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Abstract: A compact, 3-degrees-of-freedom (DoF), low-cost, remotely operated unmanned under-
water vehicle (UUV), or MicroROV, is custom-designed, developed, instrumented, and interfaced
with a PC for real-time data acquisition and control. The nonlinear equations of motion (EoM) are
developed for the under-actuated, open-frame, cross-coupled MicroROV utilizing the Newton-Euler
approach. The cross-coupling between heave and yaw motion, an important dynamic of a class of
compact ROVs that is barely reported, is investigated here. This work is thus motivated towards
developing an understanding of the physics of the highly coupled compact ROV and towards de-
veloping model-based stabilizing controllers. The linearized EoM aids in developing high-fidelity
experimental data-driven transfer function models. The coupled heave-yaw transfer function model
is improved to an auto-regressive moving average with exogenous input (ARMAX) model structure.
The acquired models facilitate the use of the multi-parameter root-locus (MPRL) technique to design
baseline controllers for a cross-coupled multi-input, multi-output (MIMO) MicroROV. The controller
gains are further optimized by employing an innovative Marine Predator Algorithm (MPA). The
robustness of the designed controllers is gauged using gain and phase margins. In addition, the
real-time controllers were deployed on an onboard embedded system utilizing Simulink′s automatic
C++ code generation capabilities. Finally, pool tests of the MicroROV demonstrate the efficacy of the
proposed control strategy.

Keywords: open-frame compact ROV; cross-coupled mathematical models; MPA optimization;
MIMO ROV control; multi-parameter root locus

1. Introduction

Advancements made in the areas of unmanned underwater vehicles, including au-
tonomous (AUV) and remotely operated (ROV) vehicles, enabling them to conduct a variety
of activities, have been quite significant. AUVs and ROVs are improving their abilities to
carry out a wide range of missions with accuracy and efficiency. Seafloor mapping, remote
environmental research, pollution assessment and monitoring, and marine security are just
a few of the common applications of these vehicles [1]. However, this progress is driven
primarily by the use of costly, sophisticated sensors, propulsion systems, esoteric structural
materials, and embedded electronics. Furthermore, the development or acquisition cost
of off-the-shelf vehicles [2–5] dictates their utility. Thus, producing these types of vehicles
is hugely expensive and beyond the means of many developing countries. An attempt is
made in this work to design and develop a low-cost proof-of-concept demonstrator plat-
form named MicroROV. This will serve as a test bed to develop dynamic models, control
strategies, and algorithms for a slightly bigger ROV, which is also under development.
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The motivation for this work is to custom design and develop a low-cost ROV for
shallow-water applications such as underwater structure inspection and water quality
monitoring in rivers and canals. As well as serving as a test bed for gaining insight into
vehicle dynamics and evaluating different control strategies. The experience gained will
thus feed into ongoing development work on a rugged version of the ROV with a similar
vehicle configuration to that of the MicroROV. The compact MicroROV designed and
developed has an open frame configuration and is propelled by three thrusters. Such
a configuration is inherently complex and under-actuated with cross-coupling amongst
its various degrees of freedom and uncertainties in hydrodynamic coefficients, making
it a complex modeling and control problem. Nonetheless, such compact ROVs hold
promise for the water quality and submerged underwater structure monitoring applications
at hand.

The nonlinear dynamics of torpedo- or cigar-shaped flight vehicles are investigated by
Martin et al. [6], Petrich et al. [7], Cao et al. [8], and Cozijn et al. [9] in their respective works.
An exception to this is the Pluto-Gigas ROV [10], which has pitch-heave cross-coupling.
An interesting aspect of symmetric torpedo-shaped vehicles is their decoupled lateral and
longitudinal dynamics, akin to aircraft. Thereby rendering subsequent model-based control
of this type of vehicle a single-input, single-output (SISO) problem. On the other hand,
open-frame UUVs like the one investigated in this work can be configured with an even
number of thrusters for actuating the heave behavior so that the lateral and longitudinal
dynamics remain decoupled. Some examples of decoupled heave-yaw dynamics in open-
frame ROVs are Thetis [11], Garbi [12], Romeo [13], BlueROV2 [14], and Hybrid-ROV [15].
More recent work on an underwater robot named ‘Intelligence Ocean-I’ [16], although
described as an open-frame vehicle, has stabilizing rear wings similar to those of a flight
vehicle. The vehicle comprises two counter-rotating magnetically coupled heave thrusters
and two thrusters mounted on rear wings for propulsion. Given a pair of thrusters for
heave and yaw degrees of freedom, the authors have conveniently assumed that the heave
and yaw motion are decoupled.

However, for a compact-class vehicle such as MicroROV with two thrusters for surge
motion and just a single thruster for heave, there is necessarily strong heave-yaw dynamic
coupling. That is, as the vehicle descends or ascends, the MicroROV also spins rapidly.
This occurs due to the absence of an additional counter-rotating thruster to compensate
for the torque generated by the single thruster for the heave motion. The presence of an
umbilical cord further alters the vehicle′s behavior. Although there are modeling similarities
between aerial and underwater vehicles, wireless communication frees’ the unmanned
aerial vehicles (UAVs) of tether encumbrances [17]. On the other hand, micro or mini ROVs
have to rely on tethers, while larger ROVs have to resort to complex acoustic and ultrasonic
underwater communication systems. Thus, obtaining high-fidelity models representing
these complex dynamics is challenging. Detailed mathematical and parametric modeling,
including that of the cross-coupled dynamics as well as the influence of the umbilical cord,
are the main contributions of this work.

The presence of cross-coupling renders MicroROV a difficult multi-input-multi-output
(MIMO) control problem. Classical single-input, single-output (SISO) control strategies
using PID have been tried over the years. In the past few years, there has been widespread
utilization of intelligent optimization techniques across different domains, aimed at enhanc-
ing the effectiveness of classical controllers [18]. Folcher et al. [19], for instance, assessed
the performance of a traditional root-locus heave controller. Walker et al. [20] investigated
a PID controller for ROV station keeping. Rúa et al. [21] examined a PID controller for
ROVs, tuned using heuristic methods. For the most part, feedback controllers are built
individually for each body axis, with little consideration given to coupling between degrees
of freedom [22]. On the other hand, MIMO control strategies such as sliding mode [23,24],
nonlinear backstepping control of an open frame hybrid ROV [15], and µ-synthesis for
the Marvin modular AUV [25] have been investigated, albeit in simulations. In contrast,
this work not only presents classical control design with robustness analysis along with
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MPA-tuned MIMO control designs in simulation but also demonstrates the real-time con-
trol of the MicroROV in a pool environment, which is another important contribution of
this work.

Main Contributions of the Work

The main contributions of this work are thus:

1. Custom design, development, and demonstration of a compact MicroROV that can
achieve precise yaw and heave control despite cross-coupling effects (Section 2);

2. Development of detailed linear EoM for yaw and heave dynamics as well as for
normal force to yaw coupled dynamics (Section 3);

3. Explicit identification of the influence of the umbilical cord on the vehicle stiffness
parameter, which is generally neglected in the classical Newton-Euler approach to
modeling (Section 4);

4. Development of data-driven system identification techniques to arrive at high-fidelity
dynamic models (Section 4);

5. Design of a robust MIMO control algorithm employing a novel MPA optimization
technique as well as demonstration of real-time implementation of the same on the
MicroROV (Section 6).

The following is a breakdown of the article’s structure: Section 2 details the experi-
mental setup used in this study. A coupled model for the MicroROV is outlined in Section 3.
A data-driven model of the vehicle and its validation are discussed in Section 4. Section 5
investigates the base-line PI controller design. The development of a control algorithm em-
ploying a novel MPA optimization technique is the focus of Section 6. The paper concludes
with Section 7.

2. MicroROV Vehicle Description

It is tough to imagine the development of a ROV and its many subsystems, including
the electronic, mechanical, and communication systems, as distinct constructs. As shown
in Figure 1, once the design process is finished, each subsystem is tested before integration
to produce an operational MicroROV ready for outdoor testing. The interconnection of the
ROV’s various subsystems is shown in Figure 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 24 
 

 

In contrast, this work not only presents classical control design with robustness analysis 
along with MPA-tuned MIMO control designs in simulation but also demonstrates the 
real-time control of the MicroROV in a pool environment, which is another important 
contribution of this work. 

Main Contributions of the Work 
The main contributions of this work are thus: 

1. Custom design, development, and demonstration of a compact MicroROV that can 
achieve precise yaw and heave control despite cross-coupling effects (Section 2); 

2. Development of detailed linear EoM for yaw and heave dynamics as well as for nor-
mal force to yaw coupled dynamics (Section 3); 

3. Explicit identification of the influence of the umbilical cord on the vehicle stiffness 
parameter, which is generally neglected in the classical Newton-Euler approach to 
modeling (Section 4); 

4. Development of data-driven system identification techniques to arrive at high-fidel-
ity dynamic models (Section 4); 

5. Design of a robust MIMO control algorithm employing a novel MPA optimization 
technique as well as demonstration of real-time implementation of the same on the 
MicroROV (Section 6). 
The following is a breakdown of the article’s structure: Section 2 details the experi-

mental setup used in this study. A coupled model for the MicroROV is outlined in Section 
3. A data-driven model of the vehicle and its validation are discussed in Section 4. Section 
5 investigates the base-line PI controller design. The development of a control algorithm 
employing a novel MPA optimization technique is the focus of Section 6. The paper con-
cludes with Section 7. 

2. MicroROV Vehicle Description 
It is tough to imagine the development of a ROV and its many subsystems, including 

the electronic, mechanical, and communication systems, as distinct constructs. As shown 
in Figure 1, once the design process is finished, each subsystem is tested before integration 
to produce an operational MicroROV ready for outdoor testing. The interconnection of 
the ROV’s various subsystems is shown in Figure 2.  

 
Figure 1. An illustration of the MicroROV being tested in a pool environment; (a) top view, (b) side 
view. Figure 1. An illustration of the MicroROV being tested in a pool environment; (a) top view, (b) side view.



J. Mar. Sci. Eng. 2023, 11, 1411 4 of 25

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 24 
 

 

 
Figure 2. Interacting sub-systems of the MicroROV. 

As shown in Figure 2, the electronic subsystem of the MicroROV, which consists of a 
microcontroller, two motor drivers, a turbidity sensor, and an inertial measurement unit 
(IMU), is housed in a watertight hull. The ROV’s thrusters, consisting of one downward-
facing thruster and two side-mounted thrusters, are one of the mechanical subsystem’s 
main components. Sinking and surfacing are accomplished by the thruster that faces 
downward up to a depth of 10–15 m. The vehicle cruise speed of 0.2 to 0.3 m/s roughly 
describes the operational speed. Through the tether, the ground station-based PC’s power 
and control signals are delivered to the on-board computer, which runs a C++ program. 
The only directly controllable DoFs with the current vehicle setup are surge, heave, and 
yaw. However, because the purpose of developing a MicroROV is to demonstrate its con-
trol abilities for inspecting underwater structures, yaw and heave motion will be exam-
ined in this article under the influence of heave-yaw coupling. The specification of the 
vehicle is given in Table 1. 

Table 1. MicroROV specifications. 

Parameter Value 
Weight of the Hull 0.26 kg 
Weight of the ROV 1.68 kg 
Weight of Eq. water  0.34 kg 
Yaw moment of inertia (Analytical) 0.02 kgmଶ 
Yaw moment of inertia (Experimental) 0.019 kgmଶ 
Distance between the center of mass and the thruster 0.11 m 

3. Coupled Math Model of the ROV 
Three translational and three rotational motions define the MicroROV’s total six de-

grees of freedom. Surge, heave, and sway make up the threedegrees of translational mo-
tion, whereas yaw, pitch, and roll make up the threedegrees of rotational motion. The 
motion of the ROV along the x, z, and y axes (comprising the body frame of the vehicle) 
is denoted by the terms surge, heave, and sway, respectively. The rotational motion of the 
ROV about the z, y, and x axes is represented similarly by the terms yaw, pitch, and roll . 
The body-fixed frame is coincident with the vehicleʹs center of gravity, while the earth-
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As shown in Figure 2, the electronic subsystem of the MicroROV, which consists of a
microcontroller, two motor drivers, a turbidity sensor, and an inertial measurement unit
(IMU), is housed in a watertight hull. The ROV’s thrusters, consisting of one downward-
facing thruster and two side-mounted thrusters, are one of the mechanical subsystem’s
main components. Sinking and surfacing are accomplished by the thruster that faces
downward up to a depth of 10–15 m. The vehicle cruise speed of 0.2 to 0.3 m/s roughly
describes the operational speed. Through the tether, the ground station-based PC’s power
and control signals are delivered to the on-board computer, which runs a C++ program.
The only directly controllable DoFs with the current vehicle setup are surge, heave, and
yaw. However, because the purpose of developing a MicroROV is to demonstrate its control
abilities for inspecting underwater structures, yaw and heave motion will be examined in
this article under the influence of heave-yaw coupling. The specification of the vehicle is
given in Table 1.

Table 1. MicroROV specifications.

Parameter Value

Weight of the Hull 0.26 kg

Weight of the ROV 1.68 kg

Weight of Eq. water 0.34 kg

Yaw moment of inertia (Analytical) 0.02 kgm2

Yaw moment of inertia (Experimental) 0.019 kgm2

Distance between the center of mass and the thruster 0.11 m

3. Coupled Math Model of the ROV

Three translational and three rotational motions define the MicroROV’s total six
degrees of freedom. Surge, heave, and sway make up the threedegrees of translational
motion, whereas yaw, pitch, and roll make up the threedegrees of rotational motion. The
motion of the ROV along the x, z, and y axes (comprising the body frame of the vehicle) is
denoted by the terms surge, heave, and sway, respectively. The rotational motion of the
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ROV about the z, y, and x axes is represented similarly by the terms yaw, pitch, and roll.
The body-fixed frame is coincident with the vehicle′s center of gravity, while the earth-fixed
world frame lies outside the vehicle. The vehicle coordinate system is shown in Figure 3.
The standard 6-DoF notation for an underwater vehicle can be seen in Table 2.
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Table 2. 6-DOF standard underwater vehicle notation.

DOF Motions Forces and Moments Linear and Angular Velocities Positions and Euler Angles

1 Surge X u x

2 Sway Y v y

3 Heave Z w z

4 Roll L p ϕ

5 Pitch M q θ

6 Yaw N r ψ

Since the MicroROV is an under-actuated (i.e., with fewer actuators than degrees
of freedom to be controlled) vehicle with heading and heave dynamics to be modeled
and controlled, Equations (1) and (2) suffice to model the vehicle’s coupled nonlinear
dynamics [26].

m
[ .
w− uq + vp + xG

(
pr− .

q
)
+ yG

(
qr +

.
p
)
− zG

(
p2 + q2

)]
= Z (1)

Iz
.
r +

(
Iy − Ix

)
pq− Ixy

(
p2 − q2)− Iyz

(
pr− .

q
)
+ Ixz

(
qr− .

p
)

+m
[
xG
( .
v + ur− wp

)
− yG

( .
u− vr + wq

)]
= N

(2)

Utilizing the condition that the body-fixed frame coincides with the c.g. of the vehicle,
Equation (2) is simplified as:

Iz
.
r +

(
Iy − Ix

)
pq− Ixy

(
p2 − q2

)
− Iyz

(
pr− .

q
)
+ Ixz

(
qr− .

p
)
= N (3)

Equations (1) and (3) represent non-linear equations of motion for ROV in heave and
yaw. Here Z is the summation of all the normal forces acting on the vehicle in heave,
including thrust and dissipative hydrodynamic damping forces. While N is the summation
of all the external yaw moments acting on the MicroROV about the center of gravity. xG,
yG and zG are rectangular components of the vector linking body-frame to world-frame.
Similarly, u, v, w expresses translational while p, q, r represent angular velocities along x, y,
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and z-axis. Ix, Iy, Iz represent moment of inertia of the ROV in the x, y, and z-plane. Ixy,
Iyz, Ixz refers to the moment of inertia induced in one axis due to motion in the other axis,
for example, Ixy represents moment of inertia induced along x-axis due to motion along
the y-axis.

Rearranging Equations (1) and (3) yields:

m
.

w = Z + g(p, q, r) (4)

Iz
.
r = N + h(p, q, r) (5)

Here g(p, q, r) and h(p, q, r) are coupled dynamics affecting heave and yaw, respec-
tively, and are a function of linear and angular velocities. Due to the presence of a single
thruster for heave motion with no counter-rotating torque producing complimentary thrust,
the ROV spins while it descends. This corresponds to dynamic coupling between heave
and yaw motions. The linear mathematical model, i.e., heave and yaw dynamics, of the
MicroROV, assuming vehicle symmetry and small perturbations, is as follows [26]:

Heave Dynamics:
m

.
w + Fw

d = Ft (6)

m
..
z + b

.
z
heave

.
z = Ft (7)

Yaw Dynamics:
Iz

.
r + τr

d = τrear (8)

Iz
..
ψ + b

.
ψ
yaw

.
ψ = τrear (9)

Iz
..
ψ + b

.
ψ
yaw

.
ψ = 2lFdi f f (10)

The authors presented detailed decoupled dynamics in [26], but the MicroROV also
has strong coupling between the heave and yaw planes. The cross-coupling effect, if not
addressed, inevitably impacts the desired closed-loop performance. This is developed
next, wherein Equation (11) depicts the nonlinear coupled heave and yaw dynamics. The
coupling of yaw dynamics with heave due to τw

d —normal velocity (w) dependent drag
torque is given by Equations (12) and (13).

Iz
.
r = N + h(p, q, r) (11)

Iz
.
r + τr

d + τw
d = τrear (12)

Iz
..
ψ + b

.
ψ
yaw

.
ψ + b

.
z
heave

.
z = τrear (13)

Rendering Equations (7) and (8) into the Laplace domain yields decoupled transfer
functions of heave and yaw dynamics:

z(s)
Ft(s)

=
1

ms2 + b
.
z
heaves

(14)

ψ(s)
Fdi f f (s)

=
2l

Izs2 + b
.
ψ
yaws

(15)
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Similarly, combining the Laplace transforms of Equation (7) and Equation (13) yields a
linearized coupled transfer function for yaw output ψ due to vertical thrust force Ft input:

ψ(s)
Ft(s)

=
b

.
z
yaw

Izms3 + (b
.
z
heave + mb

.
ψ
yaw)s2 −

(
b

.
ψ
yawb

.
z
heave

)
s

(16)

Here,

τr
d—Yaw rate (r) dependent drag torque

τw
d —Normal (z-axis) velocity (w) dependent drag torque

τrear—Vehicle main propulsive torque
Ft—Thrust force due to vertical thruster
Fdi f f —Differential rear thruster force
l—Moment arm from center of gravity to Fdi f f

b
.
z
heave—Heave drag force due to normal velocity (

.
z)

b
.
ψ
yaw—Yaw drag moment due to yaw angular velocity (

.
ψ)

b
.
z
yaw—Coupled yaw drag moment due to heave velocity (

.
z)

4. High-Fidelity Data-Driven Model

Often, for multi-input, multi-output (MIMO) systems, as demonstrated by
Ahmad et al. [27], the cross-coupling amongst various degrees of freedom (DoFs) is too
strong to ignore. The nature and strength of cross-coupling can very well be determined
from an auto-correlation test of the residuals. An autocorrelation function (ACF) for a
specific DoF outside the confidence bounds signifies strong cross-coupling. Furthermore,
cross-coupling amongst DoFs of the vehicle affects the resulting vehicle model, as enunci-
ated by Xu et al. [22] while demonstrating the effect of cross-coupling on the parameter
estimation of an ROV. Therefore, to address the issue of cross-coupling, it is of utmost
significance that analysis of the open-loop responses of the ROV be carried out in order
to identify the nature and strength of coupling. In that respect, it is found that for the
ROV under investigation, an input in yaw has no effect on the heave response. However,
while analyzing real-time heave data, it was observed that the yaw motion of the vehicle is
affected to the point that it cannot be neglected. Figure 4 illustrates a schematic highlighting
the coupled nature of the vehicle under consideration.
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From Figure 4, it is clear that an input in heave introduces disturbance in yaw. There-
fore, yaw is affected by more than one input, making the system multi-input, single-output
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(MISO). In designing a control scheme for MISO systems, it is important to account for
the disturbance rejection capabilities of the controller. Only a controller with a robust
disturbance rejection feature can cater for the cross-coupling effect. However, to design a
controller that delivers the desired performance, there must be a detailed dynamic model
available for the system that is not only simple but also captures the system’s behavior
adequately. The preceding subsection deals with the development of a high-fidelity model
capturing the cross-coupling effect prominent in the ROV under consideration.

4.1. System Identification

System identification (SI), a black-box modeling technique to capture system dynamics,
is commonly employed in control system engineering. The MATLAB System Identification
Toolbox is used in this study to carry out linear model identification of the compact
MicroROV. The effect of heave on yaw motion is investigated in the ongoing section.

To excite the modes of MicroROV, a signal rich in eigenfrequencies, such as a multi-
step signal, is designed, and the vehicle is energized with this signal. Figure 5 shows the
real-time yaw response of the vehicle to the multi-step input in heave. The real-time data
obtained from the ROV during experimentation is utilized for model development.
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At first, a simple second-order transfer function (TF) model with three poles is investi-
gated. It is found that the response of the selected model architecture fits the experimental
data fairly accurately. The resulting 2-DoF coupled transfer function model, relating motion
in yaw to an input in heave, is as follows:

ψ(s)
Ft(s)

=
0.01009

s3 + 3.475s2 + 8.936s + 3.483
(17)

Here Ft(s) represents thrust force applied by the top thruster. From Equation (17),
it is clear that the poles of the system lie at −1.5067 ± 2.2967i and −0.4616 + 0.0000i.
The position of the poles signifies that the model and, by extension, the output of the
system in yaw is stable. Upon careful examination of Equation (17), it becomes evident
that the identified transfer function (TF) model includes an extra term in the denomina-
tor polynomial when compared to the Newton-Euler model (Equation (16)). This addi-
tional term represents the stiffness factor resulting from the twisting and tangling of the
tether caused by the vehicle’s yaw motion. Essentially, the twisted tether behaves like a
coiled spring.

If the remotely operated vehicle (ROV) rotates in the same direction as the twisting
of the tether, it experiences an assisting effect on its motion. However, if the ROV rotates
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against the twisting, the tether exerts a recoiling force, attempting to return the vehicle to
its original position despite the input provided. Consequently, this added stiffness term
accounts for the dynamics of the tether, which are typically overlooked in the conventional
Newton-Euler approach to modeling.

An open-loop response for the model in Equation (17) is shown in Figure 6. As evident,
the model is stable exactly as predicted by pole location.
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4.2. Model Validation

The model development process is followed by a model validation procedure. In
actuality, model validation plays a significant role in the model-building process as a whole.
The goal of model validation is to examine the model’s performance and accuracy. Self-
validation, residual testing, and cross-validation are the three distinct model validation
tests that are carried out.

4.2.1. Model Self-Validation

Model self-validation is accomplished by benchmarking the model’s response against
the training dataset. Figure 7 illustrates the output of a self-validation test. It is evident that
the model can accurately reproduce the dynamics of the model from experimental data.
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4.2.2. Residual Test

In time-domain SI, the residuals ε(t) are analyzed to determine the best model archi-
tecture. Residuals indicate the difference in response between the model and the plant to
the same stimulus. Correlation-based model validity tests are employed to verify that

e(t) ≈ ε(t) (18)

The relation in Equation (18) is satisfied when all correlation functions lie inside the
confidence intervals. In other words

φεε(t) = E[ε(t− τ)ε(t)] ≈ δ(t) (19)

φuε(t) = E[u(t− τ)ε(t)] ≈ 0 ∀ τ (20)

where φεε(t) and φuε(t) are the estimated auto-correlation functions of the residuals and the
cross-correlation function between u(t) and ε(t), respectively. δ(t) is an impulse function.

The autocorrelation (ACF) of residuals for the TF model is shown in Figure 8 to be
outside the 99% confidence interval. This indicates that the noise, disturbance, or coupled
dynamics are not well characterized. As a result, it is necessary to estimate a model that
integrates all the aforementioned. However, as seen in Figure 8, the cross-correlation
function (CCF) is well within the confidence band.
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A model is deemed to reflect the system dynamics well if both ACF and CCF sit within
the confidence band [27]. The fact that the ACF of residuals is outside the confidence
interval implies that noise, disturbance, or coupled dynamics are not adequately modeled.
Hence, it is proposed to use a model for estimation that can take noise and external
disturbances into consideration, such as an auto-regressive moving average with exogenous
input, or ARMAX model structure [28]. The development of an ARMAX model structure
for coupled motion is the topic of the next subsection.

4.3. Coupled ARMAX Model

In contrast to the transfer function (TF) model, the ARMAX model structure take into
account the modeling of disturbances or colored noise. The disturbance is modeled as
colored noise (mean 6= 0), possessing its own dynamics that significantly affect the system
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dynamics [29]. The tether, along with water currents and cross-coupling between different
degrees of freedom, is considered one of the external disturbances in the problem at hand.
Due to the presence of these disturbances and the significant heave-yaw coupling exhibited
by the developed ROV, ARMAX models are particularly well-suited for addressing these
issues [30,31].

A discrete-time ARMAX model has the following structure and belongs to the class of
linear polynomial models:

A(z)y(k) = B(z)u(k− n) + C(z)e(k) (21)

where y(k) denotes the system output, u(k) stands for the system input, n for the system
delay, and e(k) for disturbance. The following are the system polynomials A(z), B(z),
and C(z):

A(z) = 1 + a1z−1 + a2z−2 + . . . + akz−k (22)

B(z) = bo + b1z−1 + b2z−2 + . . . + bk−1z−(k−1) (23)

C(z) = 1 + c1z−1 + c2z−2 + . . . + ckz−k (24)

The order of the aforementioned polynomials relies on the estimated model’s order;
for a second-order model, k = 2.

The instrument variable (IV) approach is used to estimate an ARMAX model utilizing
the data from Figure 5 as training data. Following several iterations, it was discovered that
the ARMAX (3221) model’s response closely matches the experimental response. System
polynomials obtained from the model are listed below:

A(z) = 1− 2.241z−1 + 1.552z−2 − 0.3099z−3 (25)

B(z) = −3.201e−06z−1 + 6.678e−06z−2 (26)

C(z) = 1− 1.778z−1 + 0.8392z−2 (27)

The aforementioned system polynomials yield the following transfer function:

ψ(s)
Ft(s)

=
−7.394e−05s2 − 0.003232s + 0.0734

s3 + 27.06s2 + 62.66s + 24.94
(28)

Equation (28) represents the transfer function for the coupled ARMAX model. The
poles of the system lie at −24.547, −2.0045, and −0.5068. The arrangement of the poles
denotes the stability of the model. Figure 9 displays an open-loop response for the ARMAX
model. The model behaves as the placement of the poles would suggest.

4.4. ARMAX Model Validation
4.4.1. Model Self-Validation

For model self-validation, the ARMAX model in Equation (28) is benchmarked against
the training dataset. Figure 10 shows the results of the self-validation test. It is clear that
the model can predict the dynamics of the model from the experimental data with a fair
degree of accuracy.
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4.4.2. Residual Test

The autocorrelation of residuals is shown in Figure 11 as being well within the 99%
confidence band. This indicates that the system’s coupled nature is adequately modeled.
Furthermore, the CCF also lies comfortably within the confidence interval. The cross-
validation test may now be performed.

4.4.3. Model Cross-Validation

Cross-validation is a model validation technique used to determine how well a pro-
jected model’s results generalize to a previously untested dataset. To test an identified
model, cross-validation makes use of various independent datasets. Figure 12 displays the
testing data used to validate the ARMAX model.
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The results of the self-validation test are shown in Figure 13. It is evident that the
model can estimate the dynamics of the model in reasonable correspondence with the
experimental results. As a result, the identified model is suitable for response simulation
and control law formulation.
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Similarly, authors have developed high-fidelity data-driven models for yaw [26] and
heave [32] using the same approach as above:

ψ(s)
Fdi f f (s)

=
6.653e−5s + 0.01068
s2 + 1.563s + 0.3512

(29)

z(s)
Ft(s)

=
0.001124s + 0.0007853
s2 + 0.4956s + 0.1273

(30)

Here Fdi f f represents differential rear thruster force. It is worth mentioning that the
coupled model obtained in Equation (28) is not utilized in closed-loop control design;
instead, cross-coupling is countered using the intrinsic robustness of the independent yaw
and heave controllers. Control law development is covered in the section that follows.

5. Baseline Controller Design

The primary objective of controller design is to enable a system to achieve the desired
performance. To accomplish this, it is crucial to establish well-defined performance criterion
prior to the controller design process. The effectiveness and performance of the resulting
controller are evaluated based on its ability to meet predefined performance criteria. When
considering the specific vehicle in question, both time-domain and frequency-domain anal-
ysis approaches are employed. To ensure a cautious approach, conservative performance
requirements are established, taking into careful consideration the actuation capabilities of
the ROV. The following performance requirements are defined:

1. Stability: The closed-loop system must be stable in yaw and heave;
2. Peak Time: The time taken for the response to reach its peak value should not exceed

3 s for yaw and 5 s for heave;
3. Overshoot: The maximum allowable overshoot should not exceed 20% for yaw and

25% for heave;
4. Settling Time: The settling time, defined as the time required for the response to reach

and stay within a specified tolerance band, should be less than 5 s for yaw and 10 s
for heave;

5. Gain and Phase Margin: While there are no universally accepted standards regarding
the minimum requirements for gain and phase margins specifically for underwa-
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ter vehicles, some researchers have proposed guidelines. Safonov et al. [33] and
Lehtomaki et al. [34] suggest that ROVs should possess the following characteristics:

a. 60◦ of phase margin in at least one DoF
b. Infinite gain margin

The MicroROV has two modes of operation that must be simultaneously controlled:
rotation in the x-y plane (yaw) and translation along the z-axis (heave). As previously
indicated, both DoFs exhibit substantial coupling. The motion in yaw has a negligible
impact on heave and may be disregarded. Heave, however, has a direct impact on the
vehicle’s rotational velocities. Therefore, it is imperative that the yaw controller be built
to reject disturbances brought on by the coupled heave motion. A schematic of the ROV’s
control system is shown in Figure 14.
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The transfer functions for the depth sensor and gyroscope are Gs1 and Gs2, respectively,
where Gc1 and Gc2 stand for the heave and yaw controllers. Since both sensors have
sampling frequencies that are substantially higher than the vehicle’s bandwidth, Gs1 and
Gs2 may be safely considered equal to unity for the sake of simplicity.

Independent development of a yaw and a heave controller employing the root locus
method is carried out for the sake of MIMO closed-loop control design. To address the
cross-coupling phenomenon, the resultant controllers are concurrently implemented on
the vehicle in real-time. The root locus approach is typically employed for control law
design due to its simplicity and usability. The next sub-section briefly explain a novel
root-locus-based design of yaw and heave controllers.

Multi-Parameter Root-Locus PI (MPRL-PI) Control

The purpose of controller design is to attain the required performance. A controller’s
capability to match the pre-established performance criteria serves as a measure of its
efficiency and performance. The precise PID control architecture is defined once the
requirements are specified. The determination of controller gains is all that is required
in the design of a PID controller. Although there are other options, root-locus offers the
most straightforward and user-friendly approach for controller tuning. However, the
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traditional root-locus method is only capable of handling one variable parameter at a time.
MPRL, on the other hand, enables simultaneous tuning of all the gains. The technique
has been investigated by authors [26,32] for the compact ROV, albeit for the single-input,
single-output case.

The closed-loop heave transfer function is as follows in accordance with the perfor-
mance criteria:

Gh
cl(s) =

a1kh
ps2 +

(
b1kh

p + a1kh
i

)
s + b1kh

i

s3 +
(

a1kh
i + c1 + d1kh

p

)
s2 +

(
e1 + b1kh

p + b1kh
i

)
s

(31)

Here kh
p and kh

i are heave closed loop (Gh
cl) controller gains while a1 = 0.0006,

b1 = 0.0008, c1 = 0.45, d1 = 0.006 and e1 = 0.144.
Figure 15 plots Equation (31). The figure shows kh

p and kh
i of 550 and 120, respectively.

Upon plotting Equation (31) with the predicted gains of the model output, we get a response
with a 3.8 s peak time, an overshoot of almost 26 percent, and a 10 s settling time.
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Similarly, the closed-loop transfer function for yaw is as follows:

Gy
cl(s) =

a2

(
ky

p + ky
i

)
s3 + b2s2 +

(
c2 + a2ky

p

)
s + a2ky

i

(32)

Here ky
p and ky

i are yaw closed loop (Gy
cl) controller gains while a2 = 0.01394, b2 = 2.08

and c2 = 0.4681.
Figure 16 plots Equation (32). The figure shows ky

p and ky
i of 230 and 90, respectively.

Upon plotting Equation (32) with the predicted gains, the output of the model exhibits a
peak time of three seconds, an overshoot of almost 22 percent, and a 4.3-s settling time.
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After evaluating the controller’s performance against the predetermined criteria, it is
evident that the MPRL-PI controller successfully fulfills the peak time and settling time
requirements. However, it falls short of meeting the specified criterion for percentage
overshoot. Furthermore, it is worth mentioning that the gains obtained via traditional PID
tuning methods do not meet the criteria for optimality, as Ho et al. [35] showed. Instead,
they tend to reduce parametric robustness. For precisely these reasons, a relatively new
marine predator algorithm (MPA) is employed to optimize the controller’s gains.

6. Marine Predator Algorithm

The marine predator algorithm (MPA), a newly devised optimization method, is
centered around the idea that both predators and their prey must regularly update their
positions to track their respective sources of food [36]. Brownian and Lévy arbitrary
motions are common scavenging tactics that predators use when interacting with their
prey in the marine ecosystem. Predators utilize the Brownian approach when there is a
large concentration of prey in the hunting region and the Lévy method when there is a
low concentration. Environmental issues, including eddy formation and the effects of fish
aggregating devices (FADs), are among the factors that change the behavior of marine
predators. The effects of FADs are seen as entrapping in search space, while the FADs
are considered local optima. The population member, i.e., predator or prey, who is in
the strongest contrast with other members is selected as the top member and expressed
through the elite matrix, in accordance with the survival of the fittest theory [37].

The MPA road map for PI controller tuning is shown in Figure 17. Setup parameters
for MPA-based optimization of the heave and yaw controller are shown in Table 3.
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Table 3. MPA problem setup parameters for PI controller optimization.

Parameter Value (for Heave) Value (for Yaw)

Search space bounds [20, 400] [50, 300]

Number of agents/prey 50 50

Maximum iterations 50 50

Dimensions/variables 2 2

Cost function Integral Time Absolute Error (ITAE) ITAE

The optimization problem is executed ten times using the parameters listed in
Table 3. Heave and yaw controllers are determined from the optimization problem to
have proportional gains of 400 and 270 and integral gains of 104 and 68, respectively.
Plotting the system’s response with the gains from MPA optimization demonstrates that
it has superior performance metrics than the root-locus-tuned controller. Table 4 offers a
direct performance comparison between both controllers.

Table 4. Time-domain performance comparison of the designed controllers.

Heave Yaw

Desired Performance
Experimental

Desired Performance
Experimental

Root-Locus MPA Root-Locus MPA

Tp
(in second) 5 3.8 4.4 3 3 1.18

Ts
(in second) 10 10.5 11.2 5 4.3 4.3

% OS 25 26 14.8 20 22% 18%

Here Tp represents peak time, Ts settling time, and % OS percentage overshoot. As
depicted, the MPA-PI controller exhibits a peak time of 4.4 sec and a percentage overshoot
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of 14.8% in the heave motion, both of which are significantly lower than the specified
requirements of a 5 sec peak time and 25% overshoot. Similar observations can be made
for the yaw motion. However, it is worth noting that the settling time in the heave motion
is slightly longer than anticipated. This can be attributed to the influence of buoyancy
effects experienced by the vehicle in heave, which restricts the ROV from settling rapidly.
Furthermore, peak time and settling time for MPA are slightly higher than for MPRL;
however, the overshoot characteristics of the latter are considerably higher. Nonetheless,
Table 4 makes it clear that MPA-PI performs better in simulations holistically, which
indicates that it will arguably perform better in real-time. However, it is important to
determine the frequency-domain performance characteristics of the controllers before they
can be implemented on the experimental hardware.

6.1. Robustness Analysis

It is challenging to represent a system’s real-world dynamics with absolute precision
and accuracy. This is due to the fact that in the real world, systems are susceptible to external
disturbances. Since ROVs function in a variable underwater environment, robustness
is crucial for ensuring smooth operation. Robustness is typically ascertained by gain
and phase margins. Although there is no established minimum gain or phase margin
requirement for underwater vehicles, Lehtomaki et al. [34] and Safonov et al. [33] have
indicated that ROVs must have (a) a 60◦ phase margin in at least one DoF and (b) an infinite
gain margin.

Figure 18 shows a frequency response comparison for heave dynamics, root-locus-
tuned PI, and MPA-PI, whereas the response for yaw is shown in Figure 19. Further-
more, Table 5 offers a quantitative performance comparison of both controllers in the
frequency domain.
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Table 5. Frequency-domain performance comparison of the designed controllers.

Heave Yaw

Desired Performance
Experimental

Desired Performance
Experimental

Root-Locus MPA Root-Locus MPA

GM ∞ ∞ ∞ ∞ ∞ ∞

PM 60◦ (in one DoF at least) 68.5 71.4 60◦ (in one DoF at least) 39.5 42.6

Here GM represents gain margin, and PM phase margin.
From the analysis of frequency response plots and Table 5, it is clear that the gain

margin and phase margin for MPA-PI are higher than those for the root-locus-tuned PI
controller. Moreover, both controllers comfortably fulfill the desired performance criteria
for gain and phase margin. However, it should be noted that in the yaw direction, the
phase margin falls slightly below the required value. Nevertheless, the criterion of having
a minimum 60-degree phase margin in at least one degree of freedom is met. Furthermore,
it is demonstrated in the authors’ previous works that the control effort demanded by the
MPRL-PI is higher than that of the MPA-PI controller [26]. As a result, it can be said that
the vehicle with MPA-PI is not only optimal but also more robust to withstand variations
in parameters and external disturbances. Hence, the controller is implemented in real-time
to further assess its effectiveness in a practical setting.

6.2. Real-Time Experimentation

Real-time implementation of control algorithms is far from trivial. That is why rigor-
ous time and frequency domain analysis is conducted to ensure that the designed controller
meets the required performance specifications. Once confidence is developed in the de-
signed controllers, the resulting gains are hard-coded using C++ code onto the ATmega
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328 embedded microcontroller. Real-time data is transmitted to the ground station via the
umbilical cord and communication link.

Implementation of designed controllers into a real system allows design engineers to
develop a deeper understanding of their system’s behavior. The substandard performance
of the controller in real-time signifies the probability that the system has not been modeled
correctly. While evaluating the performance of the designed controllers during coupling
experiments, two distinct scenarios are analyzed:

6.2.1. Scenario I

The designed controller is put into practice in experimental Scenario I in the manner
described below:

1. The ROV’s response is recorded in heave while multiple step input commands are
supplied to continuously alter its depth;

2. The ability of the heave controller to track reference input is evaluated from the
recorded response (servo problem);

3. The yaw controller is engaged while the input signal is being provided in heave;
4. The goal of the yaw controller is to preserve zero reference despite the disturbance

signal that is produced by motion in heave (regulator problem).

It can be seen that both controllers respond as expected to the reference input, as
illustrated in Figure 20.
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The heave response of the vehicle, as shown in Figure 20, demonstrates effective
tracking of input, as indicated by the simulations (Figure 20a). Furthermore, the control
effort demanded by the heave controller is within the actuator limits (Figure 20b). In
regards to the yaw response, the vehicle appears to experience torque whenever an input
signal is provided in heave. The yaw controller, nevertheless, mitigates the induced torque
and retains the reference position specified by the input signal (Figure 20c). The control
effort demanded by the yaw controller is under the actuator limit as well (Figure 20d).
Furthermore, the performance metrics observed closely align with the predictions made
during the simulation study.
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6.2.2. Scenario II

In contrast to Scenario I, the yaw angle of the ROV is continually adjusted, but the
heave remains fixed. The ability of the yaw controller to track reference input is examined
in the recorded response. In this instance, the goal of the heave controller is to maintain zero
reference notwithstanding any disturbance generated by yaw motion. Figure 21 depicts
the ROV’s yaw and heave response when both controls are engaged simultaneously. The
yaw response of the vehicle exhibits effective input tracking with similar performance
metrics, as anticipated by simulations (Figure 21a). The control effort also stays within the
saturation limits of the actuators (Figure 21b). Regarding the heave response, there is no
indication of any yaw-induced motion in the heave (Figure 21c). The data from the depth
sensor (displayed in Figure 21c) is, however, quite noisy and can be smoothed by using
a digital low-pass filter. In sum, the developed 2-DoF controller mitigates the influence
of motion caused by one DoF in another, demonstrating active reference tracking in both
DoFs with little control effort.
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6.3. Discussion

As demonstrated in Sections 6.1 and 6.2, MPA-PI not only fulfills but outperforms
conventionally tuned PI controllers in almost all of the performance criteria. This superiority
of the proposed strategy, not only for ROVs but for other engineering systems as well,
was also demonstrated in a 2021 study conducted by Sobhy et al. [38]. In their study, the
authors compared the MPA-PID controller with both Grey Wolf Optimization and Artificial
Bee Colony (ABC) optimization algorithms for load frequency control of a PV array. The
authors’ previous work encompasses a similar study that focuses on comparing one of
the proposed controllers with a Simulated Annealing (SA) optimization in order to draw
meaningful comparisons [39]. The comparisons carried out in all of the aforementioned
studies further support the findings and highlight the effectiveness of the proposed strategy.
Furthermore, to the best of the authors’ knowledge, there is no existing work in the open
literature that has implemented MPA in the context of a MIMO ROV study. This absence of
prior research further emphasizes the novelty and valuable contribution of this article in
proposing and evaluating the MPA for ROV control.
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6.4. Limitations of MPA Optimization

Researchers from various domains have taken note of the MPA’s robustness and
impressive performance, as it has demonstrated considerable efficacy in addressing a wide
range of optimization problems [40]. However, similar to other optimization methods, the
MPA is not without its limitations and drawbacks, which can hinder its search performance
and effectiveness when applied to real-world optimization problems.

1. The first limitation of the marine predators algorithm (MPA) is the lack of diversity
among its candidate solutions in the population [41]. The algorithm’s operators are
primarily designed to address optimization problems with flat search spaces, which
can result in limited diversity among the solutions within the MPA population.

2. The MPA suffers from another limitation that hampers its performance, which is the
lack of flexibility in its parameters [42]. This limitation restricts the ability of the search
agents to efficiently explore large search spaces.

3. Lastly, another concern that arises when dealing with optimization problems of high
complexity is that the original MPA is specifically designed to handle continuous
optimization problems with a single objective [43]. As a result, it may encounter
challenges when confronted with more intricate optimization problems involving
multiple objectives or discrete variables [44].

7. Conclusions

In this work, the design and development of an unmanned underwater vehicle called
a MicroROV is presented. A detailed mathematical framework is developed for complex
MIMO MicroROV control utilizing Newton-Euler approaches. The cross-coupling effect
between heave and yaw degrees of freedom is also successfully modeled. Additionally,
the model takes into account the independent heave and yaw degrees of freedom while
also considering the influence of the umbilical cord. The linear system identification
technique is then employed to develop high-fidelity data-driven dynamic models meant
for model-based closed-loop control design. A multi-parameter root locus technique is
employed for the baseline controllers design for all the 3-DoFs, which are compared with
MPA-tuned PI controllers. Time and frequency domain analyses are carried out, which
demonstrate the robustness of both control strategies. In particular, the frequency response
analysis indicates that both controllers have an infinite gain margin with sizable phase
margins of 68.5◦ and 71.4◦ in heave and 39.5◦ and 42.8◦ in yaw for root-locus Pi and
MPA-PI, respectively. Hence, it is apparent that the cross-coupling effect is mitigated by
the robustly designed controllers. Finally, a real-time controller implementation on an
onboard embedded system and pool testing demonstrate the efficacy of the proposed
control strategies. The proposed underactuated ROV design renders the vehicle compact
by foregoing the need for an additional heave thruster along with the associated motor
driver, electronics, and power requirement modules. However, at the cost of more involved
modeling and control design. The experience gained will thus feed into an on-going work
on an improved and more rugged ROV with a similar vehicle configuration.
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