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Abstract: Numerous collision conditions can occur during ship operations, resulting in various con-
sequences that require specific consideration for optimizing crashworthiness design. Existing studies
have investigated crashworthiness design in ship structures; however, they often focus on single
working conditions and do not comprehensively consider the diverse scenarios encountered during
ship operations. To overcome this drawback, this paper proposes a novel method that addresses
multi-working conditions and combines orthogonal testing with a backpropagation neural network
(BPNN) to establish an efficient surrogate model for collision optimization. The accuracy of the
BPNN was improved by introducing the genetic algorithm and Adam algorithm. The technique for
order preference by similarity to ideal solution (TOPSIS) is introduced to formulate a multi-working
condition optimization function. The crashworthiness of the ship structure is optimized using the
sparrow search algorithm (SSA) while considering the constraint of lightweight design. The results
demonstrate a substantial reduction in the objective functions for the optimized collision conditions.
Moreover, the BPNN predicted values are in good agreement with the finite element simulation
results, affirming the effectiveness of the proposed method in improving the crashworthiness of the
ship structure and providing valuable guidance for engineering design.

Keywords: ship collision; crashworthiness optimization; surrogate model; multi-working conditions

1. Introduction

With the rapid development of the shipping industry, the number of ships sailing at
sea is increasing, leading to a rise in ship accidents. In-depth research on ship collision and
crashworthiness optimization is necessary to reduce the losses caused by collision accidents
and ensure safe navigation at sea. However, the optimization design of ship structures
involves finding the optimal solution in a complex and vast search space, which cannot be
completed in a short time using traditional optimization methods and may result in search
results exploding. Thus, finding efficient intelligent optimization algorithms for engineer-
ing optimization problems with high nonlinearity, constraint, and modeling complexity has
become a significant research area in related disciplines [1]. Since engineering optimization
is typically accompanied by a large number of finite element calculations, the direct appli-
cation of intelligent optimization algorithms to solve such problems inevitably requires a
substantial amount of calculation time. At this point, a surrogate model can be employed
to approximate the output of the original model, thereby reducing computational costs.
The surrogate model can rapidly predict system responses or evaluate design performance
based on input design variables [2,3]. According to the literature [4], compared to the
real value, the error rate using the surrogate model is only 1%. These models include the
response surface model (RSM), Kriging model, radial basis function (RBF), and BP neural
network, all of which have been applied in structure design [5–8].

Currently, the commonly adopted approach is to integrate surrogate models with
optimization algorithms. Lin et al. [9] used the twin-stern fin-fishing vessel as the research
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object, constructed the sample set of the Kriging model by optimal Latin hypercube sam-
pling (OLHS), and applied the multi-objective evolutionary algorithm (NSGA-II) to achieve
the minimum resistance design of the fishing vessel. Prebeg et al. [10] established the
surrogate model of tanker crashworthiness with the ultimate strength of the hull girder and
ship crashworthiness quality measures as optimization objectives. Through multi-objective
optimization, the safety of the structure was improved. Chen et al. [11] combined the
adaptive RSM with a multi-objective genetic algorithm to investigate the dynamic response
and design optimization of sandwich plates with layered gradients. It can be observed
that introducing surrogate models into intelligent optimization algorithms to replace finite
element simulation calculations in the optimization process can significantly enhance the
optimization efficiency of intelligent optimization algorithms.

Furthermore, for such multi-objective optimization problems, it is worth discussing
how to handle conflicts among optimization objectives. Some scholars have adopted
the Pareto concept in addressing this issue, which can effectively identify better trade-
off solutions in the solution space [12–14]. There are also scholars who have directly
optimized all the optimization objectives using a weighted sum method [15,16]. This
method, compared to the former one, is simpler and more intuitive in terms of methodology.
It also allows for the convenient adjustment of the weights assigned to each optimization
objective. However, it is only suitable for problems with lower complexity. When there are
multiple conflicts among the optimization objectives, the adoption of the Pareto concept
should be considered.

It should be noted that due to the inherent complexity and challenges associated
with ship collision issues, current research on optimizing ship structural crashworthiness
primarily focuses on a single specific working condition. Compared to other domains,
there is relatively limited research on optimizing the structural crashworthiness of ships
under multiple working conditions [17–19]. In fact, ship structure design often needs to
balance the crashworthiness requirements imposed by various working conditions. When
only conducting crashworthiness optimization designs for individual working conditions,
conflicts can arise between these conditions. This is because, with identical design variables
for the ship structure, the structural damage, deformation, collision forces, and energy
absorption differ among these working conditions. While it is possible to demonstrate
through verification that the optimization results for one working condition also meet the
design requirements for other conditions, this is not the most effective method, especially
when two working conditions significantly impact the optimization results.

Therefore, to address the crashworthiness requirements of ship structures under vari-
ous collision conditions, this paper proposes a multi-working condition crashworthiness
optimization method for ship structures based on BPNN, TOPSIS, and SSA (BP-TSSA). To
address the issue of insufficient accuracy in traditional BPNN, an improved approach is
proposed by incorporating the genetic algorithm (GA) and Adam algorithm to establish a
high-precision crashworthiness optimization surrogate model. Different collision positions
are selected to carry out multi-working condition crashworthiness optimization analysis on
the structural areas mainly concerned by the struck ship, so as to realize the comprehensive
optimization effect of multi-working conditions, multi-parameters, and multi-objectives,
which can effectively support the engineering design.

It is worth noting that this method still has certain limitations. While it can address
crashworthiness optimization problems under different collision locations, angles, and
velocities, it cannot simultaneously consider factors such as collision location, collision
angle, and collision velocity. Further research is therefore needed to address this limitation.

This paper is organized as follows. Following this introduction, the optimization
method, including the improvement of the neural network surrogate model, optimization
algorithm, and multi-working optimization functions, is introduced in Section 2. Section 3
describes the application examples of the crashworthiness optimization of the selected
structure under two different collision conditions based on BP-TSSA. The discussion of the
results is presented in Section 4, and major conclusions are drawn in Section 5.
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2. Multi-Working Condition Optimization Method

This paper considers the randomness of hull collision positions in ship collision acci-
dents by selecting two different positions located at the stern of a ship for collision analysis.
The first position is at the center of the plate and the second position is at the intersection
of the plate and frame, named Condition 1 and Condition 2, respectively (as illustrated
in Figure 1). The crashworthiness optimization design process under multi-working con-
ditions is presented in Figure 2. The employed optimization method is BP-TSSA, which
utilizes BPNN to establish a collision-resistant optimization surrogate model. Subsequently,
the TOPSIS is employed to construct a multi-working condition optimization function for
SSA. Finally, the SSA is utilized to optimize the function. The primary optimization process
is as follows:

1. Definition of the design variables, constraints, and objective function of the optimiza-
tion problem and establishment of the mathematical model;

2. Utilization of orthogonal design to construct test sample points in the design do-
main, with each sample point corresponding to one numerical simulation case. The
structural responses corresponding to each sample point are obtained through finite
element analysis;

3. Normalization of the orthogonal table and finite element simulation results and input
into BP neural network (for different collision conditions, corresponding BPNN is
established, respectively);

4. SSA optimization to obtain ideal points of each optimization objective under different
collision conditions and establish a multi-working condition evaluation function;

5. SSA optimization to obtain the optimal solution that can make each working condition
relatively optimal based on the above evaluation function.
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2.1. Mathematical Model for Crashworthiness Optimization
2.1.1. Single Working Condition

For conventional single-working condition optimization problems, what needs to be
established is a multi-objective optimization function. Multi-objective optimization design
can achieve a balance in overall design performance. For instance, optimization objec-
tives such as weight, energy absorption, and deformation are simultaneously considered,
aiming to attain a design solution that can optimize these objectives in a relative sense.
Mathematically, multi-objective optimization problems can be formulated as follows [20]:

min f (X) = f (x1, x2, · · · , xn)
s.t. gj(X) ≤ 0 j = 1, 2, · · · , J

xi,min ≤ xi ≤ xi,max i = 1, 2, 3, · · · , n
(1)

where X = (x1, x2, · · · , xn) is a design variable, f (X) is a multi-objective function, J is the
total number of constraints, gj(X) is the jth constraints, xi is the ith design variable, and
xi,max and xi,min are the upper and lower limits, respectively.
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Figure 2. Crashworthiness optimization process.

In this paper, the linear weighting method of constructing the evaluation function is
used to address multi-objective optimization problems. The linear weighting method aims
to transform a multi-objective optimization problem into a single-objective optimization
problem. This is accomplished by assigning weight coefficients to each objective based on
their relative importance in the optimization problem. The evaluation function utilizing
the linear weighting method can be expressed as follows [21]:

F(X) =
n

∑
i=1

αi fi(X) (2)

where αi is the weight coefficient of ith optimization objective. Each weight coefficient is
between 0 and 1, and the sum of all the ownership weight coefficients is equal to 1. f(i)(X)
is the ith optimization objective after normalization using Equation (3) [22].

Objectivemembership =
Objectivevalue −Objectivemin

Objectivemax −Objectivemin
(3)

where Objectivevalue is the normalized value of each index and Objectivemax and Objectivemin
are the maximum and minimum values corresponding to each indicator in the orthogonal
design sample. It should be noted that Objectivemax and Objectivemin do not represent
optimized maximum and minimum values in the traditional sense, as they are only used
for data normalization. They can be found directly in the orthogonal design sample.

In multi-objective optimization problems, certain objectives require maximization,
while others require minimization. It is known that the maximum value of a function is
equivalent to the minimum value of its negative counterpart. This paper incorporates this
concept to enhance the multi-objective optimization function:

F(X) =
n

∑
i=1

αi fi(X)−
m

∑
j=n+1

αj f j(X) (4)

where αi is the optimization objective weight coefficient that requires the minimum value
and αj is the optimization objective weight coefficient that requires the maximum value.



J. Mar. Sci. Eng. 2023, 11, 1335 5 of 22

This paper considers several indicators that can comprehensively evaluate the crash-
worthiness of hull structures as optimization objectives, including weight, peak collision
force, collision depth, and plastic energy absorption. Weight is an indispensable factor for
realizing ship lightweight. Collision depth, collision force, and plastic energy absorption
can, to a certain extent, reflect the crashworthiness of the structure. Regarding the collision
depth, this paper primarily focuses on the plastic deformation of the struck ship structure.
Generally, the greater the collision depth, the more significant the kinetic energy loss of the
struck ship. The lost kinetic energy will be transformed into the plastic energy absorption
of the struck ship structure during the collision process, hence increasing the plastic energy
absorption of the struck ship structure. In order to minimize damage to people and cargo,
it is essential to reduce the plastic deformation of the collision zone of the crashed ship as
much as possible or to maintain the overall damage deformation within a narrow range,
thus enhancing the safety of the structure. Collision force signifies the hull structure’s
ability to resist collision loads. In this paper’s crashworthiness optimization research, the
peak value of the collision force in the collision process is of primary concern. The higher
the peak value, the more robust the hull structure’s ability to resist collision loads.

It is evident that the following relationships exist among the four comprehensive
crashworthiness indicators mentioned above:

1. Increasing the structural size can significantly enhance the crashworthiness of the
ship but it will also increase the total weight of the ship;

2. Blindly pursuing structural lightweight can lead to a decrease in the crashworthiness
of the ship. Specifically, the peak value of the collision force decreases and the collision
depth increases, which is detrimental to the safety of the structure;

3. The coupling relationship between collision depth and plastic energy absorption
is strong, considering both the collision depth and plastic energy absorption can
effectively reduce the collision depth or collision depth range.

Equation (5) represents the multi-objective evaluation function of ship structure crash-
worthiness optimization under a single working condition. By assigning weight coefficients
to each crashworthiness index and transforming it into the index’s minimum value, the
conflict between the indexes can be effectively resolved:

F = αM · f (M) + αD · f (D)− αP · f (P) + αE · f (E) (5)

where the dimensionless quantity, f (), is obtained by normalizing each crashworthiness
index using the formula presented in Equation (3). αM, αD, αP, and αE are the weight
coefficients of weight, collision depth, collision force, and energy absorption, respectively.
The optimal crashworthiness of a structure is achieved when its weight is minimized, colli-
sion force is maximized, and collision depth and plastic energy absorption are minimized.
However, the coupling relationship between collision depth and energy absorption should
also be considered to avoid overemphasis on optimization. Setting the weight coefficient
too high may result in over-optimization, while setting it too low may not effectively im-
prove the crashworthiness of the structure. This paper takes into account the relationships
and relative importance of the four crashworthiness indicators and proposes the weight
coefficients denoted as: αM = 0.5, αD = 0.15, αP = 0.2, and αE = 0.15, which achieves a
balanced optimization.

When the optimization problem has constraints, the constrained problem is trans-
formed into an unconstrained problem through the penalty function [23]:

F(X) =

{
F(X) i f X ∈ K
1 i f X /∈ K

(6)

where X is the design variable and K is the feasible region of the optimization problem.
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2.1.2. Multi-Working Conditions

For the multi-working condition crashworthiness optimization problem addressed
in this paper, it is imperative to not only establish a reasonable multi-objective evaluation
function for each working condition but also develop a multi-working condition evaluation
function to achieve relatively optimal performance across all conditions.

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), also known
as the distance method of superior and inferior solutions, is a multi-objective decision-
making method initially proposed by C.L. Hwang and K. Yoon [24]. The fundamental
principle behind TOPSIS is to rank alternatives by calculating their distances to both the
ideal and worst solutions. By determining the closest proximity to the ideal solution and
the farthest distance from the worst solution, the method identifies the best alternative.
For multi-objective optimization problems, if it is possible to assign a value f ∗i to each
optimization objective such that f ∗i ≤ min fi(X) holds, then these values are referred to as
“ideal points” for these optimization objectives.

In this paper, when dealing with multi-working condition optimization problems,
the ideal point for the ith optimization objective is taken as the minimum value achieved
when optimizing that objective function independently. Therefore, the multi-working
condition optimization problem can be transformed into finding a solution that minimizes
the weighted sum of distances between each optimization objective and its corresponding
minimum value across all working conditions. This can be expressed as follows:

F(X) =
n

∑
i=1

ωi · [W1 · | fi1(X)− f ∗i1(X)|+ W2 · | fi2(X)− f ∗i2(X)|] (7)

where n is the number of optimization objectives, ωi is the weighting coefficient for each op-
timization objective, and

∣∣ fi1(X)− f ∗i1(X)
∣∣ and

∣∣ fi2(X)− f ∗i2(X)
∣∣ are the distances between

each optimization objective and its corresponding ideal point under two different collision
conditions, respectively. Here, fi1(X), f ∗i1(X), fi2(X), and f ∗i2(X) are calculated using the
normalization function described earlier in the text. W1 and W2 are the weighting coeffi-
cients for the two collision conditions. This paper assumes that both collision conditions
are equally important; thus, W1 and W2 are both set to 0.5.

2.2. BPNN Surrogate Model

The surrogate model serves as a means of emulating the correlation between input
variables and output responses within the optimization problem. Typically, the surrogate
model is established by either defining the input and output of the model with or without
prior knowledge of the internal computation process. The selection of initial sample points
determines the amount of original information captured within the model, whereby a
greater number of initial sample points results in a higher degree of original information;
however, this comes at the expense of increased computational time. To mitigate this, this
present paper employs a scientifically rigorous experimental design method (orthogonal
design) to systematically arrange tests, thereby reducing the number of tests required and
shortening the test cycle [25]. To eliminate the influence of the different dimensions and
units of sampling data on the analysis results, all the sample data are normalized to the
range of 0~1.

In this paper, BPNN [26] is used as the surrogate model of the optimization problem,
and orthogonal design is used to provide initial sample points for the surrogate model.
Figure 3 shows the three-layer structure of BPNN. Specifically, the input layer comprises n
nodes, the hidden layer contains g nodes, and the output layer encompasses m nodes. The
connection weights between nodes are denoted by ω, while θ represents the threshold that
affects the nodes.

The training algorithm used for the BPNN is the error backpropagation algorithm,
commonly known as the BP algorithm. The objective of backpropagation is to minimize
the error during the training process by estimating the error before the output layer using
the output error and subsequently estimating the error of the previous layer. This process
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involves gradually transmitting the error from the output layer to the input layer in
the opposite direction of input transmission while gradually updating the weights to
approximate the expected output.

However, the BPNN still has the following two shortcomings:

1. It is difficult to determine the initial weights and thresholds of the network, and it is
prone to get stuck in a local optimum;

2. The fixed learning rate can result in slow network convergence or system instability.
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To overcome these limitations, this paper employs both the genetic algorithm and the
Adam algorithm to enhance the performance of the BPNN.

2.2.1. Modification of BPNN Surrogate Model

The genetic algorithm was initially proposed by Holland in the 1970s [27]. In this paper,
the genetic algorithm is utilized to optimize the initial parameters (weights and thresholds)
of the BP neural network (BPNN). The optimization process involves the following steps:

1. Converting the parameters to be optimized into chromosomes using real number coding;
2. Using the network error as the objective function and the reciprocal of the error as the

fitness function to evaluate the adaptability of the chromosomes;
3. Performing genetic operations such as selection, crossover, and mutation on the

current population to update the population and select the optimal chromosome;
4. Outputting the optimal combination of initial parameters that minimize the error at

the end of the iteration.

The fitness function of the genetic algorithm is given as:

F =
1

E + λ
(8)

where E is the loss function (error) and λ is a constant close to 0. When F exceeds a
predetermined upper limit, it is truncated to that upper limit to prevent the influence of F
approaching infinity on the optimization process.

The Adam algorithm, introduced by Kingma [28], derives its name from “adaptive
moment estimation”. It is a network learning algorithm that accelerates network conver-
gence by adaptively adjusting the learning rate and is capable of finding smaller errors than
the traditional gradient descent method. As such, it can be used to train BPNN. The Adam
algorithm introduces the concept of momentum, where first-order momentum suppresses
oscillations in the network training process of the gradient descent method, while second-
order momentum provides different learning rates for the network at different stages of
training, balancing the adjustment of each parameter update. The formulas for first-order
momentum and second-order momentum are given by Equations (9) and (10), respectively:

mt = β1 ·mt−1 + (1− β1) · dk (9)
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vt = β2 · vt−1 + (1− β2) · dk2 (10)

where t is the current iteration number and dk is the gradient of the error function with
respect to the weight or threshold. m and v are gradient first-order momentum and second-
order momentum, respectively. β1 and β2 are the exponential decay rates of m and v,
respectively, which are used to emphasize the gradients closer to the current moment,
meaning that the impact of gradients decreases as they move farther away from the current
moment.

By combining the first-order and second-order momentum of the gradient, the param-
eter change can be calculated under the current learning rate, and the parameters can be
updated accordingly:

ηt = α · 1√
vt + δ

(11)

ωt = ωt−1 − ηt ·mt (12)

θt = θt−1 − ηt ·mt (13)

where α is the initial learning rate, ηt is the learning rate of the current parameter calculated,
and δ is a constant used to prevent the denominator from being 0. ωt and θt are the updated
weight and threshold values, respectively.

The principles of the Adam algorithm indicate that it utilizes the first-order momentum
of the gradient to regulate the direction of model updates and the second-order momentum
of the gradient to dynamically adjust the learning rate. This approach not only avoids
network oscillation during training but also allocates distinct learning rates to different
parameters at various stages, significantly simplifying the process of model adjustment.

The procedures of training BPNN with the Adam algorithm are as follows:

1. Randomly initialize network parameters (weights and thresholds);
2. Combine the sample data with the initialized parameters to calculate the output of

each layer in the network;
3. Calculate the gradients by taking derivatives of the loss function with respect to

the parameters;
4. Update the first and second moment estimates of the gradient and update the learning

rate and parameters accordingly;
5. If the desired number of training iterations is reached, terminate the training process;

otherwise, repeat steps (2) to (4).

2.2.2. Parameter Settings for BPNN Surrogate Model

The parameter settings for BPNN include determining the network structure and the
algorithm parameters.

While having more hidden layers is commonly believed to improve the model’s accu-
racy, it also increases its complexity. This paper adopts a three-layer backpropagation neural
network with only one hidden layer as the primary approach, and the number of nodes
in the hidden layer is determined by Kolmogorov’s theorem. According to Kolmogorov’s
theorem, the network model achieves optimal accuracy when the relationship between the
m nodes of the input layer and the n nodes of the hidden layer is approximately n = 2m + 1.

To introduce nonlinear characteristics to the backpropagation neural network, the
Sigmoid function is selected as the activation function. The Sigmoid function can smoothly
map the real field to a range of 0 to 1, and its functional form is given by:

f (x) =
1

1 + e−x (14)
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The mean square error function (MSE) is utilized as the loss function to assess the
discrepancy between the predicted value and the true value of the network model. The
loss value is also referred to as the mean square error, and the smaller the value, the higher
the model’s accuracy. The formula for the mean square error function is:

MSE =
1
n

n

∑
i=1

∣∣y− y′
∣∣2 (15)

where n is the total number of data output from the output layer, y is the true value, and y′

is the predicted value.
BPNN is trained based on normalized sample data, and the preset parameters for the

algorithm are set for BPNN in this section. Specifically, the genetic algorithm employs a
population size of 50 and performs 5000 iterations, while the Adam algorithm is trained
for 8000 iterations with an initial learning rate α of 0.001. Additionally, the first-order
momentum exponential decay rate of the gradient β1 is 0.9, the second-order momentum
exponential decay rate of the gradient β2 is 0.99, and the δ value is set to 10−8.

2.3. Improved Sparrow Search Algorithm

As one of the swarm intelligence optimization algorithms, the sparrow search algo-
rithm shares the same optimization mechanism as other algorithms in this category [29]. It
relies on a population-based search, where each individual in the population represents
a set of design schemes for the optimization problem at hand. The sparrow search algo-
rithm achieves optimization by imitating the behavior of sparrows, including foraging,
anti-predation, and investigation.

In the sparrow search algorithm, the population of sparrows can be divided into
two main categories: explorers and followers. Explorers are responsible for locating food
sources and providing suitable foraging areas for the followers. The fitness value of a
sparrow represents the quality of its current location. When a follower discovers a better
position, it competes with the explorers and brings along its own explorers, resulting in
dynamic changes within the population.

To mitigate the risk of getting trapped in local optima, the population also includes
scout sparrows. These scouts compare their fitness with the sparrows occupying the
optimal position, thereby reducing the likelihood of falling into local optima.

Although the sparrow search algorithm generally yields favorable results in addressing
most function optimization problems, a study by Yan et al. [30] revealed that the algorithm
can still encounter challenges when dealing with complex multi-peak problems. Therefore,
there is a need for further enhancements to the sparrow search algorithm.

Opposition-based learning (OBL) is a population generation strategy introduced by
Tizhoosh et al. [31] in 2005, specifically designed for swarm intelligence optimization
algorithms. OBL aims to enhance the uniformity of the population distribution through
an opposite search approach. This strategy effectively addresses the limitations of swarm
intelligence optimization algorithms that may suffer from insufficient population diversity
due to the random generation of initial populations.

In OBL, if the j-dimensional position information of the ith sparrow in the new popu-
lation is represented by xi,j, the corresponding update formula for the opposite position
information x∗i,j can be expressed as follows:

x∗i,j = k(lbj + ubj)− xi,j (16)

where ubj and lbj are the upper and lower bounds of the j-dimensional design domain,
respectively, and k is a random number between 0 and 1.

To enhance the population diversity in the algorithm, the search strategy of the
Bird Swarm algorithm [32] is employed to enhance the location update formula for both
explorers and followers. The position update for explorers is based on a Gaussian random
distribution. The update formula for follower locations is adjusted to increase the likelihood
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of approaching the current optimal explorers. This modification is performed with a certain
probability:

xt+1
i,j =

{
xt

i,j + xt
i,j · p i f R2 < ST

xt
i,j + Q · L i f R2 ≥ ST

(17)

where xi,j is the location information of the ith sparrow in the j dimension and p is Gaussian
distribution with a mean value of 0 and standard deviation of 1. R2 and ST are alarm value
and security value, respectively; Q is a random number subject to normal distribution; and
L is a matrix of 1 × d, in which each element is 1.

xt+1
i,j =

 Q · exp
(

xt
worst−xt

i,j
i2

)
i f i > n/2

xt+1
p +

(
xt

i,j − xt+1
p

)
· FL · k i f i ≤ n/2

(18)

where n is the total number of sparrows, i is the follower number except the explorer in
the sparrow population, xp is the current position of the optimal explorer, xworst is the
worst position among all the current sparrows, Q is a random number subject to normal
distribution, k is a random number between 0 and 1, and FL ∈ [0, 2] is the probability
followers approaching the explorer.

Levy flight is a strategy that enhances the local search capability of the algorithm [33].
It is characterized by both small and large step lengths. When the algorithm is searching
near the optimal position, the Levy flight strategy effectively prevents it from getting
trapped in local optima. Thus, Levy flight can be incorporated into the position update
formula for investigators, improving the control parameters of step size, denoted as β and
K. A larger step size benefits the global search of the algorithm, while a smaller step size
benefits the local search:

xt+1
i,j =


Levy · xt

best + β ·
∣∣∣xt

i,j − Levy · xt
best

∣∣∣ i f fi > fg

xt
i,j + K ·

( ∣∣∣xt
i,j−xt

worst

∣∣∣
( fi− fw)+ε

)
i f fi = fg

(19)

β = fg − ( fg − fw) · (
itermax − t

itermax
)

1.5
(20)

K = ( fg − fw) · exp(−20 · tan (
t

itermax
)

2
) · (2c− 1) (21)

Levy = 0.01 · r1 · σ
|r2|1/λ

(22)

σ =

{
Γ(1 + λ) · sin(πλ/2)

Γ[(1 + λ)/2]λ · 2(λ−1)/2

}1/λ

(23)

where t is the current iteration number; itermax is the maximum number of iterations; xbest
is the current optimal location; fi is the fitness value of the current sparrow; fg is the fitness
value of the current optimal position; fw is the fitness value of the current worst position;
ε is a constant used to make the denominator not zero; c is a random number between 0
and 1; Γ is the gamma function; λ is a constant between 0 and 2, generally, 1.5; and r1 and
r2 are random numbers between 0 and 1.

The main SSA process is as follows:

1. Randomly initialize the sparrow population;
2. Calculate the fitness of each sparrow and sort them in descending order based on

their fitness values;
3. Update the location of the explorer and follower sparrows alternately. This step in-

volves adjusting the positions of these sparrows based on specific rules or algorithms;
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4. Randomly select investigator sparrows and update their locations using a predefined
strategy or method;

5. Check if there is a better position found during the previous steps. If a better position
is found, update the optimal position accordingly;

6. Check if the termination condition of the algorithm is satisfied. If it is, output the
optimal solution obtained so far. Otherwise, repeat steps (2) to (5) to continue the
execution of the algorithm.

3. Example Analysis of Multi-Working Conditions Crashworthiness Optimization
3.1. Ship Collision Scenario and Its Primary Optimization Components

The collision scenario selected for this paper involves the bow of the striking ship
colliding with the tail of the struck ship at a collision angle of 150◦. Figure 4 illustrates a
diagram of the ship collision. The coordinate system’s origin for the struck ship is situated
at the stern baseline, with the x-axis running from stern to bow, the y-axis running from
starboard to port, and the z-axis running from baseline to deck. The coordinate origin for
the striking ship is located at the baseline position of the striking ship’s stern. When the
collision occurs, the striking ship and the struck ship’s course align with their respective
x-axis coordinates, and there is no rotation.
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To simplify the calculation process and ensure the validity of the results, the relative
impact velocity method is used when setting the speed, where the struck ship is assumed to
be stationary, and the relative impact velocity of the striking ship is 5 knots. This approach
streamlines the calculation process while ensuring the accuracy of the results.

Figure 5 shows the finite element model of the ship, which was established using the
ABAQUS finite element software. The collision location is the stern side of the struck ship.
Since this paper mainly focuses on investigating the structural response of the collision
zone of the struck ship, the striking ship was set as a rigid body, whereas the struck ship
was set as a deformable body, with the collision zone of the struck ship meshed. To optimize
simulation computation time, the collision region of the struck ship is enhanced with a finer
mesh, whereas coarser meshes with a mesh size of 0.25 m are employed for the remaining
areas of both the struck and striking ships. Both striking ship and struck ship were modeled
with the four-node shell element S4R from the ABAQUS element library. A mesh sensitivity
analysis is performed on the collision region of the struck ship to ascertain an appropriate
mesh size. Figure 6 demonstrates the collision region models of the struck ship at varying
mesh sizes of 0.1 m, 0.05 m, and 0.025 m, respectively.

The collision force curves obtained from the three different mesh sizes mentioned
above are shown in Figure 7. It can be observed that these collision force curves exhibit
good convergence, with minimal differences in the computed results when using mesh
sizes of 0.05 m and 0.025 m. Therefore, for the subsequent analysis, a uniform mesh size of
0.05 m is adopted for the collision region of the struck ship.
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The primary parameters of both vessels are presented in Table 1, indicating that the
striking ship has a total mass of 1000 T and the struck ship has a total mass of 3850 T.

Table 1. Principle parameters of collision ships.

Collision Ships Total Length/m Beam Molded/m Molded Depth/m Total Mass/T

Struck ship 132.00 16.00 8.60 3850
Striking ship 83.00 9.77 6.68 1000
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For the collision simulation, the model uses general contact with both normal and
tangential contact attributes. The normal contact attribute is set to hard contact while the
tangential contact attribute uses the penalty function method, with a friction coefficient of
0.3. The Cowper-Symonds model, which considers the material’s strain rate sensitivity, is
employed as the constitutive model for the hull material [34,35]:

σd
σy

= 1 + (

.
ε

D
)

1
q

(24)

where σd is dynamic yield stress, σy is static yield stress,
.
ε is equivalent strain rate, and D

and q are constants set to 40.4 and 5, respectively.
To simulate ship collision in a water medium, the impact of water on the collision

effect is taken into account by including the attached water mass [36]. In the case of
ship–ship collision, the transverse motion mainly affects the struck ship, while the for-
ward and backward motion mainly affects the striking ship. Therefore, this paper only
considers the attached water mass of the transverse and the forward–backward motion.
Equations (25) and (26) represent the empirical formulas for the added water mass of the
struck ship and the striking ship, respectively:

m1 = (0.4 ∼ 1.3)m (25)

m2 = (0.02 ∼ 0.07)m (26)

where m is the hull mass. The attached water mass of the struck ship is 0.4 m and that of
the striking ship is 0.03 m.

Figure 8 shows the model structure diagram of the collision area of the struck ship.
The shell plating and the frame act as the primary energy-absorbing components in this
region during an impact load. Therefore, this paper aims to adjust the thickness of the
shell plating and the size of the frame web while retaining the original structure of the
struck ship.
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The thickness of the shell plating and the thickness and height of the frame web are
considered design variables, with the original shell plating of the struck ship having a
thickness of 13 mm, a frame size of 240 mm × 6 mm/40 mm × 8 mm, and a longitudinal
bone size of 100 mm × 7.5 mm. To ensure the rationality of the structure, the design
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domain of the shell plating thickness ranges from 13 mm to 16 mm, the design domain of
the frame web thickness ranges from 4 mm to 7 mm, and the design domain of the frame
web height ranges from 200 mm to 260 mm. The structural weight is considered a constraint
condition, and the weight calculated from the 11th sample point in Tables 2 and 3 serves
as the threshold that should not be exceeded in a lightweight design. Therefore, its value
should be less than or equal to 4860.96 kg to incorporate lightweight design principles.

Table 2. Orthogonal design and finite element simulation results for working condition 1.

Sample
Number

Thickness of
the Shell

Plating/(mm)

Thickness of
the Frame
Web/(mm)

Height of
the Frame
Web/(mm)

Weight/(kg)
Peak

Collision
Force/(N)

Collision
Depth/(m)

Plastic Energy
Absorption/(J)

Objective
Function

Value

1 13 4 200 4161.92 2,508,050 0.082 118,796.65 0.357
2 13 5 220 4295.25 2,651,900 0.079 123,713.37 0.368
3 13 6 240 4437.30 2,640,630 0.075 128,236.35 0.416
4 13 7 260 4580.71 2,849,940 0.069 132,640.73 0.365
5 14 4 220 4415.32 2,681,830 0.078 116,599.61 0.378
6 14 5 200 4514.94 2,675,860 0.076 118,022.23 0.411
7 14 6 260 4693.83 2,746,050 0.071 123,799.87 0.441
8 14 7 240 4798.00 2,677,790 0.069 121,210.58 0.480
9 15 4 240 4669.56 2,292,020 0.071 102,084.79 0.486
10 15 5 260 4806.95 2,365,960 0.071 105,583.03 0.537
11 15 6 200 4860.96 2,869,170 0.073 116,529.87 0.469
12 15 7 220 5008.76 2,826,550 0.070 113,533.07 0.507
13 16 4 260 4920.06 2,231,700 0.069 99,321.75 0.583
14 16 5 240 5030.26 2,332,510 0.069 100,145.03 0.610
15 16 6 220 5128.84 2,251,270 0.069 100,168.92 0.677
16 16 7 200 5220.97 2,450,980 0.068 96,076.65 0.631

Table 3. Orthogonal design and finite element simulation results for working condition 2.

Sample
Number

Thickness of
the Shell

Plating/(mm)

Thickness of
the Frame
Web/(mm)

Height of
the Frame
Web/(mm)

Weight/(kg)
Peak

Collision
Force/(N)

Collision
Depth/(m)

Plastic Energy
Absorption/(J)

Objective
Function

Value

1 13 4 200 4161.92 2,120,530 0.073 95,290.00 0.381
2 13 5 220 4295.25 3,644,950 0.069 120,226.30 0.292
3 13 6 240 4437.30 3,533,160 0.066 118,995.62 0.336
4 13 7 260 4580.71 3,208,110 0.067 128,030.34 0.490
5 14 4 220 4415.32 2,202,090 0.070 92,556.30 0.448
6 14 5 200 4514.94 2,354,290 0.067 94,286.20 0.445
7 14 6 260 4693.83 3,495,660 0.063 116,734.40 0.420
8 14 7 240 4798.00 3,447,750 0.061 110,576.50 0.426
9 15 4 240 4669.56 2,267,900 0.067 90,899.90 0.521
10 15 5 260 4806.95 3,369,870 0.065 115,508.20 0.504
11 15 6 200 4860.96 3,626,310 0.063 112,863.40 0.471
12 15 7 220 5008.76 3,656,210 0.061 109,058.00 0.493
13 16 4 260 4920.06 2,435,650 0.065 89,656.30 0.592
14 16 5 240 5030.26 2,395,300 0.062 91,386.60 0.624
15 16 6 220 5128.84 2,418,970 0.060 91,136.70 0.643
16 16 7 200 5220.97 2,402,330 0.059 86,735.70 0.663

The design variables, constraints, and objective functions presented above have been
consolidated, and the mathematical model for optimizing the crashworthiness of the hull
structure under a single working condition is formulated in Equation (27):

min F = αM · f (M) + αD · f (D)− αP · f (P) + αE · f (E)
s.t. 13 mm ≤ tw ≤ 16 mm

4 mm ≤ t f ≤ 7 mm
200 mm ≤ h ≤ 260 mm
m ≤ 4860.96 kg

(27)

Taking into account the crashworthiness optimization problem under multi-working
conditions with different collision positions, the mathematical model can be represented by
Equation (28):
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min F(X) =
n
∑

i=1
ωi ·

[
W1 ·

∣∣ fi1(X)− f ∗i1(X)
∣∣+ W2 ·

∣∣ fi2(X)− f ∗i2(X)
∣∣]

s.t. 13 mm ≤ tw ≤ 16 mm
4 mm ≤ t f ≤ 7 mm
200 mm ≤ h ≤ 260 mm
m ≤ 4860.96 kg

(28)

3.2. Orthogonal Design Samples

To address the multi-working condition crashworthiness optimization problem ex-
amined in this paper while considering the rationality of the orthogonal table design and
structural manufacturability, the L16 (45) orthogonal table was adopted for orthogonal
design. The factors considered in the design were the thickness of the shell plating, the
thickness of the frame web, and the height of the frame web, with each factor having four
levels in the design domain. Specifically, the thickness of the shell plating had levels of
13 mm, 14 mm, 15 mm, and 16 mm; the thickness of the frame web had levels of 4 mm,
5 mm, 6 mm, and 7 mm; and the frame web height had levels of 200 mm, 220 mm, 240 mm,
and 260 mm.

The response results (weight, peak collision force, collision depth, plastic energy
absorption) of all sample points within the orthogonal table were calculated sequentially
using the ABAQUS finite element software, with the results presented in Tables 2 and 3.

3.3. Training of BPNN Surrogate Model

Based on the predetermined parameters of the BPNN, BPNN surrogate models were
constructed for two collision working conditions using Tables 2 and 3, respectively. In
these models, the input layer has three nodes, the hidden layer has seven nodes, and the
output layer has four nodes. The genetic algorithm iteration plot for Condition 1 is shown
in Figure 9a, and the corresponding loss function curve for the BPNN is shown in Figure 9b.
Similarly, the genetic algorithm iteration plot for Condition 2 is shown in Figure 10a, and
the associated loss function curve for the BP neural network is shown in Figure 10b.
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Figure 9. (a) Genetic algorithm iteration plot (Condition 1); (b) loss function curve for the BPNN
(Condition 1).

From the GA fitness curve, it can be observed that the optimal fitness value changes
dramatically in the early stage of algorithm iteration and does not have significant changes
in the later stage. This is because the optimization objective of GA is the numerical minimal
BP neural network error, which theoretically can only approach the optimal value of 0
indefinitely, and there is no truly minimal point. Therefore, when the iteration number
is not set, GA will continue to optimize indefinitely, but the fitness value will become



J. Mar. Sci. Eng. 2023, 11, 1335 16 of 22

increasingly flat with the increase of the iteration number. From the BP loss function curve,
it can be seen that the network converges to an accuracy of nearly 10−3 after 8000 training
iterations, and it only takes 2 s, indicating that the BP neural network in this paper is
excellent in both training accuracy and efficiency.
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Figure 10. (a) Genetic algorithm iteration plot (Condition 2); (b) loss function curve for the BPNN
(Condition 2).

3.4. Optimal Results

The two BPNN surrogate models established in the previous section are employed in
optimization to provide effective predicted values for the objective function (Equation (28))
in the multi-working condition optimization. The ideal points for each optimization objec-
tive in Equation (28) are obtained through single-objective optimization using SSA based
on the optimization objectives in Equation (27). By employing SSA, each crashworthiness
index for individual working conditions is optimized separately, enabling the attainment
of the optimal value for each index. In the sparrow search algorithm configuration, the
population size is set at 100, with 20% dedicated to explorers and 10% to investigators. The
security value is 0.8, and the number of iterations is 500. Subsequently, the obtained ideal
points are substituted into Equation (28), and the sparrow search algorithm is employed
once again to optimize the calculation, resulting in optimized outcomes for multiple work-
ing conditions. The convergence curve of the optimization process is shown in Figure 11.
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The output of the optimization yields the following results: the shell plating thickness
is 13 mm, the frame web thickness is 5.36 mm, and the frame web height is 200 mm.

Compared to the predictive results of BPNN, the simulated values obtained through
finite element calculations are more realistic. Therefore, this paper further utilizes ABAQUS
finite element software to simulate and calculate the optimized results, while also validating
the generalization ability of the BPNN. Tables 4 and 5 present the comparative results
between the BPNN predicted values and the finite element simulated values under two
collision conditions.

Table 4. Comparison between predicted and simulated values for Condition 1.

Weight/kg Peak Collision
Force/(N)

Collision
Depth/(m)

Plastic Energy
Absorption/(J)

Predicted values 4339.19 2,535,273 0.075 121,148.98
Simulated values 4317.80 2,689,010 0.072 122,891.17
Relative error (%) 0.50 5.72 4.17 1.42

Table 5. Comparison between predicted and simulated values for Condition 2.

Weight/kg Peak Collision
Force/(N)

Collision
Depth/(m)

Plastic Energy
Absorption/(J)

Predicted values 4351.93 3,386,878 0.069 117,932.80
Simulated values 4317.80 3,619,960 0.069 118,838.70
Relative error (%) 0.79 6.44 0 0.76

Based on the comparative results, the modified BPNN model showcased remarkable
predictive accuracy in this paper, as evidenced by the minimal relative errors observed for
various performance indicators under two collision conditions. For Condition 1, the relative
errors ranged from 0.5% to 5.72% for different indicators, while for Condition 2, the relative
errors ranged from 0.79% to 6.44% for different indicators. Notably, a perfect prediction
(0% error) was achieved for one indicator in Condition 2. These findings unequivocally
demonstrate the superior predictive efficacy and strong generalization capability of the
modified BPNN model proposed in this paper. Such remarkable performance underscores
the model’s potential for reliable predictions and highlights its suitability for practical
applications in the field of ship collision. It can effectively replace laborious and time-
consuming finite element calculations during the optimization process of the sparrow
search algorithm.

To highlight the effectiveness of multi-working condition optimization, a comparison
is made between the optimization results of multi-working condition optimization and the
separate optimization results of two collision conditions, as shown in Table 6. In this table,
“Optimization Condition” refers to the working condition currently used for optimization,
and “Calculation Condition” refers to the working condition for which the optimization
results are calculated using the optimized conditions.

Table 6. Comparing optimization results.

Optimization
Condition

Calculation
Condition

Thickness of
the Shell

Plating/(mm)

Thickness
ofthe Frame
Web/(mm)

Height of
the Frame
Web/(mm)

Weight/kg
Peak

Collision
Force/(N)

Collision
Depth/(m)

Plastic Energy
Absorption/(J)

Objective
Function

Value

Original
design

Condition 1 13 6 240 4437.30 2,640,630 0.075 128,236.35 0.416
Condition 2 13 6 240 4437.30 3,533,160 0.066 118,995.62 0.336

Condition 1 Condition 1 13 4 260 4204.80 2,681,300 0.079 123,571.30 0.313
Condition 2 13 4 260 4204.80 3,231,880 0.073 118,193.30 0.340

Condition 2 Condition 1 13 5 220 4295.25 2,651,900 0.079 123,713.37 0.368
Condition 2 13 5 220 4295.25 3,644,950 0.069 120,226.3 0.292

Multi-
conditions

Condition 1 13 5.36 200 4317.80 2,689,010 0.072 122,891.17 0.287
Condition 2 13 5.36 200 4317.80 3,619,960 0.069 118,838.70 0.301
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From the calculated results of different optimization conditions in Table 6, it can be
observed that compared to Condition 1 (collision area at the center of the plate), Condition 2
(collision area at the intersection of the plate and frame) experiences significantly higher
collision force, but with less collision depth and plastic energy absorption. This indicates
that the structural strength is higher at the intersection of the plate and frame compared
to the center of the plate, highlighting the need to focus on the collision performance of
Condition 1. However, in actual ship collision accidents, the collision area exhibits a certain
level of randomness, so the collision performance of other areas (such as Condition 2)
should not be overlooked.

The table presents the structural response when optimizing Condition 1 independently
and calculating the results for Condition 2 based on the optimization results of Condition 1,
as well as the structural response when optimizing Condition 2 independently and calculat-
ing the results for Condition 1 based on the optimization results of Condition 2. From these
comparative results, it can be observed that when only pursuing the collision performance
of Condition 1, the collision performance of Condition 2 is inferior to that achieved through
the separate optimization of Condition 2, with objective function values of 0.34 and 0.292,
respectively. Similarly, when only pursuing the collision performance of Condition 2, the
collision performance of Condition 1 is also inferior to that achieved through the separate
optimization of Condition 1, with objective function values of 0.368 and 0.313, respectively.

Therefore, in order to find a relative balance between the two conditions, this paper
performed joint optimization considering multi-working conditions. By comparing the
objective function of multi-working condition optimization with the objective functions
of separate optimization for Condition 1 and Condition 2, it can be observed that the ob-
jective function values for Condition 1 in the multi-working condition optimization are
smaller than the objective functions obtained from separate optimizations of Condition 1
and Condition 2: 0.287 < 0.313 < 0.368. On the other hand, the objective function values
for Condition 2 in the multi-working condition optimization fall between the objective
function values obtained from separate optimizations of Condition 1 and Condition 2:
0.292 < 0.301 < 0.34. This indicates that in the multi-working condition optimization ap-
proach presented in this paper, by considering both collision conditions simultaneously,
the optimal solution can meet the relative optimality under both collision conditions. More-
over, the objective functions of Condition 1 and Condition 2 are significantly lower than
the original design, with a reduction of 31% for Condition 1 and 10.4% for Condition 2,
demonstrating excellent optimization results.

In terms of changes in structural dimensions, it can be concluded that maintaining the
same shell plating thickness while appropriately increasing the thickness of the frame web
and reducing its height contributes to improving the structural collision performance.

4. Discussion
4.1. Analysis of Improvement in BPNN

In order to analyze the learning ability of the modified BPNN on samples more
intuitively, the modified BPNN is trained and compared with the original BPNN using
sample data from two collision conditions. The comparative results are shown in Figure 12.

From Figure 12, it can be observed that when the preset accuracy is 10−4, regardless
of the collision conditions, the original BPNN fails to reach the preset accuracy within
the specified number of training iterations. This indicates that the training efficiency of
the BPNN based on the traditional gradient descent method is low, particularly when the
learning rate is small, leading to slow convergence. On the other hand, the modified BPNN,
which incorporates adaptive learning rate adjustment, is able to converge to the preset
accuracy in fewer training iterations. Furthermore, compared to the original BPNN, the
modified BPNN achieves a smaller loss value, indicating that the genetic algorithm (GA)
can help the traditional BP neural network model escape local optima traps and enhance
the model’s learning ability. Consequently, after the modification, the BPNN exhibits
significant improvements in both training accuracy and convergence speed.
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4.2. Analysis of Ship Crashworthiness Performance before and after Optimization

This paper aims to achieve relative optimality among various collision resistance
indicators by considering the influence of multiple structural responses on structural
crashworthiness during multi-objective optimization.

From the optimization results in Table 6, it can be observed that the total plastic
energy absorption of the optimized structure has been reduced in both collision conditions,
with percentage reductions of 4.16% and 0.14%, respectively. This indicates a decrease
in the plastic deformation occurring in the collided region of the struck ship’s structure.
Regarding the peak collision forces, the optimized structure shows improvements compared
to the original structure in both collision conditions, with increases of 1.80% and 2.40%,
respectively. This suggests an enhanced ability of the optimized structure to withstand
collision loads.

As for the parameter of maximum collision depth in the struck ship’s hull structure,
the optimized structure exhibits a 4.00% reduction under Condition 1. Although there
is a 4.55% increase in the maximum collision depth of the optimized structure under
Condition 2, when considering multiple weighted collision resistance indicators, the final
objective function shows a decrease.

Figure 13 presents the damage deformation contour maps of the struck ship before
and after optimization in two collision conditions. For the purpose of comparison, in this
paper, a critical value of 150 MPa is set in the post-processing module of ABAQUS. The
structural regions with stress levels below 150 MPa are represented in gray, while the
regions with stress levels above 150 MPa are displayed with a continuous color gradient
ranging from red to blue, corresponding to the magnitude of stress. By comparing the areas
of the colored regions, it can be observed that the optimized structure has a smaller area of
high-stress regions compared to the structure before optimization.
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5. Conclusions

This paper presents a multi-working condition structural optimization design method,
called BP-TSSA, based on BPNN, TOPSIS, and SSA, with the objective of enhancing the col-
lision resistance performance of ship structures. The proposed method achieves significant
improvements in the structural collision resistance performance compared to the original
structure, and it also enables the attainment of relatively optimal structural designs for two
different collision conditions.

The main results are as follows:

1. For the multi-working condition collision optimization problem in two different
collision conditions, the optimized objective functions using the BP-TSSA algorithm
proposed in this paper show a reduction of 31% and 10.4%, respectively, compared
to the original designs. This indicates that the BP-TSSA algorithm proposed in this
paper achieves good results in handling multi-working condition, multi-objective, and
multi-parameter collision optimization problems for ship structures, demonstrating
its excellent optimization capability;

2. The optimized results of the BPNN prediction align well with the finite element
simulation results. This demonstrates that the BPNN surrogate model proposed in
this paper possesses sufficient generalization ability;

3. The objective function values obtained for both collision conditions in the multi-
working condition optimization are very small. This indicates that the multi-working
condition optimization method proposed in this paper achieves relative optimality
between the two collision conditions by considering them simultaneously.

In conclusion, the optimization method proposed in this paper can effectively enhance
the collision resistance performance and optimization efficiency of ship structures. It
can serve as an optimization tool for further design of ship structures and contribute to
improving maritime safety.
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