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Abstract: Different buckling failure modes of stiffened panels will result in differences in ultimate
strengths. In this study, the benchmark model of the bottom of bulk carrier with appropriate initial
imperfections, boundary conditions and mesh size are selected for a series of non-linear FE analyses.
A failure mode discrimination method considering the change rule of ultimate strength and the stress
and strain distribution of stiffened plates in ultimate limit state is proposed, and then the boundary
function of the failure modes composed of four key parameters, A, B, hw/tw, Ae, is established. Based
on this boundary function, the rapid identification of failure modes and the classification of ultimate
strength under different failure modes can be realized. Furthermore, the ultimate strength formulas
of stiffened panels for different failure modes are obtained by data analysis from many nonlinear

finite element analyses.

Keywords: stiffened panel; ultimate strength; failure mode

1. Introduction

Stiffened panels composed of plating and stiffeners are widely used in hull structures
because of their light weight, high stiffness and high material utilization rate. However,
in offshore practice, the collapse of stiffened panels is fairly common, making it of great
significance to establish an accurate and effective method for evaluating the ultimate
strength of stiffened panels.

Numerous studies have been completed to establish empirical formulas for predicting
the ultimate strength of stiffened panels. Paik [1,2] derived an empirical formula for the
ultimate strength of stiffened panels under uniaxial compression based on compression
test data of stiffened panels of different sizes, and the empirical formula contains two
parameters: the plate slenderness and column slenderness. Khedmati [3] proposed a
formula for the prediction of the ultimate strength of aluminum stiffened panels under the
combination of biaxial compression and lateral pressure. T-stiffeners and a flat bar were
considered and lateral pressure was characterized by water head. Zhang [4] conducted
numerical simulation and experimental verification of the ultimate strength of stiffened
panels under uniaxial compression and proposed a more concise formula. Faulkner [5]
analyzed the post-buckling capacity of a plate and the supporting effect of the stiffeners and
proposed a formula for the average stress of the overall cross-section of stiffened panels.
To consider the influence of the stiffener type, Xu [6] added several terms to the relevant
parameters of Paik’s formula, proposed an empirical formula shape with 10 coefficients,
and carried out data fitting and experimental verification.

The numerical simulation method is widely used in the study of the ultimate strength
of stiffened panels. In the process of numerical simulation, factors such as structural forms,
model range, and initial imperfections are fully considered, which provides a valuable
reference. However, as a thin-walled composite structure, the stiffened panel will collapse
in various modes due to the difference in stiffness between the plating and the stiffener,
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which makes it necessary to consider failure modes when studying the ultimate behaviour
of stiffened panels.

After investigating the effects of factors such as the shape and size of an initial imper-
fection, the magnitude and direction of the residual stress, and the cross-sectional area ratio
between the plating and stiffener on the axial load capacity and failure mode of stiffened
panels, Grondin [7] found that the relative size of the torsional stiffness of the stiffener
and the bending stiffness of the plate are the key factors that determine the occurrence
of stiffener tripping and local plate buckling. Through investigations, model tests and
numerical simulations, Zhang [4] proved that the failure mode of stiffened panels under
axial compression manifested as coupled bending and torsion failure, which are mainly
determined by beam—column behaviours. Ozgur [8] compared the ultimate strength of
stiffened panels obtained using ABAQUS and PULS, and found that the greatest deviation
usually occurs in areas where the failure modes are inconsistent. The ISSC [9] Ultimate
Strength Committee initiated a benchmark study on the ultimate state analysis of stiffened
plate structures subjected to uniaxial compression loads. The finite element results of
17 groups, which were compared with each other and with the experimental results. It was
found that the failure mode of stiffened panel was not precisely predicted, which may be
due to the inaccurate modeling of residual stress. The Committee recommends that more
research on failure modes needs to be carried out to define and predict structural failure.

According to the research of Paik [10], the failure modes of stiffened panels subject
to axial compression can be divided into six types, as shown in Figure 1: overall buckling
(mode I), local plate buckling (mode II), beam—column buckling (mode III), stiffener web
buckling (mode IV), stiffener tripping (mode V) and overall yielding (mode VI). Among
them, local plate buckling (mode II), beam—column buckling (mode III), stiffener web
buckling (mode IV), and stiffener tripping (mode V) are more common in offshore practice.

(f)

Figure 1. Six failure modes of stiffened panels. (a) I: Overall buckling; (b) II: local plate buckling; (c) III:
beam-column buckling; (d) IV: stiffener web buckling; (e) V: stiffener tripping; (f) VI: overall yielding.

Mode II: The relatively weak plating severely deforms, and the stress concentrates at
the corners of the plating between stiffeners.

Mode III: The principle of beam—column buckling is similar to that of the bending
buckling of bars. The plating and stiffener are considered an entity due to their similar
stiffness, and the collapse occurs mid-span. Without a violent deformation process, beam—
column buckling is regarded as a relatively safe failure mode. A slight change in the size of
the stiffened panel will not lead to a drastic change in the ultimate strength.

Mode IV: Stiffener panels are prone to collapse in this mode when the web of the
stiffener has a large height-to-thickness ratio. As the main stiffened component, the stiffener
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bears the maximum load of the structure. However, the lack of stiffness often results in
buckling on the web, and consequently lead to a sharp increase in the collapse probability
of stiffened panel.

Mode V: Due to the small torsional stiffness, the stiffener twists around the intersec-
tion line of the stiffeners and the plating under axial compressive. Unlike beam—column
buckling, the stiffened panel collapses sharply in a dangerous mode without the support
of the stiffener. A slight reduction in the size of the stiffened panel may lead to a sharp
decrease in the ultimate strength.

In summary, a great deal of work has been conducted on the formula for ultimate
strength and the identification of failure modes of stiffened panels, which can provide us
with valuable references. Nevertheless, a single line shape formula for stiffened panels
containing only two parameters, A and S, fails to disclose the effect of failure modes, and
there are still deficiencies in the study of the key parameters, evolution and boundaries of
different failure modes.

From the above-mentioned situation, a study based on the failure modes is conducted.
A new method of failure mode identification based on the variation trend of the ultimate
strength and stress distribution in the ultimate limit state is proposed. Based on this method,
the boundary between different failure modes is determined and a four-parameter ultimate
strength formula applicable to different failure modes is proposed.

2. Modelling for FE Analysis

The finite element solver ANSYS was used for the analysis of ultimate limit state
capacity of stiffened panel. The modeling of the stiffened panel, the application of the
initial deformation and the post-processing work were all realized by ANSYS parametric
design language (APDL).

In this paper, the advanced buckling analysis method recommended by the Interna-
tional Association of Classification Societies (IACS), which is based on nonlinear analysis
techniques, was used to study the ultimate strength of stiffened panels. Nonlinear buckling
analysis is a static analysis method based on factors such as elastic—plastic material prop-
erties, large deformation and initial imperfections. The model of an ideal elastic—plastic
material was adopted and the effect of strain-hardening was ignored. To track the post-
buckling process of the structure, the Riks method was used to solve the complex load and
displacement paths in the post-buckling stage of the structure by introducing a load factor
to link the load and displacement.

2.1. Geometric and Material Properties

The ultimate strength of stiffened panels is related to the material parameters, geo-
metric dimensions, initial defects, and load conditions. With reference to the benchmark
model Panel A in ISSC2012 [11], the ultimate strength of stiffened panels under uniaxial
longitudinal compression was studied. The structure and size of the stiffened panel are
shown in Figure 2. The stiffened panel was made of hull steel, and the material was
assumed to be uniform, continuous, isotropic and ideal elastoplastic, satisfying the Von
Mises yield criterion. The relevant parameters are shown in Table 1. The Shell181 element
was used to establish the stiffened panel model, which has four nodes; each node contains
six degrees of freedom. This element can be applied to linear, large rotation or large strain
analysis. Allowing for both geometric and material nonlinearities, Shell181 is well-suited
to simulating thin and medium-thickness shells. In the element domain, both full and
reduced integration schemes are supported. For stiffened panels, the ideal choice is to use
a reduced integration for the plating and a full integration for the stiffeners.
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Figure 2. Benchmark model of the bulk carrier bottom panel.

Table 1. Material and geometric parameters of stiffened panels.

Physical Quantity/Units Symbol Value
Plate length/mm a 2550
Plate width/mm b 850
Plate thickness/mm t 9.5,11, 13, 16, 22, 33
Stiffener size 1/mm hy X bf X tw/tf 138 x 90 x 9/12
Stiffener size 2/mm hy X bf X tw/tf 235 x 90 x 10/15
Stiffener size 3/mm hy X bf X tw/tf 383 x 100 x 12/17
Stiffener size 4/mm hy X bf X tw/tf 580 x 150 x 15/20
Elastic modulus/MPa E 2.058 x 10°
Yield stress/MPa Os 313.6
Poisson’s ratio U 0.3

2.2. Initial Imperfections

An initial imperfection contains initial deformation and residual stress, which often
leads to a reduction in the ultimate strength regarding the analysis of problems involving
structural instabilities. Therefore, it is necessary for the finite element model to reasonably
include initial imperfections.

The residual stress distribution of each part of a stiffened panel differs, and the stress
amplitude is greatly affected by temperature. At the same time, a hull structure subjected
to a cyclic wave force undergoes residual stress redistribution and relaxation. Therefore, in
the numerical calculation of stiffened panels, the residual stress is usually ignored.

Initial deformation can be directly measured by scanning equipment. When the
measurement is difficult or the data reliability is poor, a modal analysis method can be
adopted to obtain the lowest buckling mode and the initial deformation. This paper refers
to the ISSC to impose the buckling initial deformation on the stiffened panels. The initial
deformation expressions for local plate buckling w,,;, beam-column buckling w,., and
stiffener tripping w,s are as follows:

Wop1 = Agsin(m7x/a)sin(rry/b)
Woe = By sin(7tx/a) sin(rty/B)

wos = Co(z/hy) sin(rtx/a)

where Ag = 0.1t (moderate deformation), buckling periodic waves m = 3 (the smallest
integer that satisfies a/b < \/m(m + 1)), By = 0.0015a, Cyp = 0.00154, and the plate width
between the longitudinal girders B = 3b.
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The final initial deformations are obtained by superimposing these three initial defor-
mations and created by an APDL program according to the coordinates calculated by the
above equation.

2.3. Boundary Conditions

The boundary conditions were set is based on Xu [12]. Taking a stiffened panel with
a thickness of 16 mm and stiffeners of size 3 as an example, Figures 3 and 4 show the
size and stress distribution in the ultimate state of the single-stiffener model, symmetrical
model (half model in the longitudinal direction) and periodic model (Panel A). The ultimate
strength of these three models is shown in Table 2.
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Figure 3. Boundary constraints of the stiffened panels. (a) Single-stiffener; (b) symmetrical; (c) periodic.
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Figure 4. Comparison of equivalent stress results under three boundary conditions. (a) Single-
stiffener; (b) symmetrical; (c) periodic.

Table 2. Ultimate strength results for different model ranges.

Model Range Single-Stiffener Symmetrical Periodic
Ultimate
strength/MPa 283.544 237.979 237.973

The accuracy of the ultimate strength of the single-stiffener model is low, while the
results of the symmetrical model and the periodic model are essentially the same. The
boundary conditions of the two models are shown in Tables 3 and 4. 0, and indicate
constraint. To observe the failure modes comprehensively, periodic boundary conditions
are selected.
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Table 3. Periodic boundary conditions.

A2—Bz, A3—Bg: u;=0,0,=0
A —Ay:uy=0,0,=00,=0

By — By : uy = Cgy1(Coupling in the y direction), 6 =0, 6; =0
Ay —By:ux=06,=0,0,=0

Ay —By 1 uy = Cyyq(Coupling in the x direction), 8, =0, 6, =0

Ey —Fp, B3 — F3 @ uy = Cyp(Coupling at each web), 0x = 0
E; —F; at Cy, C3, C4 and Cg (including flange) : uy =0, 6, =0, 6, =0
E4 — F4 at Dy, D3, Dy and Dy (including flange) : uy = Cyyp, 8y, =0, 6, =0

Cz—Dz, C5—D5Z Uz :0, GyZO

Table 4. Symmetric boundary conditions.

Az—Bz: MZZO, 9x:0

A17A42 MyZO, 9x=0, 9220

By —By: uy = Cdy(Coupling in the y direction), 6, =0, 6; =0
AlfBll MXZO, Gy:O, GZZO

A4 —By 1 uy = Cyy(Coupling in the x direction), 6, =0, 8, =0

Eo —Fp: uy = C,;y(Coupling at each web), 6, =0
E; —F; at Cq, C3, C4 and Cq (including flange) : uy =0, 0y=0,0,=0
E4 — Fy at Dy, D3, Dy and D (including flange) : uy = C,, 6, =0, 6, =0

Cz—Dz, C5—D5: Uz =0, 9y:0

2.4. Mesh Size

The mesh size determines the total number of elements. To find a balance between
computational expense and accuracy, a stiffened panel with a plate thickness of 16 mm and
stiffeners of size 3 was used for convergence verification of the mesh size. The number of
elements with plating, flange and web was set to N, Nf, Ny, respectively.

Take the number of elements with plating as an example. Four mesh sizes of 213.50 mm
(Np =12),106.25 mm (N, = 24), 53.125 mm (N, = 48) and 26.563 mm (N, = 96) were selected
for tentative calculation. As Figure 5a shows, when the mesh size is less than 106.25 mm
(Np = 24), the reduction in the mesh brings little benefit in terms of accuracy. The difference
in ultimate strength between 106.25 mm (N, = 24) and 53.125 mm (N, = 48) mesh sizes is
only 0.6%. The mesh size of 106.25 mm (N, = 24) can be considered to meet the convergence
requirements, so the 106.25 mm (Np = 24) mesh size was set for calculation. Similarly, the
numbers of elements of the stiffener flange and web were set as 4 and 5, respectively, as
shown in Figure 6.

ESEJ. —e—N~4 N, =5 238.54 . 23927 —*—N,=24 N~
-
2501 238.0 — 239.0
2484 2375 238.84
£ 2461 £ 0. £ 53,
£ 23701 £ 23861
= 2444 = _ e =
“y242] 2365 T N,724 N5 :,233.4- .
© 2401 © 53601 23821 \
238 \'\. 235.5 238.0/ '\.\
3;2 2350] o 23781 h—
U224 36 48 60 72 84 96 2 3 4 5 6 7 8 2 3 4 s 6 7
N, N, N,
(a) (b) (c)

Figure 5. Ultimate strength with different element numbers. (a) Element number of the plating;
(b) Element number of the flange; (c) Element number of the web.
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Element number=4

Mesh size=106.25mm

Element number=5

Figure 6. Mesh of stiffened panels.
2.5. Model Verification

In this paper, several stiffened panels with different plating thicknesses and stiffener
sizes were selected for the ultimate strength calculation, and the calculation results are
compared with the results in the related literature in Table 5. Under the same conditions,
such as the same size stiffener and same initial imperfections, the error in the results is
within 3%, which means that the results are within a reasonable range and the model is
sufficiently accurate.

Table 5. Comparison of the calculation results of the ultimate strength of the stiffened panels.

Source of Data Tlf,lliliir;;sin(lfngle S;fieffo; fntel;e U"ﬁ:efr::Tr:he oulos from This Paper  Error
Frieze P A, size 1 0.595 0.590 —0.8%
Abbattista M, size 2 0.641 0.629 —1.9%
Vallascas M, et al. [13] 9.5 size 3 0.659 0.653 —0.9%
(MSC/MARC) size 4 0.680 0.672 —1.2%
9.5 0.635 0.653 2.8%
11 0.653 0.672 2.9%
1SSC2012 [11] 13 . 0.688 0.702 2.0%
(ANSYS(ULG)) 16 size 3 0.747 0.759 1.6%
22 0.865 0.883 2.1%
33 0.964 0.985 2.2%

3. Study on Beam—Column Buckling and Local Plate Buckling
3.1. Theoretical Formula

The principle of beam—column buckling is similar to the bending buckling of bars.
Solving the deflection curve differential equation leads to the ideal elastic buckling critical
stress formula:

op/os = 1/A? 1)

where A = [a/(7r)]\/0s/E represents the slenderness of the stiffener, » = \/I/ A represents
the radius of inertia of the section, I represents the moment of inertia of the section, and
A= hyxty+ hy * ty is the area of the cross-section. The elastic buckling stress and yield
stress of the panels are denoted as o and o5, respectively. o and A are negatively correlated,
and A can be selected as the mechanical parameter for evaluating beam-column buckling.

The principle of local plate buckling is based on the post-buckling performance of
the plate. When the plate reaches the ultimate strength, the critical stress formula [14] is
as follows:

ou/0s =71/ (By/3(1—u2)) =19/8 )

where B = (b/t)\/0s/E, 0 represents the ultimate strength of the stiffened panel, which
is negatively correlated with B, and  can be selected as the mechanical parameter for
evaluating local plate buckling.
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3.2. Identification of Beam—Column Buckling and Local Plate Buckling

Taking size 1 and size 2 as examples, the equivalent stress plots of typical beam-column
buckling and local plate buckling are shown in Figures 7 and 8, respectively.

ANSYS|
NODAL SCLUTTCN ANE;‘B NCDAL SCELUTTON R18.2
STEP=1 FLOT NO. 1 STEP=1 FLOT NO. 1
SUB=64 SUB=42
TIME=0. 633206 TIME=0.748917
sEQv T (AVG) SEQV | (AVG)
MIDDLE MIDDLE
DMx=18.3077 DMX=16. 4947
2=0.494534 SN=9.95016
SMX=313.23 SMX=313.949
0.494534 69.9914 139.488 208,965 278.482 m'T'I""ss)ss ﬁ 212.616 m
s T a0 T g P o T e 995016 43,7279 1" ca : : ; =
(a) (b)

Figure 7. Beam—column buckling (a) and local plate buckling (b) (size 1).

ANSYS
R182
FIOT NO. 1

_B— — %
210.71 240.156 269.602 299.048
195,987 225,433 254,879 284,325

(a)

Figure 8. Beam—column buckling (a) and local plate buckling (b) (size 2).

181.264

313,771

The values of the slenderness of the stiffener and the plate determine whether beam—
column buckling or local plate buckling plays a major role. To eliminate the influence of
stiffener tripping, it is necessary to maintain /1, /¢, and A, at a low level.

As shown in Figures 7a and 8a, due to the weak support of the stiffeners provided to the
plating, the axial pressure causes stiffened panels to yield at the interface of the plating and
stiffener in the mid-span, presenting the deformation simlarly to the initial deformation of
beam-column buckling (m =1). The larger the mid-span deflection is, the more significant
the effect of beam-column buckling. As shown in Figures 7b and 8b, due to the strong
restraint of the stiffeners, the plating first deforms, and the stress distribution is periodic,
presenting the deformation as the initial deformation of local plate buckling (m = 3). The
larger the deflection of the plating between the stiffeners, the more significant the effect of
local plate buckling. Through comparison, when the size of the stiffener is increased, the
overall stress level of the stiffened panels is increased in the same failure mode.

Current research on the failure modes of stiffened panels is mainly based on the stress
and deformation in the limit state. This study believes that the ultimate strength is closely
related to the failure mode, and the change trend of the ultimate strength can reflect the
failure mode to a certain extent. Figure 9 shows the relationship between the ultimate
strength and p for stiffeners of size 2 and the dashed line indicates the critical value of



J. Mar. Sci. Eng. 2023, 11,1214 9 of 20

for different failure modes. When the failure mode changes from beam—column buckling
to local plate buckling, the ultimate strength change trend gradually transforms into an
approximate inverse proportional function form.

10} [—a— Tee bar size2: 23500x10/15|

0.94

0.81

o,lo,

0.7

0.6

0.5 T T T T - ——
1.0 15 2.0 25 3.0 3.5

B

Figure 9. Ultimate strength curve (size 2).

Near the boundary between the beam—column buckling and local plate buckling
modes, the equivalent stress of a stiffened panel in the ultimate bearing state is shown
in Figure 10. As B increases, the beam—column characteristics (m = 1) decrease, the stress
gradually presents a periodic distribution, and the buckling deformation of the plate
(m = 3) increases. t =25 ~ 26.5 mm can be taken as the critical variation range of the
failure mode, and the average value can be used as the critical point of the failure mode.

ANSYS| ANSYS
ne2 2
PLOT NO. 1 PFLOT NO. 1
|y R —
160.727 194.757 228.787 262.817 296.847 152.896 188.68 224.464 260.249 296.033
177.742 21.772 245.802 279.832 313.862 170.788 206.572 242.357 278.141 313.925
(a) (b)
N ANSY
NODAL SCLUTTION AN§|Y851 NODAL SCLUTTCN §ws)
STEP=1 PLOT NO. 1 STEP=1 PLOT NO. 1
SUB=42 SUB=41
TIME=O. 8 TIME=0.826936
SV T (AVG) SEQv " (AVG)
MIDDLE MIDDLE
DMX=12.1812 DMX=12.3155
SMN=143.637 SMN=137.736
SMX=313.994 SMX=314.035
| e —— | [ s as— ]
143.637 181.494 219.351 257.208 295.066 137.736 176.914 216.091 255.259 294.446
162.565 200.423 238.28 276.137 313.994 157.325 196.502 235.68 274.858 314.035

(©) (d)

Figure 10. Transition from beam—column buckling to local plate buckling (size 2). (a) f = 28 mm
(B = 1.185); (b) t = 26.5 mm (B = 1.252); () t = 25 mm (B = 1.327); (d) t = 23.5 mm (B = 1.412).
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At the same time, the stiffeners show a periodic transverse deformation that is similar
to local plate buckling. Since the buckling of a plate at the junction of the plate and stiffeners
has an inducing effect on web buckling, plate buckling plays a major role.

3.3. Boundary of Beam—Column Buckling and Local Plate Buckling

To carry out a statistical study on the boundary between beam—column buckling and
local plate buckling, a series of stiffener sizes (Table 6) were set that meet the requirements
of CSR [15] for the size of T-sections: hy, /ty, < 65V'k, bf/tf < 33k, bftf > hytw/6, and
material factor k = 0.78.

Table 6. Stiffener sizes for the study of local plate buckling and beam—column buckling.

No. hy/mm bfmm tw/mm t//mm A hylty Ae(t=22)
def 1 111.93 56.83 7.3 11 0.812 15.3 0.296
def 2 124.2 71.35 8.1 11.5 0.736 15.3 0.296
size 1 138 90 9 12 0.667 15.3 0.297
def 4 153.33 113.81 10 12.5 0.605 15.3 0.297
def 5 170.2 144 11.1 13 0.550 15.3 0.297
def 6 168.03 4411 7.15 11.5 0.548 23.5 0.427
def7 186.83 55.09 7.95 12.5 0.492 23.5 0.427
def 8 207.98 69.1 8.85 13.5 0.442 235 0.428
size 2 235 90 10 15 0.391 235 0.428
def 10 271.43 121.55 11.55 15.5 0.340 23.5 0.428

To prevent stiffener tripping, /iy /t and A, (see Section 3.1) were kept at a small level,
and the hy, /ty and A, of each dataset were essentially equal. CSR-H [16] specifies that the
minimum thickness of hull shell plates is 5.5 + 0.03L, > 14.5 mm, and the plating thickness
was t = 13 ~ 33 mm in this paper.

The ultimate strength of stiffened panels with different combinations of plating and
stiffener sizes was calculated. Three factors, the change trend of the ultimate strength, the
stress and deformation in the ultimate limit state, were combined to determine the failure
mode. The critical points of the failure mode were determined with a certain accuracy
(£0.75 mm), and nonlinear fitting was used to obtain the boundaries of the failure modes,
as shown in Figure 11. 8 and A have an approximately fourth-order relationship, and
monotonically increases with A. If the failure mode does not change, the stiffness of the
plate and the stiffeners must be maintained at a relatively balanced level.

254 Equation y=a*x 4+b*x A 3+erx A 2+d*x+e v defl~defs
. “ Plot Nonlinear Fit(1) e NGHlinEEE it
a 132.72126 + 2572952 onlinear Fit(1) =
b ~244.54737 + 52.91089 B def6~defl0 ,
234 ¢ 150.90657 + 35.93579 — - = Nonlinear Fit(2) 1

d -30.93967 + 8.05876
1.26£0

e
Reduced Chi-Sqr 3.20286x 107

’

1

)
'
U

’
’
'
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Figure 11. Boundaries of local plate buckling and beam-column buckling.
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In addition, an increase in hy, /t, and A, shifts the failure mode boundary to the left,
which transforms a part of the area from local plate buckling to beam—column buckling.
However, an increase in hy /t,, and A, is conducive to the occurrence of stiffener failure.
Various factors must be considered in the reasonable choice of the size of the stiffened
panels. Therefore, only a comprehensive analysis of A, B, hy /ty and A, can accurately
determine the failure mode of a stiffened panel.

4. Study on Stiffener Failure
4.1. Theoretical Formula
The principle of web buckling is similar to the buckling of thin plates. Solving the

neutral equilibrium differential equation of a thin plate leads to the ideal elastic buckling
critical stress formula:

D T2E

or =k =k
T T 1201 — 12) (e t)?

®)

where the value of coefficient k is related to b ¥ /hy and f f/ tw [17]. o and hy /ty are
negatively correlated, and h, /t,, can be selected as a mechanical parameter for evaluating
web buckling.

Stiffener tripping refers to stiffener torsional buckling around the centre of forced
rotation. According to the principle of constant potential energy, the ideal elastic buckling
critical stress of stiffener tripping can be obtained, which can be written in a similar way to
beam—column buckling, as follows:

2D 2E
=k 2
hate  12(1 — ) (hy/tw)

O'E:k

4)

where A, = [a/(7tre)]\/0s/E and r is the converted radius of gyration.

A stiffened panel can be regarded as I-beams with different flanges, as shown in
Figure 12. With centroid O as the origin, I; and I, are the moments of inertia of the two
flanges to the y-axis. The shear centre S is located on the y-axis, yo = (e1l1 — e2l2) /(1 + L),
and the sector moment of inertia is T = d?I; I,/ (I + L). For a stiffened panel, due to the
large difference in the sizes of the plate and the flange of the stiffener, the forced rotation
centre Cf is approximately at the intersection of the plate and the centre line of the web;
thatis, ag ~ dL/ (I} + I1).

I| ot i |
[55] I
d S X
Mo
€1 A
S h
r / do
oo [ VA .I
Ce
}/‘

Figure 12. Geometric diagram of the torsion of an I-beam.

The formula [17] for the converted radius of gyration 7, is as follows:

12 = [a*/(7*Elye)][GK + 24/ E(T + a31,)C] (5)
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where Ic = I + I, + A(ag + y0)2 is the polar moment of inertia of the section to Cr. I and
I are the principal moments of inertia of the section to the centroid O. A = hextg+hy xty
is the cross-sectional area of the stiffener. G is the shear modulus. K = (L b;t?)/3 is the
torsional moment of inertia of the cross-section. C = Et3/[3b(1 — p?)][18] is the torsional
spring stiffness.

Therefore, or and A, are negatively correlated, and A, can be selected as the mechanical
parameter for evaluating stiffener tripping. A, is related not only to the stiffener size but
also to the plate size.

Notably, since the stiffener web is connected to the plating and stiffener flange, web
buckling has a strong coupling effect with local plate buckling and stiffener tripping,
respectively. According to the calculations in the IACS standard [16], the web buckling
stress is almost always greater than the local plate buckling stress or the stiffener tripping
stress in the normal size range. Therefore, stiffener web buckling can be considered to play
a secondary role in a stiffened panel with T-section stiffeners. To facilitate the distinction,
web buckling is classified into these two failure modes according to the effect of local plate
buckling and stiffener tripping, and web buckling is not considered separately. Zhang [8]
also adopted a similar approach when classifying the failure modes of stiffened panels.

4.2. Identification of Stiffener Tripping

Figure 13 shows the relationship between the ultimate strength and g for a stiffener of
size 3 and the dashed line indicates the critical value of B for different failure modes. When
the plate thickness is large, the beam—column overall failure mode is the main form; when
the plate thickness is reduced to a certain extent, the beam-column effect is weakened and
the tripping effect of the stiffeners is strengthened; when the plate thickness is very thin,
local plate buckling plays a major role.

1.03

'0,_’ —&— Tee bar size3: 383x100x12/17
*
»
0.9 1%
| hY
*,
| ™
« 0.8
U N
L) |
0.7 |
| |
mo v I i
| 1
1.0 1.5 2.0 2.5 3.0 35 4.0
f

Figure 13. Ultimate strength variation curve (size 3).

As shown in Figure 14, as the plating thickness decreases, the stress level of the
stiffeners increases while that of the plating decreases, which means that the characteristics
of the beam—column buckling are weakened and stiffener tripping gradually plays a major
role. As shown in Figure 15, when the thickness of the plating is 17.5 mm, the stiffener
has a high stress and obvious transverse displacement, which is very consistent with the
characteristics of stiffener tripping. With the reduction in plating thickness, the stress of the
stiffener gradually decreases, and the high-stress region becomes periodic and concentrates
at the corners of plating between stiffeners, which means that the failure mode changes
from stiffener tripping to local plate buckling.
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Figure 14. Transition from beam-column buckling to stiffener tripping (size 3). (a) f = 28 mm
(B =1.185); (b) t = 26.5 mm (B = 1.252); (¢) t = 25 mm (B = 1.327); (d) t = 23.5 mm (B = 1.412).

Combined with the trend of ultimate strength, t = 25 ~ 26.5 mm can be regarded as
the boundary between beam-column buckling and stiffener tripping, and t = 14 ~ 16.5 mm
as the boundary between stiffener tripping and local plate buckling.

4.3. Boundaries of Local Plate Buckling, Stiffener Tripping and Beam—Column Buckling

To carry out a statistical study on the boundary of the failure modes of local plate
buckling, stiffener tripping, and beam—column buckling, a series of stiffener sizes (Table 7)
that meet the CSR requirements was set. The hy/t, and A, values of each dataset are
essentially equal.

The ultimate strengths of stiffened panels with different combinations of plating and
stiffener sizes were calculated. Three factors, the trend of the ultimate strength, the stress
and deformation in the ultimate limit state, were combined to determine the failure mode
and find the boundary of different failure modes. The critical points of the failure mode
were determined with a certain accuracy (£0.75 mm), and nonlinear fitting was used to
obtain the boundaries of the failure modes, as shown in Figure 16.

In this study, both &, /t,, and A, were used to evaluate stiffener tripping. It is believed
that stiffener tripping only occurs when both hy,/t,, and A, are greater than the critical
value, and local plate buckling or beam—column buckling only occurs when both h, /ty,
and A, are less than the critical value. From A and B, the coordinates of the critical point
((hw/tw);, (Ae);) (i = 1,2) can be determined. If hy, /tyy > (hw/tw)&&Ae > (A.);, stiffener
tripping occurs; if hy, /ty < (hw/tw);&&A, < (Ae);, local plate buckling or beam—column
buckling occurs.
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Figure 15. Transition from stiffener tripping to local plate buckling (size 3). (a) t = 17.5 mm
(B =1.896); (b)t = 16 mm (B = 2.074); (c) t = 14.5 mm (B = 2.288); (d) t = 13 mm (B = 2.552);
(e)t =11.5mm (B = 2.885); (f) t = 10 mm (B = 3.318).

As shown in Figure 17, when A is constant, (/1 /t); and (A¢); increase with increasing
B, which is consistent with the relative relationship between local plate buckling and
stiffener tripping. When A is constant, (11, /tw), decreases with increasing B, and (A.),
does not change much, which is consistent with the relative relationship between stiffener
tripping and beam—column buckling. Increasing A or decreasing hy,/ty is an effective
measure to avoid stiffener tripping.



J. Mar. Sci. Eng. 2023, 11,1214

15 of 20

Table 7. Stiffener sizes for the study of local plate buckling, stiffener tripping and beam—column buckling.

No. hyp/mm bf/mm tw/mm t/mm A huwlty Ae(t=22)
case 1 383 92 9.5 15.5 0.244 40.3 0.591
case 2 383 96 10.65 16 0.244 36.0 0.592
size 3 383 100 12 17 0.244 31.9 0.594
case 4 383 103.5 13.5 18 0.244 28.4 0.597
case 5 383 106 15 19 0.244 25.5 0.600
case 6 330 86 8.19 13.5 0.283 40.3 0.531
case 7 330 90 9.18 14 0.283 36.0 0.532
case 8 330 94 10.34 14.5 0.283 31.9 0.533
case 9 330 98 11.63 15 0.283 28.4 0.535

case 10 330 101 12.92 16 0.283 25.5 0.537
case 11 290 82 7.19 12.1 0.321 40.3 0.482
case 12 290 86 8.06 12.5 0.321 36.0 0.482
case 13 290 90 9.09 13 0.331 31.9 0.483
case 14 260 77.5 6.45 11 0.358 40.3 0.447
case 15 260 81 7.23 11 0.358 36.0 0.448
case 16 260 85 8.15 11.5 0.358 31.9 0.448

According to the critical points of the failure modes, the parameters were reasonably
selected as dependent variables, and the functional relationships shown in Equations (6)—(8)
were obtained through nonlinear fitting.

(6). Critical relationship between Mode II and Mode V:

(Ae); = 4.8429A% — 3.7355) — 000662 + 0.35498 — 0.3484A B + 0.8314

2 6
A = 012372 — 0.40298 +0.0003 (4 ) +0.0002 (%) —0.0101p( %) +0.3719 ©
w l w 1 w 1
(7). Critical relationship between Mode V and Mode III:
(Ae)y = 3.7232A% — 1.6634A + 0.448782 — 0.35128 — 1.3939A8 + 0.8683
2 @)
_ 2_ e\ I I
B = 2246712 ~ 152637 +0.0001 (42 ) —0.0189 (=) +0.01621 () +1.8183
(8). Critical relationship between Mode II and Mode III:
B = 5.5687A% — 10.0844A + 13.5317(A)3 — 16.7219(Ac)3 + 15.0091A(Ae )5 + 6.5261 "
8

A = —0.4530B2 + 1.31328 + 0.0005(%)§ —0.0849 (7—10)3 +0.04048 (%)3 —0.0296

Applicable range: 0.244 < A < 0.812,1.005 < B < 2.552,15.333 < hy/ty, < 40.316,
and 0.222 < A, < 0.852.

First, A, B, hy/tw and A, are calculated from the size of the stiffened panel, and then,
A and f are used as benchmarks to obtain the critical values of (hy/tw); and (Ae); using
the functional relationship. The identification method is as follows:

When (o /tw)y < (ho/tw)1&&(Ae)y < (Ae)y: I b/t < (ho/ t)o&lehe < (Ae)y, TII
is the main failure mode; if (hy/tw)y < hw/tw < (hw/tw);&&(Ae)y < Ae < (A¢)y, ILis the
main failure mode; and if hy /ty > (how/tw)&&Ae > (Ac)1, V is the main failure mode.

When (hy/tw), > (hw/tw)&&(Ae)y > (A¢);, V can be ignored: If hy/t, <
(hw/tw)3&&Ae < (Ae)s, ILis the main failure mode; if hy /ty > (hw/tw)3&&Ae > (Ae)s, 11
is the main failure mode.
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Figure 16. Boundaries of local plate buckling (I), stiffener tripping (V) and beam-column buckling
(III). (a) Critical surfaces of local plate buckling and stiffener tripping; (b) critical surfaces of stiffener
tripping and beam-column buckling.
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Figure 17. Critical points of local plate buckling (II), stiffener tripping (V) and beam-column buckling
(III). (a) Critical points of Il and V; (b) critical points of IIl and V.

In addition to the above cases, the result can be regarded as a mixed-mode result; that
is, there are multiple failure modes, and the effects of these modes on the ultimate strength
are similar. At this time, the coupling effect between modes is strong. Additionally, the
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margin coefficient s can be set to modify the critical values, thereby dividing a certain range
near the boundaries into a mixed mode.

Take the stiffened panel with t = 16 mm and stiffener of size 2 as an example;
the values of (hy/ty); and (hy/tw), are 83.68 and 157.90, respectively, which satisfy
(hw/tw)y > (hw/tw),. At the same time, the values of (A.); and (A.), are 0.86 and 0.54,
which satisfy (A.), > (A.);. Stiffener tripping does not occur in the ultimate limit state
and can be ignored. In this case, since the size of the stiffened panel can also meet the
requirement that 11/t < (hw/tw)s and Ae < (A.)s, the failure mode of can be identified
as the local plate buckling (mode II).

The distribution of stress and deformation shown in Figure 18 implies that the failure
mode of the stiffened panel is local plate buckling, as predicted, which means that the
formula proposed in this paper can realize the prediction of the failure mode.

ANSYS
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TIME=0.883384
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221.871 252603 283.334 114,065

Figure 18. Equivalent stress cloud diagram of stiffened panel (t = 16 size 2).

5. Ultimate Strength Evaluation Formula of Stiffened Panels Based on Different
Failure Modes

Based on the elastic theory formulas of beam—column buckling, local plate buckling,
stiffener web buckling and stiffener tripping and the introduction of a primary term
considering plastic range modification, an ultimate strength evaluation in the form of a
stiffened panel based on four mechanical parameters is proposed as follows:

as a4

)

by
+ + =+ A+ B+ chy/ty +cr.+4d
( hw / tw)z 2 , 2 . ﬁ w/ tw e
where 0, is the ultimate strength of the stiffened panel and a1 ~ a4, by ~ bs, c1 ~ ¢4, and
d are undetermined coefficients.
Using MATLAB to perform multivariate function fitting on the ultimate strength of

255 stiffened panels with different failure modes, the calculation formula is as follows:

0.1796

oy _ 0.0108 _ 1.0546 222213 _ 0.0298 _ 0.1388 + 2.2403 __ 23.558
A Ae

s A2 B2 T (hw/tw)? A2 B b / b
—0.8993A + 0.13028 — 0.01058%, / ty + 0.1394A , + 0.8239

(10)

Applicable range: 0.163 < A < 0.812,1.005 < B < 3.493,15.333 < hy /t, < 40.316,
and 0.222 < A, < 1.219.
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The coefficient (R?) of determination of Equation (10) is 0.94708, and the adjusted R?
is 0.94198. Statistics on the error ((formula value—finite element value)/finite element
value) were obtained, as shown in Figure 19. The error of more than 90% of the data is
within £2%, a few results are outside +4%, the fitting effect is good, and the accuracy of
Equation (10) is high.
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Figure 19. Error frequency distribution histogram.

As shown in Table 8, Equation (10) is compared with the evaluation effect determined
by Paik [1] and Zhang [4]. Since the parameters in Paik and Zhang’s formulas only contain
A and f, they cannot accurately reflect the effect of stiffener failure. For example, when
t = 22 or t = 28 mm, the ultimate strength is slightly reduced after the stiffener is changed
from size 3 to size 4. This is because the effect of increasing hy, /t,, (causing a decrease
in the ultimate strength) exceeds the effect of decreasing A (causing an increase in the
ultimate strength).

Table 8. Comparison of the calculation results of the fitting formulas.

Sizes of FEM . . Error of
t Stiffeners oyulos Paik Zhang Equation (10) Equation (10)

size 1 0.709 0.634 0.722 0.711 0.3%

" size 2 0.740 0.709 0.796 0.751 1.5%
size 3 0.759 0.739 0.811 0.756 —0.4%
size 4 0.765 0.751 0.814 0.756 ~1.2%
size 1 0.807 0.711 0.790 0.813 0.7%

- size 2 0.876 0.793 0.870 0.874 ~0.2%
size 3 0.883 0.827 0.886 0.878 —0.6%
size 4 0.874 0.840 0.890 0.874 0.0%
size 1 0.857 0.755 0.845 0.857 0.0%

28 size 2 0.958 0.840 0.931 0.952 —0.6%
size 3 0.963 0.875 0.948 0.963 0.0%
size 4 0.946 0.889 0.952 0.958 1.3%

(Note: Zhang): ou/os = B O8(1+32)" Paiki ou/os = (0.995+ 0.936A2 + 0.17062 + 0.1881252

—0.067A%) "%,
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6. Conclusions

In this study, through nonlinear finite element analysis, an identification method
based on four mechanical parameters is established for common failure modes of stiffened
panels, and an ultimate strength evaluation formula suitable for different failure modes is
proposed. The conclusions are as follows:

(1) Assuming no stiffener tripping, decreasing A and increasing hy, /t;, are beneficial
to preventing local plate buckling and changing the mode to beam—column buckling. The
nonlinear critical curves show that the general form, such as /A, struggles to effectively
evaluate the failure modes of stiffened panels.

(2) The evolution laws and the relationships of the three failure modes, local plate
buckling, stiffener tripping and beam—column buckling, are studied. Increasing A and
decreasing hy,/t, are beneficial to preventing stiffener tripping. At the same time, the
critical function formulas of the three failure modes are fitted for the evaluation of the
failure modes.

(3) Based on a large amount of calculation data, a refined formulation of stiffened
panels with four parameters is proposed. hy, /t;, and A, are added to the formula to reflect
the influence of stiffener tripping. The results can provide a reference for the subsequent
study of the failure modes of stiffened plates. A comparison with Paik and Zhang shows
that the formulation in this paper has a reasonable form and good precision.

However, it may be too ideal to determine the failure mode by considering the vari-
ation trend of the ultimate strength and stress distribution in the ultimate limit state. In
subsequent work, more accurate methods for determining failure modes need to be devel-
oped, which could improve the accuracy of critical function formulas and ultimate strength.
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Nomenclatures

A Column slenderness

B Plate slenderness

hw/tw  Height-to-thickness ratio of stiffener

Ae Stiffener tripping slenderness

Os Yield stress

Ou Ultimate strength of stiffened panels

I Moment of inertia of the section

OE Elastic buckling stress

L, I Moments of inertia of the two flanges to the y-axis
r Sector moment of inertia

Ce Forced rotation centre

Ipc Polar moment of inertia of the section

L, Iy Principal moments of inertia of the section to the centroid
G Shear modulus

K Torsional moment of inertia of the cross-section

C Torsional spring stiffness
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