
Citation: Wang, C.; Fan, B.; Li, Y.;

Xiao, J.; Min, L.; Zhang, J.; Chen, J.;

Lin, Z.; Su, S.; Wu, R.; et al. Study on

the Classification Perception and

Visibility Enhancement of Ship

Navigation Environments in Foggy

Conditions. J. Mar. Sci. Eng. 2023, 11,

1298. https://doi.org/10.3390/

jmse11071298

Academic Editor: Sergei Chernyi

Received: 20 May 2023

Revised: 12 June 2023

Accepted: 13 June 2023

Published: 26 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Study on the Classification Perception and Visibility Enhancement
of Ship Navigation Environments in Foggy Conditions
Chiming Wang 1 , Boyan Fan 1, Yanan Li 1, Jingjing Xiao 1, Lanxi Min 1, Jing Zhang 1, Jiuhu Chen 2, Zhong Lin 2,
Sunxin Su 2, Rongjiong Wu 1 and Shunzhi Zhu 1,*

1 School of Computer and Information Engineering, Xiamen Institute of Technology, Xiamen 361024, China
2 Fujian Xinji Shipping Service Co., Ltd., Xiamen 361000, China
* Correspondence: zhusz66@163.com

Abstract: Based on ship navigational requirements and safety in foggy conditions and with a particu-
lar emphasis on avoiding ship collisions and improving navigational abilities, we constructed a fog
navigation dataset along with a new method for enhancing foggy images and perceived visibility
using a discriminant deep learning architecture and the EfficientNet neural network by replacing
the SE module and incorporating a convolution block attention module and focal loss function.
The accuracy of our model exceeded 95%, which meets the needs of an intelligent ship navigation
environment in foggy conditions. As part of our research, we also determined the best enhancement
algorithm for each type of fog according to its classification.
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1. Introduction

Sea fog is a dangerous weather phenomenon. Under foggy weather conditions,
visibility is low and it is difficult to identify ships, obstacles, objects, and navigation marks.
Difficulties in ship positioning and navigation, which affect the safety of ship avoidance
and rendezvous, can result in water traffic accidents [1]. According to statistics, the accident
incidence rate in dense fog is more than 70% [2]. In foggy conditions, the influences of
automatic identification system (AIS) information lag, weak radar detection performance,
and wind and wave flow worsen ship maneuverability and greatly increase the difficulty of
positioning and navigation, imperiling the safety of ships sailing in busy shipping routes.

Many scholars have introduced artificial intelligence technology into the field of
shipping using deep learning techniques to guide the transformation and upgrading of the
shipping industry and improve its ability to perceive danger [3,4]. Varelas [5] described
Danaos Corporation’s innovative toolkit called Operations Research In Ship Management
(ORISMA), which optimizes ship routing by considering financial data, hydrodynamic
models, weather conditions, and marketing forecasts. ORISMA maximizes revenue by
optimizing fleetwide performance instead of single-vessel performance and accounts for
financial benefits after voyage completion. ShipHullGAN [6] is a deep learning model that
uses convolutional generative adversarial networks (GANs) to generate and represent ship
hulls in a versatile way. This model addresses the limitations of current parametric ship
design, which only allows for specific ship types to be modeled.

The current emphasis in intelligent ship development is navigational safety [7], making
improvements in ship navigation in fog increasingly urgent. To improve ships’ perception
ability in fog, it is necessary to improve the detection of foggy conditions so that the targeted
treatment of foggy conditions can achieve twice the result with half the effort. Currently, a
large number of scholars have studied the relevant perception and classification algorithms
and the sea visibility detection method based on image saturation, but advection fog, light,
and other factors introduce large errors [8]. Kim et al. [9] used satellite observation data
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and aerosol lidar detection along with cloud removal and fog edge detection to determine
the amount of fog, but the method was only applicable to satellite data. Traditional
image-processing methods are susceptible to weather and hardware constraints as well
as atmospheric transmission rates. S Cornejo-Bueno et al. [10] applied a neural network
approach trained with the ELM algorithm to predict low-visibility events from atmospheric
predictive variables, achieving highly accurate predictions within a half-hour time horizon.
This study provided a full characterization of fog events in the area, which is affected
by orographic fog causing traffic problems year-round. Palvanov [11] proposed a new
approach called VisNet for estimating visibility distances from camera imagery in various
foggy conditions. It uses three streams of deep integrated convolutional neural networks
connected in parallel and is trained on a large dataset of three million outdoor images with
exact visibility values. The proposed model achieved the highest performance compared to
previous methods in terms of classification based on three different datasets.

Visibility detection using neural networks [12] is applicable to the classification and
detection of fog on highways and at airports, with limited detection ability and high
hardware requirements. Marine and road environments are quite different, making this
last method impractical for use with ships. Engin [13] proposed an end-to-end Cycle-
Dehaze single-image defogging network that improves the Cycle GAN formulation and
image visual quality. Shao [14] generalized image defogging to truly hazy images by
establishing a domain adaptation paradigm for defogging. Qin [15] proposed an end-to-
end feature fusion network (FFA-Net) that directly restored fog-free images and improved
the highest PSNR index for the SOTS indoor test dataset from 30.23 dB to 36.39 dB. Park [16]
proposed a method using heterogeneous generative adversarial networks—both Cycle
GAN and cGAN—that worked on both synthetic and realistic hazy images. Wu [17]
constructed AECR-Net, a compact defogging network based on an auto-encoder framework
that included an auto-encoder with balanced performance and memory storage and a
comparison regularization module; the experimental results were significantly better than
those of previous methods. Ullah [18] proposed the lightweight convolutional neural
network LD-Net using transformed atmospheric scattering models to jointly estimate the
transmission map and atmospheric light to reconstruct hazy images.

Our work presented in this paper examined the requirements of ship navigation
safety in fog and the problems of ships being prone to collisions with poor visibility in
foggy conditions. We then studied the machine classification and enhancement of foggy
images, built a ship navigation fog environment classification dataset, and applied image
enhancement technology to improve visual perception in fog to lay a foundation for
unmanned ships and remote operation.

2. Construction of the Ship Navigation Fog Environment Classification Standard and
Image Dataset

The presence of fog in the navigation environment reduces visibility. Visibility dif-
fers according to specific conditions, so visibility was the main influencing factor in our
classification study. Therefore, we classified types of foggy environments according to
visibility.

2.1. Visibility Perception under Ship Navigation Fog Environment

Currently, visibility perception algorithms for ship navigation in fog typically combine
a traditional image-processing algorithm with a deep learning algorithm. The former
obtains the extinction coefficient through image-processing technology combined with
Koschmieder’s law [19], the law of atmospheric decay [20], and Allard’s law [21]. The latter
is part of a means for perceiving what is present in the image.

Traditional marine visibility perception methods fall into three main categories: the
visual measurement method, the instrument measurement method, and the image-based
video measurement method.
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(1) The visual inspection method is the most primitive visibility perception method but
is still being used today. However, this method is only based on crew experience, is
susceptible to subjective factors, and offers low accuracy.

(2) The instrument measurement method uses a visibility detection instrument and then
employs the transmission method or scattering method to calculate the extinction
coefficient for measurement. Commonly used measurement instruments include
optical sensing visibility and lidar visibility instruments, with the former including
atmospheric transmission instruments, back scatterers, side scatterers, and forward
scatterers. The measurement data of the instrument are more accurate, but the instru-
ment and maintenance costs are high, and it still requires a human inspection to assist
the perception.

(3) Image-based video measurement uses image-processing methods such as contrast,
image inflection points, and dark channel priors, but these methods are affected by
camera calibration and image quality.

As traditional visibility perception methods mature, the use of deep learning for
visibility perception in fog has become of greater interest. Deep learning methods for this
application have mostly used generative depth and discriminative depth architectures.

The generative depth architecture uses collected image information with relevant
characteristics (such as temperature, wind speed, and humidity) as the network input and
outputs the visibility value. The prediction results of this architecture are relatively accurate.
However, the image cannot be processed directly, requiring a series of input parameters to
be obtained first. One example is the work of Lu Tianshu et al. [22]. Using an improved
dark channel prior algorithm [23], the atmospheric transmittance of a digital image was
obtained, and its relationship with atmospheric visibility was established by curve fitting
to obtain a digital full-field visibility estimation model.

The discriminant depth architecture receives pictures with heavy fog and low visibility
as input and outputs a visibility level or value with relatively stable results. This architecture
has been widely used for visibility perception, as in the work of Huang Liang et al. [24],
and a highway visibility classification model based on Visual Geometry Group (VGG) deep
learning was proposed to monitor the dynamic disappearance process of agglomerate fog.

2.2. Construction of Classified Image Dataset of Ship Navigation Fog Environment

Using actual marine and radar images from the coast of Xiamen City, we constructed
a dataset for marine fog classification as shown in the sea surface visibility rating table [25].
We divided the fog visibility level into eight categories. The specific rules for each category
are shown in Table 1.

Table 1. Visibility classification rules in foggy environments.

Visibility Scale
Perceived Distance

Weather Conditions
NM Km

0 ≤0.05 ≤0.1

1 0.05–0.10 0.1–0.2 Heavy fog, fog

2 0.10.–0.25 0.20–0.5 Dense fog

3 0.250–0.50 0.50–1.0 Fog, light fog

4 0.500–1.00 0.01–2.0 Mist

5 0.01–2.0 0.02–4.0 Moderate rain, light fog

6 2–5 4–10 Light rain, light fog

7 ≥5 ≥10 Drizzle, light rain, no fog

After cleaning the pictures and performing other pre-processing operations, we elim-
inated unqualified pictures. We classified the radar visibility data using the rules from
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Table 1, finally obtaining 4790 pictures as the classification dataset. Figure 1 shows samples
from the dataset. Within the 24 pictures in the figure, each of the three pictures shows
samples of the visibility levels (a–h), with the perception distance gradually increasing
from left to right.
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3. Analysis of Images for Perception Enhancement

By weakening the influence of fog factors and highlighting the environmental char-
acteristics of the ship, we sought to enhance the perception when fog was present and
improve the ability to recognize ships. We mainly employed image enhancement and
physical model-based methods to achieve these tasks.

3.1. Enhanced Ship Navigation Fog Environment Perception Based on Image Enhancement

We first enhanced the image-based visibility enhancement method by improving
contrast but at the cost of losing environmental information. Image-enhancement methods
are mainly divided into two categories: global enhancement and local enhancement.

(1) Global enhancement relies significantly on histogram equalization, Retinex theory,
and high-contrast retention. Histogram equalization refers to equalization processing
of the original image histogram to make the gray-level distribution uniform and
improve the contrast [26]. Retinex theory uses three-color theory and color constancy
balancing dynamic range compression, edge enhancement, and color constant [27].
High-contrast retention refers to preserving contrast at the junction of the color and
shade contrasts, with other areas appearing medium gray. The modified image is
superimposed on the original image one or more times to produce an enhanced image.

(2) Local enhancement includes adaptive histogram equalization (AHE), limit contrast,
and adaptive histogram equalization (CLAHE). The adaptive histogram equalization
algorithm calculates a local histogram and redistributes the brightness to change the
contrast to realize image enhancement [28]. The limited contrast adaptive histogram
equalization algorithm solves the problem of excessive noise by limiting contrast based
on the adaptive histogram equalization, with an interpolation method accelerating
the histogram equalization [29].
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3.2. Enhanced Perception of Ship Navigation Fog Environment Based on the Physical Model

The algorithm estimated atmospheric illumination and transmission based on the
atmospheric scattering physics model. According to the mapping relationship of the
atmospheric scattering model, a single-image defogging algorithm for a transmission map
and dark channel prior was established to realize image enhancement [30]. Based on this
theory, the fog concentration could be estimated using the dark channel image along with
a more accurate determination of the atmospheric illumination, and the transmission rate
could be calculated according to the inverse operation of the atmospheric scattering model,
enabling the identification of ships and other objects in the fog.

4. Construction of the Ship Navigation Fog Environment Classification Model
4.1. Overall Model Structure

To reduce the number of model input parameters and facilitate the needed environ-
mental classifications, we constructed our method using a discriminative deep learning
architecture that output the fog visibility level. To keep the model small, efficient, and
fast, we selected EfficientNet [31] as the classification algorithm. Since the classification
ability of the model depended on the extraction of image features in a difficult foggy
image, we used the efficient channel attention module (ECA) [32]. We replaced the original
squeeze excitation (SE) module and added the convolution block attention module (CBAM)
after the last convolution of the EfficientNet network [33]. We optimized the EfficientNet
network structure to extract deep features efficiently and adopted global average pooling
(AvgPool) and a full connection (FC) method for fog classification with a focus loss function
(FocalLoss) during model training [34] to solve the problem of balanced sample numbers.
Our classification-perception model is shown in Figure 2.
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4.2. The EfficientNet Network

Given the practical computational limitations (measured in FLOPS) of typical comput-
ers, EfficientNet analyzes the influence of the network size to find appropriate configuration
parameters. The core of the EfficientNet network is a hybrid model scaling (compound
model scaling) algorithm that comprehensively optimizes the network depth, width, and
resolution, reducing the number of parameters and improving the calculation speed while
achieving optimal accuracy [35].

EfficientNet defines the network architecture as a composite model scaling optimiza-
tion problem and targets the optimal width, depth, and resolution simultaneously. The
network parameters and computational requirements must meet certain conditions, as
shown in the following equation:
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max
d,w,r Accuracy(N(d, w, r))

s.t.N(d, w, r) =
⊙

i = 1 · · · sF̂d·L̂i
i

(
X〈r·Ĥi,r ·Ŵi,w ·Ĉi〉

)
Memory(N) ≤ target_memory

FLOPS(N) ≤ target_ f lops.

(1)

In Equation (1), N(d, w, r) represents the classification network; maxAccuracy is the
maximum accuracy of the model; i represents a stage (convolution order); d represents
the depth scaling coefficient to scale up L̂i (the number of convolution layers for the first
stage); w represents the width scaling coefficient; Ĉi is the number of channels of the output
feature matrix; r represents the resolution scaling coefficient used to affect Ĥi(high preset

resolution) and Ŵi (wide preset resolution); F̂i is the network structure; F̂L̂i
i represents the

repeated L̂i times in stagei; X represents the input feature matrix of stagei with dimensions〈 .
Hi, Ŵi, Ĉi

〉
;

⊙
i = 1 · · · s represents the continuous multiplication operation; Memory(N)

represents the number of network parameters; FLOPS(N) represents the number of net-
work floating-point computations per second; and target_memory and target_ f lops rep-
resent the number of target network parameters and the target floating-point operations,
respectively.

Further, the unified parameter scaling of the width, depth, and resolution was intro-
duced through the hybrid model scaling algorithm φ. The specific relationship is shown in
the following equations:

depth : d = αφ

width : w = βφ

resolution : r = γφ

s.t.α·β2·γ2 ≈ 2α ≥ 1, β ≥ 1, γ ≥ 1

(2)

In Equation (2), α, β, and γ are constants that indicate how to allocate parameters for
depth, width, and resolution resources, respectively; and ϕ is a mixing factor.

The baseline model was obtained using neural architecture search (NAS) and scaling
operations on the depth, width, and input image resolution of EfficientB0 to produce
a series of network models (EfficientNets). Table 2 shows the EfficientNet-B0 baseline
network structure.

Table 2. The EfficientNet-B0 baseline network structure.

Stage
(Convolution Order) Operator Resolution # of Channels # of Layers

i ∧
Fi

∧
Hi ×

∧
Wi

∧
Ci

∧
Li

1 Conv3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 1
3 MBConv6, k3 × 3 112 × 112 24 2
4 MBConv6, k5 × 5 56 × 56 40 2
5 MBConv6, k3 × 3 28 × 28 80 3
6 MBConv6, k5 × 5 14 × 14 112 3
7 MBConv6, k5 × 5 14 × 14 192 4
8 MBConv6, k3 × 3 7 × 7 320 1
9 Conv 1 × 1 & Pool & FC 7 × 7 1280 1

In the EfficientNet-B0 network structure, the first stage consisted of a 3× 3 convolution
layer, batch normalization (BN), and a Swish activation function. Stages 2 through 8 were
repeatedly stacked MBConv structures, with the “Layers” column showing the number
of MBConv structure repeats. Stage 9 consisted of a 1 × 1 convolution layer, BN, Swish
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activation function, average pooling layer, and a fully connected layer. Each MBConv in
Table 2 is followed by either the number 1 or 6, where the numbers 1 and 6 are the multiple
factors; that is, the convolution layer expanded the channels of the input feature matrix
to 1 or 6 factors. Furthermore, k3 × 3 or k5 × 5 represents the size of the convolutional
kernel that was employed by DWConv in MBConv. The “Channels” column represents the
number of channels of the output feature matrix after passing through this stage.

The MBConv structure was mainly composed of a single 1 × 1 ordinary convolution,
a k × k DWConv, an SE module, a 1 × 1 ordinary convolution, and a Dropout layer, where
the specific values of k were mainly in both the 3 × 3 and 5 × 5 cases[25]. The specific
MBConv structure is shown in Figure 3.
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4.3. Optimization of Ship Navigation Fog Environment Classification Model
4.3.1. Improvement of the Attention Mechanism

The basic EfficientNet network uses the SE attention mechanism module to improve
the performance of the deep convolutional network. However, the complexity of the SE
attention mechanism module is high, the performance improvement of the deep convolu-
tional network is limited, and the extraction results of features relating to fog visibility are
not obvious.

Therefore, we selected an efficient channel attention (ECA) module to balance the
performance and complexity of the model calculation, reduce the model complexity, and
improve the performance of the deep convolutional network. The ECA structural model is
shown in Figure 4.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 15 
 

 

5 MBConv6, k3 × 3 28 × 28 80 3 
6 MBConv6, k5 × 5 14 × 14 112 3 
7 MBConv6, k5 × 5 14 × 14 192 4 
8 MBConv6, k3 × 3 7 × 7 320 1 
9 Conv 1 × 1 & Pool & FC 7 × 7 1280 1 

In the EfficientNet-B0 network structure, the first stage consisted of a 3 × 3 convolu-
tion layer, batch normalization (BN), and a Swish activation function. Stages 2 through 8 
were repeatedly stacked MBConv structures, with the “Layers” column showing the num-
ber of MBConv structure repeats. Stage 9 consisted of a 1 × 1 convolution layer, BN, Swish 
activation function, average pooling layer, and a fully connected layer. Each MBConv in 
Table 2 is followed by either the number 1 or 6, where the numbers 1 and 6 are the multiple 
factors; that is, the convolution layer expanded the channels of the input feature matrix 
to 1 or 6 factors. Furthermore, k3 × 3 or k5 × 5 represents the size of the convolutional 
kernel that was employed by DWConv in MBConv. The “Channels” column represents 
the number of channels of the output feature matrix after passing through this stage. 

The MBConv structure was mainly composed of a single 1 × 1 ordinary convolution, 
a k × k DWConv, an SE module, a 1 × 1 ordinary convolution, and a Dropout layer, where 
the specific values of k were mainly in both the 3 × 3 and 5 × 5 cases. [25] The specific 
MBConv structure is shown in Figure 3. 

 
Figure 3. MBConv structural diagram. 

4.3. Optimization of Ship Navigation Fog Environment Classification Model 
4.3.1. Improvement of the Attention Mechanism 

The basic EfficientNet network uses the SE attention mechanism module to improve 
the performance of the deep convolutional network. However, the complexity of the SE 
attention mechanism module is high, the performance improvement of the deep convolu-
tional network is limited, and the extraction results of features relating to fog visibility are 
not obvious. 

Therefore, we selected an efficient channel attention (ECA) module to balance the 
performance and complexity of the model calculation, reduce the model complexity, and 
improve the performance of the deep convolutional network. The ECA structural model 
is shown in Figure 4. 

 
Figure 4. The ECA structural model. 

Conv
1×1,s1

DWConv
k×k,s1/s2

SE Conv
1×1,s1 Dropout

  BN
Swish

  BN
Swish   BN

Figure 4. The ECA structural model.

The ECA structure obtains each channel weight w and multiplies the weights with
the corresponding elements of the original input feature graph to obtain the final output
feature graph [36]. The formula for calculating w is:

ω = σ(CLDk(y)). (3)

In Equation (3), y is the global average pooling function, σ is the Sigmoid function,
CLD represents the 1 D convolution, and k is the convolution kernel size. The convolution
kernel calculation formula is shown in the following equation:

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

. (4)
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In Equation (4), C represents the number of channel dimensions; the γ and b coeffi-
cients were taken to be 1 and 2; respectively, and k = |t|odd represents the odd number
nearest to t.

The basic EfficientNet network only considers the coding of the information between
the channels and does not consider the spatial location information of the fog and the
surrounding environment, which affects the visibility level classification results of the fog
environment.

Therefore, we added the CBAM attention module to the basic EfficientNet network
to integrate a channel and a spatial attention module for better classification results. The
CBAM structural model is shown in Figure 5.
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The CBAM formula is as follows:

F′′ = Ms(F′)⊗ F′

F′ = Mc(F)⊗ F

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
FC

avg

))
+ W1

(
W0
(

FC
max
)))

Ms(F′) = σ
(

f 7×7([AvgPool(F′) + MaxPool(F′)])
)

= σ
(

f 7×7
([

FC
avg; FC

max

]))
.

(5)

In Equation (5), F represents the input features, F′ represents the spatial module input
features, F′′ represents the final output features, Ms represents channel attention, Mc rep-
resents spatial attention, AvgPool represents global average pooling, MaxPool represents
global maximum pooling, MLP represents the multilayer perceptron, σ represents the
Sigmoid activation function, W1 and W0 represent the weight of the MLP neurons, and
f 7×7 represents the utilization size of the 7 × 7 convolution kernel.

4.3.2. Improvement of the Loss Function

In our fog dataset, the dataset samples had such an uneven distribution problem.
Therefore, the focal loss function was introduced to reduce the internal weighting, solve
the class imbalance problem, reduce the ease of the sample weights of the network in the
training process, and focus on the dataset with sparse difficult samples for training. The
focal loss formula [37] is shown in Equation (6):

Focal(pt) = −(1− pt)
γlog(pt), (6)

pt =

{
p i f y = 7

1− p otherwise
(7)

In Equation (6), γ is a constant representing the sample weight, which is used to
measure difficult and easy samples; p is the category predicted probability value, which
ranges between 0 and 1; and y values ranging from 0 to 7 are used to identify the classes
(e.g., y = 1 represents class 1).
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5. Comparative Analysis of the Results of the Fog Environment Visibility Experiment
5.1. Classification Experiment of Ship Navigation Fog Environment

To verify the effectiveness of our model, we analyzed our dataset and conducted
ablation experiments along with performance measurements of the classification results.

5.1.1. Description of the Fog Environment Visibility Dataset

The dataset contained 4790 images divided into eight categories. Figure 6 shows the
statistical results of the dataset. Its main features included an uneven distribution of dataset
samples, with the first label having the fewest samples (301 pictures) and the eighth sample
having the most (2141 pictures). The resolution of the dataset images was constant at
704 × 576 pixels.
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5.1.2. Ablation Experiment of Ship Navigation Fog Environment Classification Model

According to the classification requirements of our environment, accuracy (Accuracy)
was the main evaluation index combined with the cumulative operator (MACS), the number
of model parameters, and the model size. The accuracy calculation formula is as follows:

Accuracy =
TP + TN

TP + TN + FN + TN
× 100%. (8)

In Equation (8), TP, FP, FN, and TN represent the number of positive samples correctly
identified (true positives), the number of misreported negative samples (false positives),
the number of negative samples incorrectly identified (false negatives), and the number of
negative samples correctly identified (true negatives), respectively.

Ablation experiments refer to the use of laboratory techniques to detect the impact of
certain model components (such as layers, features, parameters, etc.) on model performance
by removing or blocking them. To verify the effectiveness of our model, we performed the
following four ablation experiments:

(1) Basic EfficientNet using the basic EfficientNet network for training;
(2) EfficientNet + ECA using the ECA attention module based on Equation (1) to replace

the SE module in the MBConv structure;
(3) EfficientNet + ECA + BAM with the CBAM attention module added after the last

convolutional layer based on Equation (2); and
(4) Based on (3), the focus loss function was used to form the final improved EfficientNet

model.
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The results of the ablation experiments are shown in Table 3.

Table 3. Ablation experiments of ship navigation fog environment classification model.

Computational Model Precision/% MACs/G Participants/M Model Size/MB FPS

Model 1: original EfficientNet 94.63 0.398 4.02 15.62 35.7

Model 2: EfficientNet + ECA 94.84 0.400 3.38 13.18 34.1

Model 3: EfficientNet + ECA + CBAM 94.91 0.401 4.20 16.31 38.5

Model 4: the model in this paper 95.05 0.401 4.20 16.31 42.9

Based on the experiments summarized in the table, we drew the following conclusions.

1. When comparing Models (1) and (2), replacing the SE module with the ECA attention
module improved the accuracy by 0.21% and reduced the MACS, the number of
parameters, and the model size, showing that the ECA module was lighter and
offered a stronger attention learning ability than the SE module.

2. When comparing Models (3) and (2), the results showed that adding the CBAM
attention module increased the accuracy of MACS with only a slight increase of
0.07% in the number of parameters and the model size, indicating that adding CBAM
extracted better network features with greater accuracy.

3. When comparing Models (4) and (3), the results showed that the focus loss function
reaction model accelerated the network learning. Under the same input conditions,
the accuracy of Model (4) was improved by 0.06%.

To sum up, the EfficientNet model was effective in improving the model. The accuracy
of the model reached 95.05% in the validation set, with 0.401 G MACS, 4.20 M model
parameters, and a model size of 16.31 MB. Relative to the underlying EfficientNet model,
the accuracy of the improved perception model improved by 0.42%, and the lighter-weight
model preserved a high accuracy.

5.1.3. Classification Performance Analysis of Ship Navigation Fog Environment

The visibility grade classification results are shown in Table 1. After classifying the
validation set data, the confusion matrix was drawn statistically for all images to show the
classification results. The confusion matrix diagram is shown in Figure 6.

Figure 7 shows that the overall accuracy of ship navigation fog environment clas-
sification reached 95.05%, with good performance in all grades. The data were mainly
concentrated on the diagonal and adjacent points, with a small number of misclassified
data categories. According to these results, we considered our model’s performance stable
and reliable.

5.2. Visibility Enhancement Experiment of Ship Fog Environment
5.2.1. Comparison of Visibility Enhancement Experiment in Fog Environment

To verify the effectiveness of our enhancement algorithm, we used high-contrast
retention, CLAHE, and a dark channel algorithm for a visibility enhancement experiment.
The specific process was as follows:

1. Samples in dataset classes 0–6 were processed with each augmentation algorithm;
2. The classification model presented in this paper was used to classify the images

processed in the previous step;
3. The image-processing classification results were compared with the original image

level to determine whether the visibility level was improved and whether the im-
provement was effectively enhanced;

4. The ratio of the effective enhancement number of each level and the number of
samples in the corresponding level in different datasets were calculated to obtain the
effective enhancement rate.
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This article determined the experimental results of the enhancement model for dif-
ferent visibility levels by comparing the application of different image resolutions and
different models. According to the experimental results in Table 4, all three algorithms
enhanced visibility. The high-contrast retention algorithm had the best results in class 6.
The CLAHE algorithm was more prominent in classes 0 and 3, and the dark channel prior
algorithm was outstanding in classes 1, 2, 4, and 5.

Table 4. Comparison of visibility enhancement experiments.

Enhanced Algorithm CLASS 0 CLASS 1 CLASS 2 CLASS 3 CLASS 4 CLASS 5 CLASS 6

HIGH-CONTRAST
RETENTION 71.76% 45.9% 40.36% 26.17% 26.6% 28.81% 29.80%

clahe 76.08% 19.16% 51.16% 27.46% 10.04% 29.67% 24.64%
DARK CHANNEL

PRIORS 51.50% 48.26% 73.26% 22.54% 29.49% 48.59% 23.50%

5.2.2. Results of Visibility Enhancement in Fog Environment

The EfficientNet neural network alone does not directly improve visibility perception.
In this manuscript, we utilized the EfficientNet neural network to classify visibility levels
and applied existing algorithms such as high-contrast retention, CLAHE, and dark channel
enhancement to enhance visibility for different visibility levels. Compared with the original
image, a subjective review of the processed images showed that all three algorithms
enhanced the visibility and environmental perception, as shown in Figure 8.
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6. Conclusions

Given the requirements of safely navigating ships in foggy conditions, we constructed
a ship navigation fog environment classification model using deep learning and determined
the optimal enhancement algorithm for each type of fog according to the classification
results to produce better perception results for navigation. This laid a foundation for intelli-
gent unmanned and remotely operated ships. Our detailed conclusions were as follows.
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(1) We constructed a fog environment classification image dataset using visibility grade
classification rules and perceived visibility.

(2) Using this dataset, we designed a perceived visibility model structure using a discrim-
inant deep learning architecture and the EfficientNet neural network while adding
the CBAM, focal loss, and other improvements. Our experiments showed that our
model’s accuracy exceeded 95%, which meets the needs of intelligent ship navigation
in foggy conditions.

(3) Using our model and the dataset, we were able to determine the best image-enhance-
ment algorithm based on the type of fog detected. The dark channel prior algorithm
worked best with fog classes 1, 2, 4, and 5. The CLAHE algorithm worked best with
fog classes 0 and 3. The high-contrast retention algorithm worked best with fog class 6.
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