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Abstract: The determination of ice loads on polar vessels and offshore structures is important for
ice-resistant design, safe operation, and management of structural integrity in ice-infested waters.
Physical model testing carried out in an ice tank/basin is usually an important technical approach for
evaluating the ice loads. However, the high cost and time consumption make it difficult to perform
multiple repetitions or numerous trials. Recently, the rapid development of high-performance
computation techniques provides a usable alternative where the numerical methods represented by
the discrete element method (DEM) have made remarkable contributions to the ice load predictions.
Based on DEM simulations validated by physical model tests, numerical ice tanks can be developed
as an effective complement to their counterparts. In this paper, a numerical ice tank based on 3D
spherical DEM was established with respect to the small ice model basin of China Ship Scientific
Research Center (CSSRC-SIMB). Based on spherical DEM with parallel bond model, the model tests
of typical structures (vertical cylinder and inclined plate) in level ice sheets were established in
the numerical ice tank, and the ice–structure interaction process under the same initial conditions
was simulated. The accuracy of the simulations is verified by comparing the simulated ice loads
with the measured ice loads from the model tests in the CSSRC-SIMB. Furthermore, the application
of the numerical ice tank was extended to simulate the navigation of a Wass bow in level ice and
broken ice conditions. The value of the break resistance of the Wass bow in level ice was evaluated,
and the numerical ice tank produced results that were found to be consistent with those obtained from
Lindqvist’s formula. The statistical properties of the bow load for different broken ice fields with the
same initial physical conditions are analyzed by performing a repeatability test on the broken ice fields.

Keywords: numerical ice tank; DEM; physical model tests; ice loads; ice model basin

1. Introduction

In recent years, the advent of climate change has brought about a number of different
changes in the Arctic, including accessibility to the opening of new Arctic shipping lanes
and development of oil and gas resources in polar regions. Among them, various countries
have vigorously developed polar marine engineering equipment and actively participated
in Arctic oil and gas development and transportation projects. For different polar marine
engineering equipment, the determination of ice load on polar ships and offshore structures
is important for ice-resistant design, safe operation, and structural integrity management
in ice-infested waters.

The ice load of polar ships and offshore structures in cold regions is influenced by sea
environment (temperature, salinity, wind field, ocean current, etc.), ice type (floe ice, broken
ice, level ice, ridge, ice rubble, etc.), structural motion characteristics (rigid and elastic
bodies, fixed and floating), and other factors [1,2]. The most reliable method to determine
the ice load on marine engineering structures is full-scale measurements. For example, ice
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load measurement projects for various marine structures (jacket platforms in the Bohai
Sea [3], lighthouses in the Baltic Sea [4], Confederation Bridge in Canada [5], caisson
platforms [6], polar icebreakers [7], etc.) were carried out during the last century. However,
expensive installation costs and time make it difficult to implement. Correspondingly, the
implementation of physical model tests in an ice tank/basin is an attractive alternative to
determine the ice load on marine structures. The design of the physical model testing in an
ice tank/basin usually adopts the Froude and Cauchy scaling laws to ensure the geometry,
kinematics, and dynamics of the test object (structure) in the field ice environment, which
are far more complicated than those in open water. The document of General Guidance and
Introduction to Ice Model Testing in the International Towing Tank Conference (ITTC) presents
information on the nine main overviews of grain structure and chemical composition of the
model ice in operating facilities [8]. Due to the different production methods, model ice can
be divided into fine-grained ice and columnar ice. The fine-grained ice is represented by
Aalto University (Finland) and Aker Arctic (Finland), while columnar ice is represented by
the Hamburg Ship Model Basin (Germany) and National Research Council Canada, Ocean,
Coastal and Engineering (Canada). In general, physical model tests have been widely
used to investigate global ice action and structural ice loads. For example, studying the
ice–structure interaction mode (ice failure mode, ice pile-up, ice accumulation, ice blockage,
etc.) and providing an icebreaker ship design scheme (maneuverability, stability, rapidity,
design load, etc.) [9–11].

Due to the high cost and time of each test run, it is not common to perform multiple
repetitions of a physical model test under the same conditions. However, when analyzing
test results from ice tank tests, it is very important that the test results be reproducible
or repeatable [12,13]. The repeatability of test results is closely related to the random
uncertainty of the test, with the higher test repeatability corresponding to lower random
uncertainty. Although the Procedure for assessing the experimental uncertainty in ship resistance
testing in ice document [14], provided by the ITTC, has described how to independently
evaluate the random uncertainty of the results by splitting up the time histories of measured
results from a single test, the differences of test conditions in each segment will still affect
the assessment of the random uncertainty of the final results. It would be much more
convenient for us in the interpretation of the results obtained from the test of the ice tank if
we could repeat it.

With the rapid development of computer technology, some numerical methods have
been able to reproduce well the phenomena and results of ice tank tests, providing a
solution to the problem of the repeatability of ice tank tests. Numerical simulations have
potential to overcome their repeatability limitations due to their stepwise nature and
capability for extensive computation [15]. For example, Jeon and Kim (2021) [16] and
Wang et al. (2018) [17] applied the finite element method (FEM) with the element erosion
technique to simulate the model tests of the interaction between conical structure with level
ice, which was performed by Kärnä et al. (2010) [18] in the Hamburg Ship Model Basin
(HSVA). The applicability of this approach is verified by the analysis of ice load and ice
failure length between numerical simulations and model tests. Long et al. (2020) [19] and
Jang and Kim (2021) [20] also performed the discrete element method (DEM) to simulate the
model tests of conical structure, which all verify the accuracy of the DEM in analyzing the ice
load and process between ice and structure. In addition, smoothed-particle hydrodynamics
(SPH) method [21], moving particle semi-implicit method (MPS) [22], extended finite
element method (XFEM) [23], peridynamics (PD) [24], semi-empirical formula method [25],
etc., are also used in ice–structure simulation of the model tests or full-scale tests.

This study proposes an example of a numerical ice tank based on the DEM, which is
not only limited to the numerical repeatability of physical ice tank tests, but can be extended
to simulation scenarios and calculational parameters over some physical environments [26].
DEM simulations proposed by Cundall and Strack (1979) [27] have been widely used in ice
engineering research, such as demonstrating ice failure behaviors, structural ice loads, ice
rubble pile-up, and sea ice drift. Among them, the elemental morphology of DEM has also
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developed from 2D disk to complex 3D shapes such as spheres, polyhedral, and extended
polyhedral [28–30]. Compared to polyhedron elements, 3D sphere elements can easily
establish high-performance numerical algorithms for a numerical ice tank based on the
graphics processing units (GPU) technology to achieve rapid simulation [31]. In addition,
considering the coupled effect of structural dynamic response or the wave/current and sea
ice damage and movement, the coupled method of 3D spherical DEM with FEM [32] or
computational fluid dynamics (CFD) [33] has also been developed accordingly.

In the following contest, Section 2 sequentially states the model of numerical ice
tank corresponding to the small ice model basin of China Ship Scientific Research Center
(CSSRC-SIMB), the ice model based on 3D spherical DEM, and interaction model between
model ice and offshore structure. Section 3 introduces the physical model tests for typical
offshore structures represented by a vertical cylinder and inclined plate and compares them
with the results obtained from numerical ice tank tests. In Section 4, the numerical ice tank
based on the CSSRC-SIMB is extended to simulate the navigation of the new Wass bow in
both level ice and broken ice field conditions. Finally, Section 5 concludes the paper.

2. Numerical Ice Tank Description Based on DEM
2.1. Numerical Ice Tank Corresponding to the CSSRC-SIMB

The main body of the CSSRC-SIMB has a dimension of 8 m in length, 2 m in width, and
1 m in depth [34,35]. The ice tank is housed in an insulated room that can be cooled down to
an air temperature of −16 ◦C, as shown in Figure 1a. In addition, a small cold room is close
to the ice tank, with a size of 3 m (length) × 2.2 m (width) × 2.8 m (height), which is mainly
used to test the physical and mechanical properties of model ice. The main carriage on the
tank was designed for tractive force or thrust up to 3 KN and speeds ranging from 0.01 m/s
to 1 m/s. The model ice used is naturally grown columnar ice constructed from sodium
chloride solutions. Another in situ test of offshore structures was designed by Froude and
Cauchy scaling laws to carry for physical model testing. According to the dimensions and
ice modeling methodology, the physical and mechanical parameters of ice in both full and
model scales are listed in Table 1. Based on the Froude–Cauchy similarity, the scale ratio in
the full and model scales can be controlled between 10 and 20 in the CSSRC-SIMB.
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Figure 1. Physical and numerical ice tank based on CSSRC-SIMB.

Table 1. Physical and mechanical parameters of ice at the full and model scales.

Parameter One-Year Columnar Sea Ice Model Ice

Thickness (m) 0.5~2.0 0.03~0.05
Density (g/cm3) 0.91 0.9~0.92

Young’s modulus (GPa) 2~5 0.06~0.2
Compression strength (MPa) 0.5~12 0.05~0.2

Flexure strength (MPa) 0.5~2 0.03~0.1
Tensile strength (MPa) 0.2~0.8 0.01~0.03

Using the physical ice tank of the CSSRC-SIMB as a template, this paper describes
a numerical ice tank based on the DEM to conduct virtual offline-mode tests of various



J. Mar. Sci. Eng. 2023, 11, 1455 4 of 20

offshore structure, as shown in Figure 1b. The geometric model and dimensions of the
numerical ice tank are the same as those of the physical ice tank, and the physical and
mechanical properties of the model ice and offshore structure in numerical and model tests
are also the same, that is, both use the Froude–Cauchy similarity in the scheme design. A
3D spherical DEM code from Dalian University of Technology was used for the model ice
simulation in the numerical ice tank [31,36]. The details of the method and the interaction
model for the ice–structure in the numerical ice tank are presented below.

2.2. Ice Model Based on the 3D Spherical DEM in the Numerical Ice Tank

The model ice in the numerical ice tank is simplified to a particle system of 3D spherical
elements with the same size and mass, which are regularly arranged in space according
to Hexagonal Close Packing (HCP) arrangement, as shown in Figure 2. Essentially, the
mechanical behavior of the numerical model ice is described by the motion of the elements
and the forces and moments acting between them. The motion is performed per explicit
calculation by Newton’s second law, and the contact force between two the elements is
calculated using an elastic-viscous contact model based on the springs and dashpots. In
addition, all 3D spherical elements are bonded together using a parallel bonding model
to take into account the macroscopic continuum properties of the model ice [37]. In the
parallel bonding model, a parallel-bonded disk with circular cross-section is set up to
transfer through forces and moments between two adjacent elements. The maximum
normal and shear stresses acting on the profile of the parallel-bonded disk are determined
using beam theory and can be written as follows:

σmax =
−Fn

A
+
|Ms|

I
R, τmax =

|Fs|
A

+
|Mn|

J
R (1)

where Fn and Fs are the normal and shear forces, respectively; Mn and Ms are the normal
and shear moment, respectively; R is the radius of spherical element; A = πR2, I = 1

4 πR4,
and J = 1

2 πR4 are the area, moment of inertia, and polar moment of inertia of the parallel-
bonded disk, respectively.
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Figure 2. Physical and numerical models of model ice in CSSRC-SIMB.

The macroscopic failure of model ice is closely related to the generation and prop-
agation of internal cracks. In the DEM of the model ice, the failure of the bonding disk
between elements simulates the generation of internal cracks in the material. During the
failure process, the bond failure modes between elements can be classified into tensile
failure and shear failure based on the normal and tangential stresses of parallel-bonded
disk. When the maximum tensile stress (σmax) exceeds the tensile strength (σt) between
adjacent elements, σmax > σt, the parallel-bonded disk exhibits tensile failure; when the
maximum shear stress (τmax) exceeds the shear strength (τs) between adjacent elements,
τmax > τs, the parallel-bonded disk exhibits shear failure, as shown in Figure 3. Based on
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the Mohr–Coulomb shear friction law, the tensile and shear strengths (σt and τs) can be
determined as follows:

σt = σn
b (2)

τs = σs
b + µb·max(0, σmax) (3)

where µb is the friction coefficient between the bonding elements; σn
b and σs

b are the normal
and shear bonding strengths of the parallel-bonded disk, respectively.
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2.3. Interaction Model of Ice–Structure in Numerical Ice Tank

Due to the complex geometrical configuration of ships and offshore structures, dis-
cretizing the plane or surface shape of typical offshore structures into triangular panels is
the most commonly used method to describe complex geometries, as shown in Figure 4.
Simplifying the ice–structure interaction as a contact problem between a sphere and a
triangular panel, the ice load on the structure can be obtained by setting a contact criterion
between the sphere and the triangular panel.
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The contact search between the sphere and the triangular panels can be determined
by the position of the sphere center point P and triangle vertex A, B, and C in space. The
contact type between the sphere and triangular panels can be subdivided into three contact
modes: sphere–face, sphere–edge, and sphere–vertex, as shown in Figure 5. The projection
point (contact point) of the points P on the plane where the triangular panels are located

is Q. The distance between the vector
−→
PQ and radius RDEM of the sphere determines the

contact and contact overlap amount between the sphere and the plane. If
∣∣−→PQ

∣∣ < RDEM, it
indicates that there is an overlap between the sphere and plane, and the amount of overlap
∆L can be calculated as follows:

∆L =
∣∣−→PQ

∣∣− RDEM (4)
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The normal vector nw between the sphere and contact point of the triangular panels
can be expressed as:

nw =

−→
PQ∣∣−→PQ
∣∣ (5)

Relative displacement ∆x can be expressed as:

∆x = (vDEM − vw)∆t (6)

where vDEM is the speed of the sphere, vw is the speed of the triangular panels, and ∆t is
the timestep of DEM. The relative displacement along normal vector nw is decomposed
into normal displacement ∆xn and tangential displacement ∆xs:

∆xn = (nw·∆x)nw, ∆xs = ∆x− ∆xn (7)

The interaction force between sphere and boundary elements is calculated using the
linear contact model, in which the normal force tFn and tangential force tFs at time t can be
expressed as:

tFn = kn
w∆xn (8)

tFs = min
(t−∆tFs + ks

w∆xs, µwFn
)

(9)
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where kn
w and ks

w are the normal and tangential contact stiffness between the sphere and
triangular panels, respectively. µw is the friction coefficient of ice–structure. t−∆tFs is the
tangential force at time step t− ∆t. The total ice load on the structure Ftotal is expressed as:

Ftotal =

N

∑
i=1

(
tFi

s +
tFi

n

)
(10)

where N is the numerical of interaction force between sphere and boundary elements.

3. Verification of Physical Model Tests in the Numerical Ice Tank

This section describes model tests of two typical offshore structures (vertical cylinder
and inclined plate) carried out on physical and numerical ice tanks. By comparing the
failure modes of the model ice and the structural load characteristics of two, the correctness
of the construction of the numerical ice tank based on DEM is verified.

3.1. Description of Physical Model Tests

Model testing of typical offshore structures represented by vertical cylinder and
inclined plate was performed at the CSSRC-SIMB as part of the exploration of the model
testing methods. The similarity between model ice and sea ice is emphasized in the design
of relevant tests to ensure that the physical and mechanical parameters of sea ice are within
a certain range, while the size and carriage speed of structures do not need to strictly meet
the similarity law of model tests. Considering the test capacity of the CSSRC-SIMB, the
model tests with vertical cylinder and inclined plate structures are selected as test models,
as shown in Figure 6. The relevant test information for each condition, including sea ice
strength, ice density, speed, structural geometry, etc., is listed in Tables 2 and 3. The former
is used to analyze the brittle crushing of the ice and the latter is used to analyze the bending
failure of the ice.
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Table 2. Test matrix and ice conditions of interaction between the vertical cylinder and level ice.

Test No. Compressive
Strength (kPa)

Ice Density
(kg/m3)

Ice Thickness
(mm)

Diameter of
Cylinder (mm)

Speed
(mm/s)

#101
51.6 901 36 100

50
#102 100
#103 150

#201
55.3 902 37 150

50
#202 100
#203 150

#301
57.3 915 37 200

50
#302 100
#303 150
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Table 3. Test matrix and ice conditions of interaction between the inclined plate and level ice.

Test
No.

Flexural
Strength (kPa)

Ice Density
(kg/m3)

Ice Thickness
(mm)

Angle of
Inclined Plate (◦)

Speed
(mm/s)

#401
33.4 924 37 120

50
#402 100
#403 150

3.2. Comparison of the Results

In order to verify the validity of the numerical ice tanks presented in this paper,
a visual and numerical comparison of the simulation results of the above model tests
was performed. In addition to the numerical comparison, the comparison of visual results
during the ice–structure interaction is the main purpose of the construction of the numerical
ice tank, which is a virtual and repeated model test scenario. The computational parameters
of the numerical simulations in the numerical ice tank are listed in Table 4.

Table 4. Computational parameters of the numerical simulations in the numerical ice tank.

Definition Symbol Value

Young’s modulus of elements Ep 7.5 MPa
Friction coefficient of elements µb 0.2

Normal and shear bonding strengths σn
b , σs

b 62 kPa
Ice–structure friction coefficient µw 0.15

Number of elements N 56 W

A visual comparison of the results for test cases #202 and #402 is presented in Figure 7.
Figure 7 shows the interaction process, including crushing failure, bending failure, and
channel ice accumulation, that occurs in both physical and numerical ice tanks. During the
interaction process between the ice sheet and vertical cylinder, the ice sheet is subjected
to crushing brittle failure, and the broken ice fragments are extruded from the upper
and lower surfaces of the ice sheet to form a temporary accumulation body. During the
interaction between the ice sheet and inclined plane, the ice sheets have periodic bending
failure and the length of each failure of the ice sheets is basically the same. In addition, the
phenomenon of sea ice climbing and accumulation during the action is very obvious.
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Time history of the ice loads for vertical cylindrical structures with different diameters
is presented in Figure 8. In both the physical and numerical ice tank results, the ice load
of the structure presents continuous brittle extrusion and crushing, and the load presents
loading and unloading form but without periodicity. Meanwhile, comparison of time
history of ice loads for inclined plate structures with different speeds is shown in Figure 9.
The dynamic load on the inclined plate is attributed to the continuous bending failure that
occurs around the front of the structure. During each loading and uploading period, the ice
load gradually increases over time and then drops rapidly once it reaches a certain level.

The mean load and maximum loads are comparable in magnitude. The mean and
maximum values of the ice load for the vertical cylindrical structures in the simulations
and tests are compared and analyzed. Here, the mean value and maximum value are
the time histories of the ice load during the stable period, as shown by the dotted line in
Figure 9. The mean peak load and maximum load of the plate structure are also analyzed.
The peak load represents the maximum value of the structure within a single loading and
unloading cycle. Table 5 summarizes the statistical characteristics and relative errors of the
ice loads for the 12 working conditions. Although the relative error between the test and
the simulation is relatively large in some cases (#103 and #301), the mean load (mean peak
load) and the maximum load error of the numerical ice tanks are still within the acceptable
range. These sources of errors are not only unreasonable choices of numerical simulation
parameters, but also random uncertsainties of some experiments.
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Figure 8. Ice load histories of the vertical cylinder structure in the physical and numerical ice tank.
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Figure 9. Ice load histories of the inclined plate in the physical and numerical ice tank.
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Table 5. Comparison of the ice loads between the simulations and tests with different conditions.

Structure Test No.
Mean Load (Mean Peak Load)/N Maximum Load/N

Simulation Test Relative Error Simulation Test Relative Error

vertical
cylinder

#101 90.6 92.3 1.9% 233.2 246.8 5.5%
#102 105.6 110.4 4.4% 247.4 253.3 2.3%
#103 145.6 116.7 24.7% 299.8 220.9 35.7%
#201 105.4 119.7 12.0% 260.6 260.5 0.1%
#202 117.6 128.8 8.7% 283.0 308.8 8.4%
#203 157.2 153.2 2.6% 326.0 302.0 7.9%
#301 110.8 151.1 26.7% 286.9 334.0 14.1%
#302 165.4 178.3 7.2% 297.6 311.0 4.3%
#303 183.0 204.8 10.6% 342.9 357.8 4.2%

Mean error - - 11.0% - - 9.2%

inclined plate

#401 115.2 152.7 24.6% 172.2 187.1 8.0%
#402 194.0 176.1 10.2% 225.3 206.1 9.3%
#403 204.2 187.5 8.9% 286.8 259.7 10.4%

Mean error - - 14.5% - - 9.2%

4. Application of Numerical Ice Tank
4.1. Breaking Resistance Evaluation of New Wass Bow

The Wass bow takes its name from Dr. Heinrich Wass of Germany [38]. The main
characteristics of the simplified Thyssen Wass bow include a small stem angle, a large
waterline angle, and a large outward drift angle, which can increase the proportion of
bending failure components of the ice sheet and greatly reduce the ice breaking resistance
when the ship is sailing through the ice region. In this section, a new Wass bow test model
is designed with the simplified Wass bow as the mother ship, as show in Figure 10a. The
numerical ice tank model above is used to evaluate the ice breaking resistance of the bow
under different ice thickness conditions, as shown in Figure 10b. At full-scale test, the ice
breaking conditions for the new Wass bow are as follows: ice flexural strength is 600 kPa,
ice thickness is 0.6~1.5 m, and ship speed is 2 kn. The scale of the model test set was
set to 30, based on the size of the ship’s bow model and CSSRC-SIMB. The choice of the
discretization element parameters in the numerical ice tank refers to the parameters in
Table 4, and the other parameters for the relevant model tests are listed in Table 6.
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Table 6. Model test parameters for the new Wass bow in the numerical ice tank.

Definition Symbol Value

Wass bow model

Length Lship 0.96 m
Front/Back breadth Bship 0.40/0.46 m

Depth Dship 0.30 m
Draft Tship 0.18 m

Stem angle ϕ 24 deg
Waterline angle α 84 deg

Drift angle β 52 deg
Ice–structure friction coefficient µw 0.1

Speed vship 0.188 m/s

Model ice

Thickness hice 0.02~0.05 m
Flexural strength σice 20.0 kPa

Density ρice 920 kg/m3

Poisson’s ratio ν 0.3
Young’s modulus of elements Ep 4.5 MPa

Normal and shear bonding strengths σn
b , σs

b 37 kPa

Scale λ 30

A series of model tests of the Wass bow breaking the level ice were carried out in
the numerical ice tank. Figure 11 shows a simulation snapshot of the interaction between
ice sheet and Wass bow at an ice thickness of 0.03 m. The ship bow interacts with the
ice sheet at a constant carriage speed, resulting in crushing and bending failure of the
ice sheet, as shown in Figure 11a. The bending failure of ice plate is the most obvious,
and the development of circumferential and radial cracks can be observed during the
failure process. In addition, the mode of failure of the ice sheet is dominated by bending
failure caused by circumferential and radial cracks, as shown in Fig. 11b. The same failure
phenomenon has been observed in other simulations of the Wass bow-ice interactions [24].
In Zhang’s paper, the simplified Wass bow is also used for the icebreaker, which is the same
design as the ship bow selected in this paper. Figure 11c also shows the shape of the ice
channel that was created behind the ship bow.
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Figure 11. Simulation snapshot of the interaction between ice sheet and Wass bow. (a) Snapshot of
ship–ice action at t = 20 s. (b) Radical and circumferential crack (t = 20 s). (c) Ice channel in numerical
ice tank tests.
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The time histories of ice force on the ship bow in the three directions are shown in
Figure 12. With the bow continuously entering the ice area, its ice force also gradually
increases. About 5 s later, the bow completely enters the ice area and the variation trend of
its ice force tends to be stable. Since then, it can be seen that the ice force of the ship bow
has periodic load characteristics due to the continuous bending failure of ice sheet. The ice
force in the x direction represents the breaking resistance of the bow, which consists of two
parts: bending resistance and crushing resistance. The mean value of breaking resistance in
this state is analyzed and compared, which is the red dotted line in Figure 12a.
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The validity of the numerical ice tank results can be verified by empirical formulas,
thus improving the ability of the numerical ice tank to comprehensively describe the ice
load characteristics. In this paper, Lindqvist (1989) [39] ice resistance formula is selected
to check the rationality of the numerical ice tank results. The ice breaking resistance of
the ship bow in Lindqvist’s formula can be divided into bending resistance and crushing
resistance, which can be expressed as:

Rice = (Rc + Rb)

(
1 +

1.4vship√
ghice

)
(11)

Rc = 0.5σiceh2
ice

tan ϕ + µ cos ϕ/ cos ψ

1− µ sin ϕ/ cos ψ
(12)

Rb =
27
64

σiceBship
hice

1.5√
E

12(1−υ2)gρw

tan ψ + µ cos ϕ

cos ψ sin α

(
1 +

1
cos ψ

)
(13)

where Rice, Rc, and Rb is the breaking resistance, crushing resistance, and bending re-
sistance, respectively. ψ is normal angle, ψ = arctan(tan ϕ/ sin α). E and υ is Young’s
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module and Poisson’s ratio of ice. ρw is the density of water, ρw = 1035 kg/m3. g is the
gravitational acceleration.

The mean breaking resistance results of the numerical ice tank on the Wass ship bow
under different ice thickness are shown in Figure 13. It can be observed that the trend of
the breaking resistance is the same as that obtained with Lindqvist’s formula. Overall, the
numerical ice tank results are slightly lower than those calculated using the formula. The
results for the ice bath are slightly lower than those calculated by the formula but the errors
are within an acceptable limit. In summary, the numerical ice tank model presented in this
paper has certain advantages for the evaluation of virtual ice-breaking resistance tests.
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4.2. Repeatability of Broken Ice Tests of New Wass Bow

The repeatability of ice tank tests with broken ice field are important for assessing
the random uncertainty [40]. This is not often performed in physical ice tanks but can
be conveniently implemented in numerical ice tanks. The broken ice field in the ice tank
was created by cutting the ice sheet into square floes. The square floes with sides ranging
from 0.2 to 0.5 were chosen to create a broken ice field with 70% concentration in the
CSSRC-SIMB, as shown in Figure 14a. In the numerical ice tank, the broken ice fields were
created by randomly filling the square floes with the same size distribution and shape
in the CSSRC-SIMB, and the randomly filling method is similar to the method used in
Metrikin’s paper [41], as shown in Figure 14b. Each square floe is composed of 3D spherical
elements with the same physical and mechanical parameters as the level ice in Section 4.1.
By randomly changing the position and angle of each floe, in Figure 15, three numerical
broken ice fields are constructed under the same ice condition (floe size and concentration)
to carry out repeatability tests of new Wass bow in broken ice fields.
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The repeatability of the numerical ice tank test was assessed by performing three
numerical simulation runs with the same initial conditions, including ice thickness of
0.03 m, carriage speed of 0.188 m/s, floe size of 0.2 to 0.5, flexural strength of 20.0 kPa, and
ice concentration of 70%. The only difference between each simulation is the change in
position and orientation in each broken ice field. Figure 16 shows a simulation snapshot of
the interaction process between the bow and the floe at t = 20 s. During the towing process,
the ship’s bow inadvertently collided with some broken ice. The impact caused the floes
to be displaced and subsequently crushed, bent, and split. As a result, the floes exhibited
failure. Additionally, it was noticed that there was a clear channel at the stern of the bow.
Figure 17 also shows the shape of the ice channel that was created behind the ship bow in
three numerical broken ice fields.
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Comparisons of the ice force results of three numerical broken ice fields indicate that
the ice resistance of case 1 and case 3 increases obviously near the end point of model test,
as shown in Figure 18. In addition, in case 2, ice resistance is relatively stable throughout.
The event that affects the ice resistance is jamming of ice. Jamming behavior occurred
during the near end points of case 1 and case 3, as shown in Figure 17. It causes floes
to accumulate near the bow of the ship and, as the ship continues to move forward, ice
resistance becomes significantly greater.

In the initial phase, the ice force in the first 5 s of the bow is not taken into account, as
the bow gradually enters the region of broken ice, which will cause the ice load to gradually
increase and become unstable. Data from the next 30 s were selected to calculate the mean
value and standard deviation of the ice force in each operating condition. The standard
deviation is 1.39, 1.28, and 1.38 in case 1, case 2, and case 3, respectively. The average ice
force is 5.11 N, 4.79 N, and 5.14 N in case 1, case 2, and case 3, respectively. The above results
show that there are significant differences in the time history characteristics of ice force
under the same initial field conditions. The accumulation of floes causes an increase in the
ice load on the structure, but its generation is random. In case 2, there is no accumulation
when the ship moves forward, so there was no increase process. The mean value and
standard deviation of the force are smaller than in the other two cases. Uncontrolled
conditions of tests in broken ice (the initial field of floes) can cause significant differences to
the time history characteristics of the structure’s force. Therefore, the repeatability of the
numerical ice tank tests is important for evaluation of loads from broken ice, and numerical
ice tank models provide a solution to this problem.
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5. Conclusions

In this study, a numerical ice tank model corresponding to the CSSRC-SIMB is proposed
to investigate the interaction process between offshore structures and ice using the 3D spherical
DEM. A series of ice tank test cases including three structure types (vertical cylinder, inclined
plate, and new Wass bow) were analyzed in the numerical ice tank. Numerical reproduction
of the model tests in the numerical ice tank provides convenient information on offshore
structure–ice interaction processes, ice failure models, and time histories of ice force on the
structures. The results of this study support the following conclusions:

(1) The numerical ice tank model is a reasonable method to perform repetitions of the
model test in a physical ice tank/basin, which can reproduce ice failure performance,
including curding, bending, accumulation, and dynamic ice load on offshore structures.

(2) The visual and numerical comparison of the simulation results of 12 ice tank tests
demonstrates the rationality of the numerical ice tank. The mean load (mean peak
load) and the maximum load error of the numerical ice tanks are still within the
acceptable range.

(3) The numerical ice tank model was used to evaluate the breaking resistance of the
new Wass bow. In tests with various ice thicknesses, the numerical ice tank produced
results that were found to be consistent with those obtained from Lindqvist’s formula.

(4) The repeatability of Wass bow tests with broken ice fields is important for evaluating
the time history characteristics, and uncontrolled conditions of tests in broken ice (the
initial field of floes) can cause the ice load to gradually increase and become unstable.

In summary, the work in this paper presents a systematic introduction to the method,
validation, and application of the numerical ice tanks. In numerical ice tanks, simplified
hydrodynamic treatment of structures and model ice may reduce the accuracy of structural
ice load prediction, which is also a limitation of this paper. Computational hydrodynamics
and discrete-element coupling methods are the focus of our subsequent work on accurate
modeling of numerical ice tanks.
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Nomenclature

α waterline angle of ship
β drift angle of ship
ϕ stem angle of ship
υ Poisson’s ratio of ice
ψ normal angle
λ scale ratio
ρw density of water
ρice density of ice
σmax maximum normal stresses of the parallel-bonded disk
σn

b normal bonding strengths of the parallel-bond disk
σt tensile strength between adjacent elements
σice flexural strength
σs

b shear bonding strengths of the parallel-bond disk
µb friction coefficient between the bonding elements
τmax maximum shear stresses of the parallel-bonded disk
τs shear strength between adjacent elements
µw friction coefficient of ice-structure
∆x relative displacement between the sphere and contact point of the triangular panels
∆xn normal displacement between the sphere and contact point of the triangular panels
∆xs tangential displacement between the sphere and contact point of the triangular panels
∆L overlap between the sphere and the triangular panel
vship speed of ship
hice ice thickness
nw normal vector between the sphere and contact point of the triangular panels
vDEM speed of the sphere
vw speed of the triangular panels
t time
kn

w normal contact stiffness between the sphere and triangular panels
ks

w tangential contact stiffness between the sphere and triangular panels
g gravitational acceleration
A area of the parallel-bond disk
Bship front/back breadth of ship
Dship depth of ship
E Young’s module of ice
Fn normal forces of the parallel-bonded disk
Fs shear forces of the parallel-bonded disk
Ftotal total ice load on the structure
J polar moment of inertia of the parallel-bond disk
I moment of inertia of the parallel-bond disk
N number of elements
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Mn normal moment of the parallel-bonded disk
Ms normal moment of the parallel-bonded disk
R/RDEM radius of spherical element
Rice breaking resistance
Rc crushing resistance
Rb bending resistance
Lship length of ship
Tship draft of ship
tFn/tFi

n normal force between the sphere and contact point of the triangular panels
tFs/tFi

s tangential force between the sphere and contact point of the triangular panels
CFD computational fluid dynamics
CSSRC-SIMB small ice model basin of China Ship Scientific Research Center
DEM discrete element method
FEM finite element method
GPU graphics processing units
HCP Hexagonal Close Packing
HSVA Hamburg Ship Model Basin
ITTC the International Towing Tank Conference
MPS moving particle semi-implicit method
PD peridynamics
SPH smoothed-particle hydrodynamics method
XFEM extended finite element method
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