Damage Stability of Ships
1. Introduction
2. Overview of Contributions
2.1. Statistical Analysis of Accidents
2.2. Regulatory Damage Stability Calculations
2.3. Advanced Simulation Methods
2.4. Counter-Actions for Risk Mitigation
3. Summary
- Greater emphasis in the investigation of (bottom and side) grounding damage;
- Monte Carlo simulation for the generation of damage cases;
- The development of more advanced flooding simulation tools that account for floodwater inertia;
- Studies on active counter-actions to mitigate the effects of flooding onboard damaged ships.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Francescutto, A.; Papanikolaou, A.D. Buoyancy, stability, and subdivision: From Archimedes to SOLAS 2009 and the way ahead. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 2011, 225, 17–32. [Google Scholar] [CrossRef]
- Papanikolaou, A.D. Review of damage stability of ships—Recent developments and trends. In Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS), Houston, TA, USA, 30 September–5 October 2007. [Google Scholar]
- IMO. Safety of Life at Sea (SOLAS), Part B Subdivision and Stability, Consolidated Edition 2020; International Maritime Organization: London, UK, 2020. [Google Scholar]
- Vassalos, D.; Luhmann, H.; Cardinale, M.; Hamann, R.; Papanikolaou, A.; Paterson, D. A Multi-Level Approach to Flooding Risk Estimation of Passenger Ships. In Proceedings of the SNAME Maritime Convention, Houston, TX, USA, 26–29 September 2022. [Google Scholar] [CrossRef]
- Bulian, G.; Cardinale, M.; Dafermos, G.; Eliopoulou, E.; Francescutto, A.; Hamann, R.; Lindroth, D.; Luhmann, H.; Ruponen, P.; Zaraphonitis, G. A Framework for Probabilistic Damage Stability Assessment of Passenger Ships Considering Collision, Grounding and Contact Accidents. In Contemporary Ideas on Ship Stability. Fluid Mechanics and Its Applications; Spyrou, K.J., Belenky, V.L., Katayama, T., Bačkalov, I., Francescutto, A., Eds.; Springer: Cham, Switzerland, 2023; Volume 134. [Google Scholar] [CrossRef]
- Mauro, F.; Vassalos, D.; Paterson, D.; Boulougouris, E. Evolution of ship damage stability assessment—Transitioning designers to direct numerical simulations. Ocean Eng. 2023, 268, 113387. [Google Scholar] [CrossRef]
- Ruponen, P.; Valanto, P.; Acanfora, M.; Dankowski, H.; Lee, G.J.; Mauro, F.; Murphy, A.; Rosano, G.; van’t Veer, R. Results of an international benchmark study on numerical simulation of flooding and motions of a damaged ropax ship. Appl. Ocean Res. 2022, 123, 103153. [Google Scholar] [CrossRef]
- Ruponen, P.; van Basten Batenburg, R.; van’t Veer, R.; Braidotti, L.; Bu, S.; Dankowski, H.; Lee, G.J.; Mauro, F.; Ruth, E.; Tompuri, M. International benchmark study on numerical simulation of flooding and motions of a damaged cruise ship. Appl. Ocean Res. 2022, 129, 103403. [Google Scholar] [CrossRef]
- Eliopoulou, E.; Alissafaki, A.; Papanikolaou, A. Statistical Analysis of Accidents and Review of Safety Level of Passenger Ships. J. Mar. Sci. Eng. 2023, 11, 410. [Google Scholar] [CrossRef]
- Krüger, S. Statutory and Operational Damage Stability by a Monte Carlo Based Approach. J. Mar. Sci. Eng. 2023, 11, 16. [Google Scholar] [CrossRef]
- Valanto, P. On Boundary Conditions for Damage Openings in RoPax-Ship Survivability Computations. J. Mar. Sci. Eng. 2023, 11, 643. [Google Scholar] [CrossRef]
- Van’t Veer, R.; Berg, J.v.d.; Boonstra, S. A Unified Internal Flow Model with Fluid Momentum for General Application in Shipflooding and Beyond. J. Mar. Sci. Eng. 2023, 11, 1175. [Google Scholar] [CrossRef]
- Valanto, P. Active Flooding Mitigation for Stability Enhancement in a Damaged RoPax Ship. J. Mar. Sci. Eng. 2022, 10, 797. [Google Scholar] [CrossRef]
- Lee, G.J.; Hong, J.-P.; Lee, K.K.; Kang, H.J. Application of Buoyancy Support System to Secure Residual Buoyancy of Damaged Ships. J. Mar. Sci. Eng. 2023, 11, 656. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruponen, P.; Papanikolaou, A. Damage Stability of Ships. J. Mar. Sci. Eng. 2023, 11, 1250. https://doi.org/10.3390/jmse11061250
Ruponen P, Papanikolaou A. Damage Stability of Ships. Journal of Marine Science and Engineering. 2023; 11(6):1250. https://doi.org/10.3390/jmse11061250
Chicago/Turabian StyleRuponen, Pekka, and Apostolos Papanikolaou. 2023. "Damage Stability of Ships" Journal of Marine Science and Engineering 11, no. 6: 1250. https://doi.org/10.3390/jmse11061250
APA StyleRuponen, P., & Papanikolaou, A. (2023). Damage Stability of Ships. Journal of Marine Science and Engineering, 11(6), 1250. https://doi.org/10.3390/jmse11061250