agent

Reinforcement 

learning agent

Power Grid

Onshore Energy

Offshore Energy

Power line

Information signal

Control signal

Onshore

Offshore

Tidal power generation

Wave power generation

Figure 1. Structure of the island microgrid designed in this study.

First, we model the distributed MTs, ES, and busbar of the island microgrid.

• Distributed MTs

MTs provide an adjustable power supply to island microgrids by combusting fuels,
which can effectively reduce the dependence of island microgrids on external grids. As-
suming there are m distributed MTs in the island microgrid, the total operational cost can
be expressed as in the form of a quadratic function as [26]

CMT(t) =
m

∑
i=1

[αi(Pi(t))
2 + βiPi(t) + ci], (1)
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where CMT(t) denotes the total fuel cost of the distributed MTs during the t period; Pi(t)
represents the power output of the i−th MT during the t period; ai, βi, and ci are the fuel
cost coefficients of the i−th MT.

The output power of MTs should meet the following constraint:

Pi,min < Pi(t) < Pi,max, (2)

−Ri,down ≤ Pi(t)− Pi(t− 1) ≤ Ri,up, (3)

where Pi,min and Pi,max denote the maximum and minimum output power of the i−th
MT, respectively, while Ri,down and Ri,up denote the upward ramp and downward ramp
constraints of the i−th MT, respectively.

• Energy storage

Energy storage can coordinate with renewable energy sources with randomness and
fluctuations, playing a role in “peak shaving and valley filling” to ensure the reliability and
economy of microgrids. Considering the charging and discharging power and the state of
charge (SOC) of the energy storage, the charging and discharging process of energy storage
can be expressed as [20]

SOC(t + 1) =


SOC(t) + ηPES(t)∆t

Ses
, PES(t) > 0,

SOC(t) + PES(t)∆t
ζSes

, PES(t) < 0,

SOC(t), PES(t) = 0,

(4)

where SOCi(t) represents the state of charge of the energy storage at time t; PES(t) represents
the power output or absorption of ES during the t period; η and ζ denote the charging
and discharging efficiencies of the ES device, respectively; Ses indicates the rated capacity
of the ES.

The cost of ES is composed of two main components, namely capacity cost and power
cost, which can be expressed as [27]

CES(t) = gESes + gP|PES(t)|, (5)

where CES(t) represents the total of energy storage during the t period; gE indicates the
capacity cost coefficient of ES; gP denotes the power cost coefficient of ES.

The charging/discharging power and SOC of ES should meet the following constraints:{
0 < PES(t) < Pch.max, PES(t) > 0,

0 < |PES(t)| < Pdis.max, PES(t) < 0,
(6)

SOCmin < SOC(t) < SOCmax (7)

where Pch,max and Pdis,max represent the maximum power of ES during charging and
discharging, respectively; SOCmax and SOCmin denote the maximum and minimum SOC
of ES.

• Island microgrid busbar

The busbar of an island microgrid acts as a bridge for energy exchange between the
island microgrid and the external grid. Assuming that all renewable energy output power
in the island microgrid is integrated into the grid, the busbar of the island microgrid must
maintain power balance. Therefore, the power of the busbar of the island microgrid can be
expressed as

PGrid(t) = PL(t)− [
m

∑
i=1

Pi(t) + PPV(t) + PWT(t) + PES(t) + PTidal(t) + PWave(t)], (8)
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where PGrid(t) represents the power exchanged between the island microgrid and the
external grid. PGrid(t) > 0 represents the period when the island microgrid purchases
power from the external grid. Conversely, PGrid(t) < 0 represents the period in which the
island microgrid sells power to the external grid. PPV(t) represents the output power of
PV generation; PWT(t) indicates the output power of WTs; PTidal(t) indicates the output
power of tidal energy generation; PWave(t) represents the output power of wave energy
generation; PL(t) represents the power consumed by the load in the island microgrid.

The cost of purchasing electricity from the external grid or the benefit of selling
electricity to the island microgrid can be expressed as{

CGrid(t) = σb(t)PGrid(t), PGrid(t) > 0,

CGrid(t) = σs(t)PGrid(t), PGrid(t) ≤ 0,
(9)

where CGrid(t) represents the cost of energy exchange between the island microgrid and
the external power grid; σb(t) and σs(t) represent the electricity prices at which the island
microgrid purchases and sells electricity to the external power grid, respectively.

In summary, the total operating cost of the island microgrid proposed in this paper
can be expressed as

F(t) = σLPL(t) + CMT(t) + CES(t) + Cgrid(t), (10)

where F(t) represents the total operational cost of the island microgrid, while σL denotes
the electricity price at which the island microgrid sells power to its internal users.

3. Dual−Layer Distributed Optimal Operation Method for Island Microgrids

The proposed two−layer distributed optimal operation framework for island micro-
grids is illustrated in Figure 2. The upper layer contains two different deep reinforcement
learning agents, namely the MT and ES agents, for computing the optimal scheduling
policy for the island microgrid. The MT agent offers reference signals for the distributed
MTs, while the ES agent offers reference signals for ES. The lower layer contains multiple
distributed MTs and ES devices. The multiple distributed MTs achieve output power
distribution by capacity and total output power following the reference signal via mutual
communication and the consensus control method. Notably, as long as one or a few MTs in
the lower layer can receive the reference signal from the upper layer, control over all MTs
can be achieved.
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3.1. Lower Layer Control Method
3.1.1. Fundamental Theory of Multi−Agent Consensus Control

Each controller of the MT in the island microgrid can be regarded as a consensus
agent, and the communication relationships among multiple consensus agents can be
represented by graph Gε(Vε, ψε, Kε, Bε). Assuming there are nε agents in the graph,
Vε = {Vε, 1 · · · , Vε, nε} represents the set of nodes, each of which represents a consensus
agent. ψε ∈ Vε × Vε represents the set of edges, representing the communication lines
between nodes. Kε = (Kε

ij)(nε−1)×(nε−1)
represents the weights of edges. If there is a

communication connection between Vε,i ∈ Vε and Vε,j ∈ Vε, then kε
ij > 0, otherwise, kε

ij = 0.
Bε = diag(kε

1,0, · · · , kε
nε ,0) represents the leading adjacency matrix. If Vε,i ∈ Vε can receive

a reference signal, then kε
i0 > 0, otherwise, kε

i0 = 0. Assuming that each node has a scalar
state signal xi, each node can update its state based on its own state and the state signal
of the nodes it communicates with. Based on the consensus control scheme, the rules for
updating the state of the node have the following two forms [28]:

.
xi(t) = ∑

j∈Vε

kε
ij(xj(t)− xi(t)), (11)

.
xi(t) = ∑

j∈Vε

[kε
ij(xj(t)− xi(t)) + kε

i0(xre f − xi(t))] (12)

where
.
xi denotes the differential of the state variable xi. According to [28], if the communi-

cation network graph among consensus agents has a spanning tree, then the following two
theorems hold.

Theorem 1. If the update rule defined by (11) is employed, then the states of all agents will converge
to a consensus value. Specifically, if the communication network graph is balanced, then the states
of all agents will converge to the average of their initial states, i.e.,

lim
t→∞

xi(t) = [ ∑
i∈Vε

xi(0)]/nε. (13)

Theorem 2. If the update rule defined by (12) is employed, then the states of all agents will converge
to the reference value xre f , i.e.,

lim
t→∞

xi(t) = xre f . (14)

The proof process of the two theorems mentioned above can be found in [28]. Notably,
the reference value xre f can also possess dynamics.

3.1.2. Lower Layer Adaptive Consensus Control for Island Microgrids

The objective of the lower layer adaptive consensus control scheme for the island
microgrid is to allocate the output power of multiple distributed MTs in the island microgrid
based on their capacities. Moreover, the lower layer control scheme ensures that the total
output power of the remaining running distributed MTs is equal to the reference value
provided by the upper layer. Assuming there are m distributed MTs in the island microgrid,
and the communication network graph between MTs is balanced, the control objectives of
the lower layer can be described as

lim
t→∞
|Pi(t)/Pi,max − Pj(t)/Pj,max| = 0, (15)

lim
t→∞
|

m

∑
i=1

Pi(t)− Pre f (t)| = 0 (16)
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where Pi and Pj denote the output power of the i−th and j−th MTs, respectively; Pi,max
and Pj,max denote the maximum output power of the i−th and j−th MTs; Pre f denotes the
power reference signal provided by the upper layer.

Three state signals, the number state signal ni(t), capacity ratio state signal ηi(t),
and the power state signal Pi(t), are transmitted among the distributed MTs via mutual
communication. Among them, the initial value of the number state signal of one of the MTs
is set to 1, while the initial value of the number state signal of other MTs is set to 0. The
updating formula for the number state of each MT is

.
ni =

m

∑
j=1

kn
ij(n j − ni), (17)

where
.
ni denotes the differential of ni. According to Theorem 1, (17) can converge the

number state values of each MT to the average value of the initial number state values of
all MTs, which is the reciprocal of the number of MTs in the island microgrid, i.e.,

lim
t→∞

ni(t) = [
m

∑
i=1

ni(0)]/m = 1/m. (18)

The initial value of the capacity ratio state ηi(0) = Pi,max/Pnom, where Pnom indicates
the standard value of MT capacity of the island microgrid. The updating formula for the
capacity ratio state of each MT is

.
ηi =

m

∑
j=1

kη
ij(η j − ηi), (19)

where
.
ηi denotes the differential of ηi. According to Theorem 1, (19) can converge the state

value of the capacity ratio of each MT to the initial average value of the capacity ratios of
all MTs, i.e.,

lim
t→∞

ηi(t) = [
m

∑
i=1

ηi(0)]/m. (20)

From (15), it is evident that when the power of the island microgrid reaches equilib-
rium, the output power of each MT needs to satisfy

P1

P1,max
=

P2

P2,max
= · · · = Pm

Pm,max
. (21)

By combining (21) with the expression for the capacity ratio, it can be deduced that:

P1

η1(0)
=

P2

η2(0)
= · · · = Pm

ηm(0)
. (22)

Let Pm
re f = Pi/ηi(0), then Pi = ηi(0) · Pm

re f . As expressed in (15), when the power of
the island microgrid reaches equilibrium, the sum of the output power of all MTs needs to
equal the reference signal provided by the upper layer, that is

Pre f = P1 + P2 + · · · Pm = η1(0)Pm
re f + η2(0)Pm

re f + · · ·+ ηm(0)Pm
re f = [

m

∑
i=1

ηi(0)] · Pm
re f , (23)

By combining (18), (20), and (23), we obtain the following expression:

Pm
re f = Pre f ·

ni(t)
ηi(t)

. (24)



J. Mar. Sci. Eng. 2023, 11, 1201 9 of 31

Considering Pm
re f as the output power reference signal of the MT capable of obtaining

upper−layer reference signals, and letting Pk,i = Pi/ηi, the updating formula for the power
state of each MT is

.
Pk,i =

m

∑
j=1

[kP
ij(Pk,j − Pk,i) + kP

i0(Pm
re f − Pk,i)], (25)

where
.
Pk,i denotes the differential of Pk,i. According to Theorem 2, (25) can enable all

Pi/ηi of the MTs to converge to Pm
re f , which achieves power allocation of the MTs’ output

according to their capacity. It can also be inferred from (23) that the sum of the output
power of all MTs is equal to the reference signal Pre f provided by the upper layer.

3.1.3. Plug−and−Play Improvements for Adaptive Consensus Control

Unlike the traditional distributed MT consensus control method, the control objective
of this study is to make the total output power of all MTs track the reference signal provided
by the upper layer. When a new distributed MT is plugged in, the adaptive consensus
control scheme described above still enables the total output power of the MTs to follow
the reference signal provided by the upper layer. However, when an MT is plugged out,
the output power of the remaining MTs will remain unchanged, and then the total output
power of the MTs will not be able to follow the reference signal. This is because when an
MT is plugged in or plugged out, the communication topology between distributed MTs
will be changed. At this time, for the state signals ni and ηi, the controller will take the state
signal value at the moment the MT is plugged in or plugged out as the new initial state
value. Therefore, the state value of the MT converges to the average value of new initial
state value. Once the MT is plugged in, the average value of the new initial value is still
equal to the average of the original initial state values of all MTs in the island microgrid,
while it is not equal after the MT is plugged out. As a result, the total output power of the
remaining MTs after the MT is plugged out will not be equal to the upper reference signal.

Consider the state signal ni of the distributed MTs as an example and assume a new
MT is plugged in at time tr. The control objective after the MT is plugged in will be

lim
t→∞

ni(t) = [
m+1

∑
i=1

ni(0)]/(m + 1). (26)

The state value of the MT plugged in at time tr is its initial state value, i.e., nm+1(tr) =
nm+1(0). Assuming that the system is already balanced before the new MT is plugged in, it
can be inferred from Theorem 1 that:

n1(tr) = n2(tr) = · · · nm(tr) = [
m

∑
i=1

ni(0)]/m. (27)

It can be inferred from (27) and Theorem 1 that, after the new MT is plugged in, the
system will converge to a new equilibrium state as

lim
t→∞

ni(t) = n1(tr)+n2(tr)+···+nm(tr)+nm+1(tr)
m+1 =

{
m
∑

i=1
ni(0)]/m}·m+nm+1(0)

m+1

= [
m+1
∑

i=1
ni(0)]/(m + 1).

(28)

It can be seen in (28) that the control objectives shown in (29) can be achieved.
However, assuming that at time ts the m−th agent is plugged out, our control objective

will be

lim
t→∞

ni(t) = [
m−1

∑
i=1

ni(0)]/(m− 1). (29)
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Similarly, assuming that the system is already balanced before the m−th MT is plugged
out, it can be inferred from Theorem 1 that:

n1(ts) = n2(ts) = · · · nm(ts) = [
m

∑
i=1

ni(0)]/m (30)

According to (30) and Theorem 1, it can be concluded that after the m−th MT is
plugged out, the system will converge to a new equilibrium state as

lim
t→∞

ni(t) = n1(ts)+n2(ts)+···+nm−1(ts)
m−1 =

{
m
∑

i=1
ni(0)]/m}·(m−1)

m−1

= [
m
∑

i=1
ni(0)]/m 6= [

m−1
∑

i=1
ni(0)]/(m− 1)

(31)

According to (31), it can be inferred that when the m−th MT is plugged out, the state
ni of the remaining MTs will remain unchanged. Therefore, the control objectives shown in
(29) will not be achieved.

Based on the analysis above, we improve on the adaptive consensus control method
proposed in Section 3.1.3 that enables the control objective shown in (29) to be achieved
after the MT is plugged out. Assuming that when a distributed MT is plugged out, the
communication link with other distributed MTs remains conductive for a brief period,
enabling the disconnected distributed MT to send its signal to the connected distributed
MTs, thereby enabling the remaining MTs to reach a new equilibrium.

We use t−s to represent the moment just before ts, and use t+s to represent the moment
just after ts. First, the value of the system’s number of distributed MTs m at the moment
just before ts is obtained as m = 1/nm(t−s ). Subsequently, the status value of the unplugged
MT changes to the following expression:

nm =
∫ m

∑
j=1

kn
ij(n j − nm)dt +

m
m− 1

[nm(ts)− nm(0)]. (32)

From (32) we can learn that:{
ni(t+s ) = ni(t−s ), i = 1, 2, · · · , m− 1,

ni(t+s ) = ni(t−s ) +
m

m−1 [ni(t−s )− ni(0)], i = m.
(33)

According to Theorem 1, the new equilibrium state to which the state signal ni of each
MT will converge is

lim
t→∞

ni(t) = n1(t+s )+n2(t+s )+···+nm−1(t+s )+nm(t+s )
m

=
n1(t−s )+n2(t−s )+···+nm−1(t−s )+nm(t−s )+ m

m−1 [nm(t−s )−nm(0)]
m .

(34)

Combined with (33) and (34), the following is obtained:

lim
t→∞

ni(t) =
{[

m
∑

i=1
ni(0)]/m}·m+ m

m−1 [[
m
∑

i=1
ni(0)]/m−nm(0)]

m

=

m−1
m

m
∑

i=1
ni(0)+[

m
∑

i=1
ni(0)]/m−nm(0)

m−1 = [
m−1
∑

i=1
ni(0)]/(m− 1).

(35)

According to (35), the improved method proposed in this study can achieve the control
objective expressed in (29) after the MT is plugged out. Once the state signal reaches a new
equilibrium, the MT that was plugged out will cut off all communication links. According
to (31), the state signal ni of the remaining MTs will remain unchanged even after the
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communication links are cut off. Therefore, the control objective expressed in (29) can still
be achieved.

The same control method as ni is used for state signal ηi. In summary, the lower−layer
controller of the island microgrid can be classified as

N = 1
ni(t

−
i,s)

,

Pm
re f = Pre f ·

ni(t)
ηi(t)

,

ni =
∫ m

∑
j=1

kn
ij(n j − ni)dt + li{ N

N−1 [ni(t−i,s)− n(0)]},

ηi =
∫ m

∑
j=1

kη
ij(η j − ηi)dt + li{ N

N−1 [ηi(t−i,s)− η(0)]},

Pk,i =
∫ m

∑
j=1

[kP
ij(Pk,j − Pk,i) + kP

i0(Pm
re f − Pk,i)]dt,

(36)

where t−i,s denotes the moment just before the i−th distributed MT is plugged out; N
indicates the number of distributed MTs at t−i,s. li denotes the sign function indicating
whether the i−th distributed MT is plugged out; that is, if the i−th distributed MT is
plugged out, li = 1, otherwise, li = 0.

3.1.4. Stability Analysis of Adaptive Consensus Control in the Lower Layer of the
Island Microgrid

For convenience of notation, let n = (n1, n2, · · · , nm)
T , η = (η1, η2, · · · , ηm)

T ,
P = (P1, P2, · · · , Pm)

T , and Pk = (Pk,1, Pk,2, · · · , Pk,m)
T , and the adjacency matrices for

the three state signals transmitted in the MT communication network graph are given as
An = (kn

ij)m×m
, Aη = (kη

ij)m×m
, and AP = (kP

ij)m×m
, respectively. The leading adjacency

matrix for the state variable P is B = (kP
i0)m×m, and the Laplacian matrices for the three com-

munication quantities are Ln, Lη , and LP. For convenience, let ε ∈ {n, η, P}. Accordingly,

Lε = Dε − Aε, where Dε = diag(dε
1, dε

2, · · · , dε
m), and dε

i =
m
∑

j=1
kε

ij.

According to (36), the lower−layer controller can be formulated as follows:

.
n = −Lnn,
.
η = −Lηη,
.
Pk = −(LP + B)Pk + BPm

re f ,

Pm
re f = Pre f n · /η .

(37)

Subsequently, the Lyapunov candidate can be expressed as

V(n, η, Pk) = nTn + ηTη + PT
k Pk. (38)

Based on the previous statement that n1, n2 · · · nm ≤ 1, differentiating along the
trajectory of the system (37), we have

.
V
∣∣∣(37) ≤ −[2λ2(Ln)− κ]nTn− [2λ2(Lη)− κ]ηTη − [2λmin(LP + B)−

2P2
re f

κ · ηTη
λmax(B2)]PT

k Pk, (39)
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where λmin denotes the smallest eigenvalue, λ2 denotes the second smallest eigenvalue, and κ

denotes an arbitrary positive constant. Therefore, a sufficient condition for
.

V
∣∣∣(37) < 0 is

P2
re f λmax(B2)

λmin(LP + B)ηTη
< κ < 4min{λ2(Ln), λ2(Lη)}. (40)

From (40), we have

P2
re f λmax(B2) < 4λmin(LP + B)min{λ2(Ln), λ2(Lη)}ηTη. (41)

Therefore, we can conclude that the stability of the lower control scheme of the island
microgrid can be ensured when Ln, LP, B, and Pre f of the communication network between
the MTs satisfy (41).

3.2. Upper Layer Optimal Scheduling Method for the Island Microgrid Based on Two−Stage
MATD3 Algorithm
3.2.1. Markov Model for Optimal Scheduling of the Island Microgrid

The upper−layer optimal scheduling of the island microgrid adopts a multi−agent
deep reinforcement learning method. The decision−making process of deep reinforcement
learning can be described as a Markov decision process (MDP) [29], which is generally com-
posed of five elements, namely

{
S, a, PS,S′ , r, γ

}
. Specifically, S represents the state space,

which is a set of environmental state information observable by the agent; a represents
the action space, which is the set of actions taken by the agent; Ps,s′ represents the state
transition probability, which indicates the probability that the environment will transition
from state S to state S′ after the agent takes action a; r represents the immediate reward,
which indicates the reward given to the agent by the environment after taking action a in
state S; and γ represents the discount factor, which reflects the impact of the action taken
at the current time on the agent’s reward in the future. The state space, action space, and
reward function of the island microgrid discussed in this paper are designed as follows.

• State space

The state space refers to a collection of environmental information observable by a
deep reinforcement learning agent. The state space of the island microgrid designed in
this paper includes the operating time, user load, wind power generation, photovoltaic
power generation, tidal power generation, wave power generation, microgrid bus power,
MT power, ES power, ES SOC, and time−of−use electricity price. The MTs and ES are
controlled by the MT agent and ES agent, respectively, and the two agents observe different
environmental state variables. Considering the fuel supply problem of the MTs, we arrange
the distributed MTs in the inland areas of the island. The state variables observed by the
MT agent include the total output power of the MTs, PV power generation, wind power
generation, user load, and external grid time−of−use of the electricity price. Considering
that energy storage devices can mitigate power fluctuations in the grid and ensure the safe
integration of the island microgrid, we set up ES devices in the coastal areas of the island.
The state variables observed by the ES agent include the system operating time, ES power,
ES SOC, microgrid busbar power, tidal power generation, and wave power generation.
Therefore, the state space of the MT agent and the ES agent can be described as

SMT = [PMT,sum, PPV, PWT, PL, σb, σs], (42)

SES = [t, PES, SOC, Pgrid, PTidal, PWave], (43)

where SMT denotes the state space of the MT agent; SES indicates the state space of the ES
agent; PMT,sum indicates the total output power of the MTs, which can be obtained from
(23) and (24) that

PMT,sum = (Pi · ηi)/[ηi(0) · ni]. (44)
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From (44), it can be inferred that the MT agent only needs to be connected to the
controller of one of the MTs to observe the total output power of all MTs.

• Action space

In the microgrid designed in this study, the actions that can be controlled include the
output power of MTs and the charging/discharging power of ES. Therefore, the action
spaces of the MT and ES agents can be defined as

AMT = [Pm
re f ], (45)

AES = [PES, re f ], (46)

where AMT indicates the action space of the MT agent; AES denotes the action space of the
ES agent; and PES, re f denotes the reference signal for the charging/discharging power of
the energy storage.

• Reward function

When a deep reinforcement learning agent selects an action, the environment will
provide a reward. However, if the action chosen by the agent causes the operational state of
the island microgrid to exceed the environmental constraints, the environment will impose
a penalty. In this study, the environmental constraint penalties originate from the ramp
constraint of MTs and the SOC constraint of ES. The penalty expressions are

Cc
i,MT = −λc

i,MT ·max
{

Pi(t)− Pi(t− 1)− Ri,up, 0
}
+ λc

i,MTmin{Pi(t)− Pi(t− 1) + Ri,down, 0}, (47)

CS
ES(t) = −λS

ES · Sesmax{SOC(t)− SOCmax, 0}+ λS
ES · Sesmin{SOC(t)− SOCmin, 0}, (48)

where Cc
i,MT represents the penalty for the i−th distributed MT exceeding the ramping

constraint; λc
i,MT indicates the penalty coefficient for the ramp constraint penalty of the

i−th MT; CS
ES(t) represents the penalty for energy storage exceeding the SOC constraint;

and λS
ES denotes the penalty coefficient for the SOC constraint penalty.

For ES, the SOC at the end of the current scheduling cycle is the same as the SOC at
the beginning of the next scheduling cycle. To ensure that the SOC at the end of the current
cycle does not affect the scheduling ability of ES in the next scheduling cycle, we aim for the
SOC at the end and beginning of each scheduling cycle to be as equal as possible. Therefore,
we have designed an exponential reset penalty for the SOC of the energy storage as

Cr
ES = λr

ES · (eδ·t − 1) · [SOC(t)− SOC(0)]2, (49)

where Cr
ES denotes the reset penalty for energy storage; λr

ES indicates the penalty coef-
ficient of the reset penalty; δ symbolizes the exponential coefficient of the reset penalty.
Equation (49) indicates that the reset penalty for energy storage is small at the beginning
of a scheduling cycle and increases over time. It reaches its maximum at the end of the
scheduling cycle.

In summary, the upper layer optimal scheduling aims to minimize the operating costs
of the islanded microgrid during a scheduling cycle by reasonably controlling the power
of distributed MTs and energy storage. Therefore, the total reward function of the deep
reinforcement learning agent for the islanded microgrid can be expressed as

R = −
T

∑
t=1

[F(t)+
n

∑
i=1

(CS
ES(t) + Cr

ES(t))], (50)

where R indicates the total reward of the deep reinforcement learning agent for the
islanded microgrid.
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3.2.2. Twin Delayed Deep Deterministic Policy Gradient Algorithm

The twin delayed deep deterministic policy gradient (TD3) algorithm is an improved
version of the DDPG algorithm, which primarily addresses the overestimation problem of
DDPG and improves its convergence speed [30]. The TD3 algorithm contains six neural net-
works: an actor network, two critic networks (critic1 and critic2), and their corresponding
target networks. The update process of these six neural networks is depicted in Figure 3.
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Figure 3. Update process of six neural networks in TD3 algorithm.

First, the agent obtains a tuple (S, a, r, S′) from the experience replay buffer by
random sampling. The actor network then outputs an action signal ã based on the state S in
the tuple. Subsequently, the critic1 network generates the evaluation Q(S, ã) for the action
under the state S. Finally, the actor network updates its network parameters θ using gradient
ascent to maximize Q(S, ã). To address the overestimation problem that often occurs during
the iterative update process, TD3 uses target networks and double Q−learning to improve
the above process. In other words, the TD3 algorithm uses two critic networks and two
target critic networks to enhance the learning effect of the algorithm. The critic networks are
trained with the action and state saved in the buffer, while the next state and the predicted
action by the target actor network train the target critic networks. Specifically, the critic1
and critic2 networks generate evaluation Q1(S, a) and Q2(S, a), respectively, for the action
a in the tuple. The target actor network outputs an action ã′ based on the state S′. Following
that, the target critic1 and critic2 networks generate evaluation Q1(S′, ã′) and Q2(S′, ã′),
respectively, for the action ã′ under the state S′. The minimum of Q1(S′, ã′) and Q2(S′, ã′)
is considered as Q(S′, ã′). The loss functions L1 and L2 can be calculated using [31]:

L1 =
1
2
{

Q1(S, a)− [r + Q(S′, ã′)]
}2 (51)

L2 =
1
2
{

Q2(S, a)− [r + Q(S′, ã′)]
}2 (52)

Finally, the critic1 and critic2 networks’ neural network parameters ω1 and ω2 are
updated using gradient descent to minimize L1 and L2, respectively. Finally, the target
actor network, target critic1 network, and target critic2 network are updated using soft
updates. The update formula for soft updates can be given as [31]:

θ′(t + 1) = θ(t) + (1− τ)θ′(t) (53)
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ω′1(t + 1) = ω1(t) + (1− τ)ω′1(t) (54)

ω′2(t + 1) = ω2(t) + (1− τ)ω′2(t) (55)

where θT represents the neural network parameters of the target actor network; ωT
symbolizes the neural network parameters of the target critic network; and τ � 1
is the target smoothing factor, which indicates the update speed of the target neural
network parameters.

In addition to the above−mentioned improvement methods, the TD3 algorithm also
introduces noise signals following a truncated normal distribution into the output action
signals of the target actor network. The truncated normal distribution can be denoted as
CN(0, σ2, −z, z), which indicates that the variable follows a normal distribution with zero
mean and variance σ2, but the probability of the variable falling outside of [−z, z] is zero.
Using this probability distribution can prevent the output results of deep reinforcement
learning agents from diverging because of the excessively large noise. Moreover, the TD3
algorithm adopts a delayed update strategy for the actor network and target network, i.e.,
updating the critic network once per episode, but updating the actor network and three
target networks at every ϕ episode, where ϕ is an integer greater than or equal to one.

3.2.3. MATD3 Method for Optimal Scheduling of the Island Microgrid

To achieve accurate control, a single−agent reinforcement learning method requires a
single agent to collect the state information of both distributed MTs and ES. This undoubt-
edly increases the communication costs of the island microgrid and operational risks in
harsh climate environments, where communication line failures are common. The central-
ized training and distributed execution of multi−agent reinforcement learning architectures
are popular as they do not require communication between agents during decision−making
and only require local observation information for real−time decision−making. In this
paper, the TD3 algorithm is extended to the MATD3 algorithm, which is suitable for island
microgrids. Its feature is that the state and action information of both the MT and ES agents
are collected and centralized into the experience replay buffer during the training process,
i.e., S = (SMT, SES), a = (aMT, aES). We define the state information of all agents obtained
by agents from the experience replay buffer as global state information and the state in-
formation obtained by agents interacting with the environment as local state information.
The actor networks of both agents are updated based on their local state information, while
the critic network is updated based on the global state information. Considering the MT
agent as an example, its actor network outputs actions ãMT based on its local state SMT. The
critic network of the MT agent generates evaluations Q(S, ãMT) and Q(S, aMT) for ãMT
and aMT, respectively, based on the global state information S obtained from both agents in
the experience replay buffer. Finally, the actor network of the MT agent updates its network
parameters θ based on Q(S, ãMT), while the critic network updates its network parameters
ω based on Q(S, aMT). The same process is applied to the ES agent.

To simplify the notation, let υ ∈ {MT, ES}. Each episode of the MATD3 agent’s
training contains T time steps, and the training process repeats M times to ensure that the
algorithm converges. The specific working process of the proposed MATD3 algorithm for
island microgrids is detailed in Algorithm 1.
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Algorithm 1: MATD3−Based Optimized Scheduling Method for Island Microgrids

1 Initialize τ, θυ, ωυ1, ωυ2 and experience replay buffer D
2 for episode = 1 to M do
3 Initialize random process N for action exploration
4 for t = 1 to T do
5 The MT agent and the ES agent observe their respective state spaces SMT(t) and SES(t)
from their own environments
6 Choose the power actions aMT and aES of distributed MTs and energy storage,
respectively
7 The island microgrid operates according to actions aMT and aES, and it gets the real
island microgrid environmental reward r(t) via (50)
8 The MT agent and the ES agent observe the new state spaces S′MT(t) and S′ES(t) from
the island microgrid environment, respectively
9 Merge (SMT, aMT, r, S′MT) and (SES, aES, r, S′ES) into (S, a, r, S′) and store
(S, a, r, S′) in D
10 SMT ← S′MT, SES ← S′ES
11 for MT agent and ES agent do
12 Sample a random mini−batch of size H (S, a, r, S′) from D
13 Update critic network parameters ωυ1 and ωυ2 by minimizing the loss Lυ1 and
Lυ2, respectively
14 Update actor parameter θυ every two critic updates by maximizing Qυ(S, ãυ)
15 end
16 Update target network parameters for MT agent and ES agent via (53)−(55)
17 end
18 end

3.2.4. Two−Stage Deep Reinforcement Learning Agent Training Method

Owing to the various complex constraints in the island microgrid, deep reinforcement
learning agents often require considerable time to compute the optimum strategy without
prior knowledge. Furthermore, these agents are prone to get stuck in local optimal solutions,
or output actions that converge to bounds [32]. This phenomenon can be attributed to
the utilization of a neural network within the TD3 algorithm for approximating the action
value function in reinforcement learning [33]. During the initial stages of agent training, the
approximation error associated with this neural network is considerably high. When this
error surpasses a certain threshold, the agent becomes incapable of effectively mitigating it
over numerous training iterations. As a result, the algorithm fails to accurately estimate
the value of the agent’s output actions, thereby introducing a bias towards specific action
choices. Moreover, despite the TD3 algorithm incorporating several measures to address
the problem of over− and underestimation, this issue persists, particularly when the
initial random seeds deviate significantly from the optimal policy [34]. If any of the critic
networks in the TD3 algorithm overestimate the value for certain state−action pairs, the
algorithm becomes inclined to select these actions disproportionately. Conversely, if a critic
network underestimates the value of specific actions, they are more likely to be disregarded,
consequently limiting the exploration space of the algorithm. In addition, since the TD3
algorithm is a deterministic policy method, it is sensitive to the initial random seed in the
experience replay buffer [35]. Different initial random seeds directly affect the learning
effect of the TD3 agent. Imitation learning has the advantages of fast training speed and
good convergence. Pre−training the deep reinforcement learning agent through imitation
learning can initialize the experience replay buffer and neural network parameters of the
agent, thereby considerably improving the training speed and learning efficiency of the
agent. Therefore, this study adopted a two−stage training method by combining the
imitation learning pre−training stage and the reinforcement learning training stage, which
means that the agent is initially trained using pre−provided data, and subsequently, the
training continues by modifying the reward function to further explore different policies.
The working process is shown in Figure 4.
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Figure 4. Two−stage deep reinforcement learning training method.

• Stage 1: Imitation learning pre−training stage

The expert scheduling strategy for the day is given by the scheduling personnel of the
island microgrid, which can be described as

D =
{
(P′MT(1), P′ES(1)), (P′MT(2), P′ES(2)), · · · , (P′MT(T), P′ES(T))

}
, (56)

where P′MT(i) represents the total output power suggested by the scheduling personnel
for the i−th time step for MTs, and P′ES(i) represents the charging/discharging power
suggested by the scheduling personnel for the i−th time step for ES. Imitation learning
aims to minimize the difference between the actions taken by the MT agent and the ES
agent and those suggested by the scheduling personnel in each time step. Therefore, the
reward function for the imitation learning pre−training stage is defined as

R′ = −K′
T

∑
i=1

[(P′MT(i)− Pm
re f (i))

2
+ (P′ES(i)− PES, re f (i))

2
], (57)

where Pm
re f (i) represents the reference signal of the total output power of the MTs output by

the MT agent at the i−th time step, and PES, re f (i) represents the reference signal of the ES
charging/discharging power output by the ES agent at the i−th time step. Subsequently,
the MT agent and the ES agent will use the method described in Section 3.2.3 to pretrain
the agents with the objective of maximizing the reward R′. As the reward function in (57) is
a simple quadratic function with a unique extremum, the convergence speed of the agents’
iterative calculations during the imitation learning training phase will be much faster than
that of reinforcement learning.

• Stage 2: Reinforcement learning training stage

Upon completing the pre−training of imitation learning, we obtained the pre−trained
MT and ES agents. Subsequently, we modified the reward function to (50). The MT and ES
agents aim to maximize the real environment reward R and continue training based on the
pre−trained MT and ES agents, which is performed to search for the optimum strategy for
island microgrid scheduling.

The two−stage training method described above was conducted in an offline simula-
tion environment. Upon completing the proposed two−stage training, both the MT and ES
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agents can utilize their respective actor networks to make distributed online decisions for
the island microgrid in a real−world environment.

In summary, the working flowchart of the dual−layer distributed optimal operation
method proposed in this section is shown in Figure 5.
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Figure 5. Working flowchart of the dual−layer distributed optimal operation method.

4. Numerical Simulation Analysis

This section designs an island microgrid system with PV power generation, wind
power generation, tidal energy generation, wave energy generation, ES, and three dis-
tributed MTs. The neighboring MTs exchange status information via communication links.
The data on PV power generation, wind power generation, tidal energy generation, wave
energy generation, and load in the island microgrid are shown in Figure 6 [36]. The
time−of−use pricing for electricity purchase and sale of the island microgrid from the
external grid are listed in Table 2 [37]. The relevant parameters of the devices in the island
microgrid are listed in Table 3. The upper and lower boundaries of each variable in the
state space and action space of the MT agent and ES agent are shown in Table 4.
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Figure 6. Power output of different types of renewable energy in the designed island microgrid.

Table 2. Time−of−use pricing for electricity purchase and sale of the island microgrid from the
external grid.

Time/h Electricity Purchase Price
[CNY/(kW·h)]

Electricity Sales Price
[CNY/(kW·h)]

1–6, 22–24 0.37 0.28
7–9, 14–17, 20, 21 0.82 0.65

10–13, 18, 19 1.36 0.78

Table 3. The relevant parameters of the devices in the island microgrid.

Main Parameters Values Main Parameters Values

Pnom 200 kW R2up 60 kW
P1min 0 kW R3up 50 kW
P2min 0 kW Pchmax 100 kW
P3min 0 kW Pdismax 100 kW
P1max 160 kW Ses 1500 kW·h
P2max 120 kW SOC (0) 0.5
P3max 100 kW α 0.0013

R1down 80 kW β 0.553
R2down 60 kW c 14.17
R3down 50 kW gE 0.5

R1up 80 kW gP 10

Table 4. The upper and lower boundaries of each variable in the state space and action space.

Variables Agent Space Lower Boundary Upper Boundary

PMT,sum MT State 0 kW 380 kW
PPV MT State 0 kW 200 kW
PWT MT State 0 kW 300 kW
PL MT State 0 kW 500 kW
σb MT State 0 CNY 2 CNY
σs MT State 0 CNY 2 CNY
t ES State 0:00 24:00

PES ES State −100 kW 100 kW
SOC ES State 0 1
Pgrid ES State −1000 kW 1000 kW
PTidal ES State 0 kW 200 kW
PWave ES State 0 kW 200 kW
Pm

re f MT Action 0 kW 380 kW
PES,ref ES Action −100 kW 100 kW
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4.1. Simulation Analysis of Lower Layer Adaptive Consensus Control

Assuming that all MTs in the island microgrid are schedulable, the controller of MT1
can receive reference signals provided by the upper layer. The adjacency matrices of the
three state signals in the MTs communication network graph are An = Aη = [0, 500, 500;
500, 0, 500; 500, 500, 0] and AP = [0, 20, 20; 20, 0, 20; 20, 20, 0], and the leading adjacency
matrix of the state signal P is diag{20, 0, 0}. The unit of the reference signal for the total
output power of the MTs is MW, ranging from [0, 0.38]. As listed in Table 3, the capacity
ratio of the three MT is 0.8:0.6:0.5, so η1(0) = 0.8, η2(0) = 0.6, and η3(0) = 0.5. It can be
calculated that 1.205 < ηTη < 1.25. It can be determined that Ln, Lη , LP, B, and Pref can
satisfy the requirements of (41). We design two scenarios for the lower layer control of the
island microgrid.

Scenario 1: The reference signal provided by the upper layer changes without MT
plugging in or out;

Scenario 2: The reference signal provided by the upper layer remains unchanged with
MT plugging in or out.

4.1.1. Assessment of Control Performance when the Reference Signal Changes

In this section, we assess the control performance of the lower layer control for Scenario 1.
The upper layer provides an initial power reference signal Pre f of 240 kW. At t = 4 s, Pre f
changes to 320 kW, and at t = 8 s, Pre f changes to 160 kW. The changes in the output power
of each of the three MTs and the total output power within a period of 12 s are shown
in Figure 7.
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Figure 7. Distributed MT output power changes when the upper layer reference signal changes.
(a) Output power of the three MTs; (b) total output power of the three MTs.

As shown in Figure 7a,b, when three MTs are connected at t = 0 s, the total output
power of the three MTs can rapidly converge to the reference value and achieve accurate
power allocation according to a capacity ratio of 0.8:0.6:0.5. Even when the reference signal
provided by the upper layer changes at t = 4 s and t = 8 s, the three MTs can still achieve
a total output power equal to the reference signal, while maintaining power allocation
according to their respective capacities.

4.1.2. Plug−and−Play Performance Assessment of Distributed MTs

Here, we assess the control performance of the lower layer control in Scenario two.
The power signal Pre f = 240kW provided by the upper layer remains constant. At t = 4 s,
MT3 is plugged out from the island microgrid due to a fault. At t = 8 s, MT3 is repaired and
plugged back. To assess the plug and play performance of the lower layer control scheme,
we conducted experiments under two conditions: without adding the plug−and−play
control method, and with its addition, as described in Section 3.1.3. We recorded the changes
in the output power of the three MTs and the total output power using Figures 8 and 9 for
the first and second conditions, respectively.
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Figure 8. Without adding the plug−and−play control method, the output power changes of dis-
tributed MTs when MT3 is being plugged in and back. (a) Output power of the three MTs; (b) total
output power of three MTs.
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Figure 9. Adding the plug−and−play control method, the output power changes of distributed MTs
when MT3 is being plugged in and back. (a) Output power of the three MTs; (b) total output power
of three MTs.

As shown in Figure 8a, when using the adaptive consensus control method proposed
in this paper without the plug−and−play control, the output power of the MTs can be
allocated according to their capacity. However, when MT3 is plugged out at t = 4 s, as
shown in Figure 8b, the output powers of MT1 and MT2 remain unchanged and the total
output power of the MTs cannot track the power reference signal provided by the upper
layer. As depicted in Figure 9a,b, by adding the plug−and−play control method proposed
in this paper, MT1 and MT2 can quickly adjust their output power after MT3 is plugged
out at t = 4 s, so that the sum of their output powers can track the power reference signal.
Moreover, the output power of MT1 and MT2 can be accurately allocated according to their
capacity. When MT3 is plugged back at t = 8 s, MT1, MT2, and MT3 can adaptively adjust
their output power so that the total output power of the three MTs can still track the power
reference signal while achieving capacity−based power allocation.

In summary, the lower layer control method proposed in this paper makes the total
power of MTs follow the upper layer reference signal while ensuring that the distributed
MT output power is distributed according to capacity. Furthermore, the method can achieve
the plug−and−play capability of distributed MTs.

4.2. Simulation Analysis of Upper Layer Optimization Scheduling
4.2.1. Analysis of Simulation Results of Upper Layer Optimal Scheduling

As assumed, the expert strategy provided by the scheduling personnel based on the
daily environment and load information is shown in Figure 10.
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Figure 10. Expert strategy provided by the scheduling personnel.

Based on Figure 10 and Table 2, which provide detailed information about the power
grid’s electricity prices and time periods, we can establish a more comprehensive under-
standing of the expert strategy for optimizing the operation of the island microgrid.

The expert strategy identifies two distinct low electricity price periods during the
day. The first period spans from 00:00 to 07:00, and the second period spans from 22:00 to
24:00. These periods are considered ideal for cost−saving measures. In these time slots, the
strategy recommends terminating the operation of MTs and instead prioritizes charging the
ES at a power rate of 60 kW. By doing so, excess electricity available during these low−price
periods can be efficiently stored for later use. Conversely, the power grid experiences high
electricity price periods and medium electricity price periods between 07:00 and 22:00,
which indicate the peak demand periods. Within these periods, the expert strategy suggests
a total output power of 300 kW for the MTs. This higher power output ensures that the
microgrid can meet the electricity demands during these peak hours. To further optimize
the system, the expert strategy proposes specific actions during different time intervals
within the high electricity price periods. From 07:00 to 14:00 and again from 18:00 to 22:00,
the expert strategy advises discharging the energy storage system at a rate of 60 kW. By
utilizing the stored energy during these specific time frames, the microgrid can reduce its
reliance on the MTs and therefore minimize costs. During the medium electricity price
period of 14:00 to 18:00, the expert strategy recommends that the charging and discharging
power of the energy storage system be set to zero. This decision likely reflects the moderate
electricity prices during this period, indicating that there is no significant advantage in
either charging or discharging the ES system.

Although the expert strategy provides a framework for optimizing the operation of
the island microgrid, it is acknowledged that it may not be highly precise. To address this
limitation, we adopted the two−stage MATD3 algorithm, which will be used to compute
the optimal scheduling strategy for the microgrid. This algorithm takes into account various
factors, such as electricity prices, load demands, and storage capacity, to determine the
most efficient operation schedule for the microgrid, surpassing the limitations of the initial
expert strategy.

According to the upper layer optimal scheduling method for island microgrids pro-
posed in this paper, the MT agent and ES agent are first pre−trained for 250 episodes using
the expert policy illustrated in Figure 10 and imitation learning method. Subsequently, we
switched to the reward function in the real environment and trained for 500 episodes.

Figures 11 and 12 represent the reward curve and constraint penalty curve, respec-
tively. According to Figure 11, after 400 episodes, the reward curve has basically converged,
indicating that the agent has found an optimum scheduling strategy for the island micro-
grid. As illustrated in Figure 12, in the later stage of reinforcement learning training, the
constraint penalty curve remains at zero, indicating that the scheduling strategy will not
exceed the operational constraints of the island microgrid, and the island microgrid can
operate safely.
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Figure 11. Reward curve of the proposed algorithm.
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Figure 12. Constraint penalty curve of the proposed algorithm.

As depicted in Figure 13a, MT1, MT2, and MT3 can strictly allocate their output power
in a ratio of 8:6:5 during the 24−h scheduling period, and owing to the effect of the ramp
constraint penalty of (47), none of them exceed their respective ramp constraint. Meanwhile,
as shown in Figure 13b, the total output power of the three MTs can track the reference
signal provided by the upper layer. As shown in Figure 14a,b, owing to the effect of
constraints penalty (48) and (49) in the reward function, the SOC of ES during the 24−h
scheduling period did not exceed the range of the constraints. Moreover, the SOC of ES at
the end of the scheduling period could return to a position that is very close to the SOC at
the beginning of the scheduling period.
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Figure 13. Distributed MT output power within a 24−h scheduling cycle. (a) Output power of the
three MTs; (b) stacked bar chart of the output power of three MTs and the upper reference signal.
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Figure 14. (a) Charging/discharging power of energy storage in the 24−h scheduling period;
(b) SOC of ES within a 24−h scheduling period.

The power of various energy sources in the island microgrid during the 24−h schedul-
ing period is shown in Figure 15. From hours 1–4, the renewable energy output is low,
and the electricity price in the grid is also low. Therefore, the island microgrid purchases
electricity from the external grid to maintain the supply−demand balance. Concurrently,
the energy storage system charges using the electricity the grid provides. From hours
5–6, in order not to exceed the ramp constraints of distributed MTs, MTs slowly increase
their output power. As the load is low during this time, the island microgrid sells a small
amount of excess electricity to the external grid. From hours 7–13, the purchasing and
selling price of electricity from the external grid is high, and the renewable energy output
in the island microgrid begins to increase. During this period, distributed MTs continue to
increase their output power, and simultaneously, the ES discharges. The island microgrid
sells electricity to the external grid for higher revenue. At hour 11, the power sold to the
external grid maximizes. From hours 14–17, the renewable energy output power of the
island microgrid is high, and the price for selling to the external grid becomes relatively low.
During this period, distributed MTs decrease their output power, and the ES charges use
abundant renewable energy. Simultaneously, the island microgrid reduces the power sold
to the external grid. From hours 18–20, the price for selling to the external grid becomes
higher again. During this period, the output power of distributed MTs increases again,
and the power sold to the external grid also increases. From hours 21–24, the electricity
price in the grid is low and the renewable energy output is also low. During this period,
the output power of distributed MTs decreases, and from hours 23–24, the distributed MTs
stop working. The island microgrid uses the electricity purchased from the external grid
and the renewable energy output to supply power to the load in the island microgrid and
charge the energy storage.
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Figure 15. Load and different energy power in the 24−h scheduling period of the island microgrid.
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4.2.2. Assessment of Plug−and−Play Control Performance of MTs during Optimal Scheduling

To test the plug−and−play capability of distributed MTs throughout the 24−h schedul-
ing period, we assume that MT3 is plugged out from the island microgrid at 13:00 due
to a fault and is repaired and plugged back to the island microgrid at 19:00. The power
output variations of the three distributed MTs and the total output power in this scenario
are illustrated in Figure 16.
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Figure 16. Distributed MT output power within a 24−h scheduling period when MT3 is being
plugged in and back. (a) Output power of the three MTs; (b) stacked bar chart of the output power of
three MTs and the upper reference signal.

As shown in Figure 16a,b, MT3 was plugged out from the island microgrid at 13:00
due to a fault, resulting in its output power dropping to zero. At the time, the remaining
operational MT1 and MT2 could quickly adjust their output power to maintain a ratio of
8:6 between them while ensuring that their total output power equaled the reference signal
provided by the upper layer MT agent. At 19:00, MT3 was repaired and plugged back into
the island microgrid. At the time, the proposed lower layer adaptive consensus control
method can automatically adjust the output power of the three MTs in a ratio of 8:6:5 while
ensuring that their total output power is equal to the reference signal provided by the
upper layer MT agent.

4.2.3. Performance Assessment of the Two−Stage Deep Reinforcement Learning Agent
Training Method

To assess the effectiveness of the two−stage deep reinforcement learning agent training
method proposed in this paper, we compare the performance of the proposed method with
that of the traditional single−stage training method for different algorithm parameters.
Three deep reinforcement learning algorithm parameters are involved: actor network
learning rate, critic network learning rate, and the standard deviation of the noise. Seven
different parameter selection schemes are chosen in this study, as listed in Table 5. Scheme
1 is the parameter scheme used in Sections 4.2.1 and 4.2.2. In Schemes 2, 3, and 4, the actor
and critic network learning rates differ, while the standard deviation of the noise is the
same. Conversely, in Schemes 5, 6, and 7, the standard deviation of noise differs, while the
actor and critic network learning rates are the same.

Figure 17 represents the reward curves of the traditional single−stage deep reinforce-
ment learning training method with different algorithm parameters. Comparing the four
curves of Schemes 1, 2, 3, and 4, it is evident that when the standard deviation of the
noise is fixed, the learning rates of the actor and critic networks are 1 × 10−2, 1 × 10−2 or
5 × 10−3, 8 × 10−3, respectively, and the agent can eventually find a relatively satisfactory
scheduling policy. However, the convergence rate of its reward curve is slow, and in the
early stage of training, the reward curve fluctuates significantly. When the learning rate of
both the actor and critic networks is 5 × 10−3, the reward curve keeps fluctuating slightly
below the optimum strategy; however, the convergence of the reward curve is fast. This
suggests that the agent’s reward curve is trapped in a local optimum, and it fails to escape
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from it until the end of the training period. If the learning rates of the actor and critic
networks are 1 × 10−2 and 5 × 10−3, respectively, then the agent’s output actions converge
to the boundary, resulting in a low and stable reward during the early and middle stages
of training. In the later stages of training, the output action values of the agent jump out
of the boundary. However, the agent is still unable to find an effective control strategy
throughout the training period.

Table 5. Seven different parameter selection schemes in this paper.

Schemes Actor Network
Learning Rate

Critic Network
Learning Rate

Standard Deviation
of Noise

1 1 × 10−2 1 × 10−2 4
2 1 × 10−2 5 × 10−3 4
3 5 × 10−3 5 × 10−3 4
4 5 × 10−3 8 × 10−3 4
5 1 × 10−2 1 × 10−2 2
6 1 × 10−2 1 × 10−2 3
7 1 × 10−2 1 × 10−2 5
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Figure 17. Reward curves of the traditional single−stage deep reinforcement learning training
method with different algorithm parameters.

Similarly, by comparing the four curves of Schemes 1, 5, 6, and 7, it can be seen that
when the learning rates of the critic and actor networks are fixed, the convergence rate of
the agent’s reward curve is slow when the standard deviation of the noise is either two
or four, and the reward value remains low during the later stages of training. When the
standard deviation of the noise is three, the agent’s reward curve is trapped in a local
optimum until the end of training. When the standard deviation of the noise is five, the
agent’s output actions converge to the boundary, resulting in a low and stable reward
during the early and middle stages of training. Only in the later stages of training do the
agent’s output action values jump out of the boundary. However, the agent still fails to find
an effective control strategy throughout the training period.

Based on the above analysis, we can infer that the traditional single−stage deep
reinforcement learning training method is sensitive to changes in the learning rates of the
actor and critic networks, as well as the standard deviation of the noise. Therefore, it can
be inferred that choosing poor deep reinforcement learning algorithm parameters for the
agents can result in the reward curve being trapped in a local optimum or the agent’s
output actions converging to the boundaries.

Figure 18 represents the reward curves of the two−stage deep reinforcement learning
training method proposed in this paper with different algorithm parameters. Table 6
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presents a comparison of the average reward values of the two methods in the last
10 episodes of training. As shown in Figure 18, using the two−stage training method
proposed in this paper, the agent can find the optimum scheduling policy for the island mi-
crogrid in the last 100 episodes of training. The result indicates that the two−stage training
method proposed in this paper has good adaptability to different algorithm parameters.
As listed in Table 6, the two−stage training method proposed in this paper has a higher
average reward value in the last 10 episodes, indicating that the proposed training method
enables the agent to find a better scheduling strategy for the island microgrid than the
traditional single−stage training method.

Table 6. Average reward values for single− and two−stage training methods in the last ten episodes.

Schemes Two−Stage Training Single−Stage Training

1 779.66 189.06
2 821.93 −28,863.41
3 516.11 −2556.68
4 703.45 344.69
5 552.89 −943.76
6 448.92 −2163.31
7 391.78 −30,037.94
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Figure 18. Reward curves of the two−stage deep reinforcement learning training method proposed
in this paper with different algorithm parameters.

In summary, it can be concluded that the two−stage deep reinforcement learning
training method proposed in this paper can reduce the sensitivity of the deep reinforcement
learning training process to algorithm parameters, thereby reducing the tuning difficulty of
the deep reinforcement learning algorithm. Furthermore, the proposed method improves
the training effectiveness of the agents.

4.2.4. Comparative Analysis of Algorithms

To verify the superiority of the two−stage MATD3 algorithm proposed in this paper
for the optimal scheduling of island microgrids, we compare the proposed method with
other deep reinforcement learning algorithms currently applied to microgrid optimal
scheduling, including the MATD3 [38], TD3 [39], MASAC [40], SAC [41], MADDPG [42],
and DDPG algorithms [43]. Each algorithm was trained for 500 episodes in the island
microgrid environment model established in this paper. The training results of different
algorithms obtained are illustrated in Figures 19 and 20.
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Figure 19. Reward curves for different deep reinforcement learning algorithms.
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Figure 20. Average reward values of the last 10 rounds of different deep reinforcement learning
algorithms.

From Figure 19, it can be seen that the algorithm proposed in this paper exhibits
superior training performance compared to other deep reinforcement learning algorithms.
Specifically, during the early stages of training, the proposed algorithm exhibits a faster
convergence rate and can discover the optimal scheduling strategy more quickly. During the
later stages of training, the proposed algorithm receives a larger reward compared to other
algorithms. In addition, the reward function curve has fewer fluctuations, indicating that
the algorithm has higher stability. From Figure 20, it is evident that the two−stage MATD3
algorithm proposed in this paper has a higher average reward value. It indicates that the
proposed algorithm can find a better optimal scheduling strategy for island microgrids
compared to other algorithms.

5. Conclusions

A two−layer distributed optimal operation method is proposed for island microgrids.
The lower layer ensures the consistent operational state of distributed MTs within the
microgrid. The upper layer ensures the economic operation of the microgrid. For the lower
layer, a new adaptive consensus control method which ensures that the output power of
the distributed MTs is allocated according to their capacity is proposed. Moreover, the
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proposed method ensures that the total output power of the MTs follows the reference signal
provided by the upper layer, regardless of whether an MT is plugged in or out. For the
upper layer, a two−stage MATD3 method is proposed; this method improves the training
effectiveness of the agent and reduces its sensitivity to the deep reinforcement learning
algorithm parameters. This paper provides a new solution to the problem of distributed
control and optimal scheduling of island microgrids containing a high percentage and
multiple types of renewable energy. It is expected that this paper will provide a useful
reference for the development of future island microgrid power systems.
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