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Abstract: The hydrographic survey is an important technology for improving maritime safety,
especially in coastal waters. The accuracy of nautical charts and navigation publications is known
to be directly related to hydrographic survey data. Therefore, this paper aims to investigate the
status of a hydrographic survey by the International Hydrographic Organization (IHO) regions
and identify the potentially risky IHO region for navigation safety. The fundamental step was to
obtain the qualitative and quantitative data of the survey. Then, the presented analysis includes
investigating the possible relationships between survey status and geographical characteristics by
IHO regions. Considering that coastline length and sea surface data have not been calculated by
regions, a quantum geographic information system was used to extract data. Using the presented
methodology, the case study analyzes the data of stranded ships from 2010 to 2021 by IHO regions,
estimates coastline length and sea surface by regions, and establishes the relationships between the
coastline length, sea surface, and stranded ships. The results point out the need for improvement in
the state of the hydrographic survey in almost all IHO regions and show a correlation between the
sea surface and an adequate survey, as well as the coastline length and stranded ships. Hence, this
research indicates the possibility of rationalizing the distribution of the IHO region concerning the
sea surface and coastline length.

Keywords: hydrographic survey; International Hydrographic Organization; correlation matrix;
navigation safety; risk region; QGIS; coastline length; sea surface; stranded ships

1. Introduction

A hydrographic survey is a procedure for surveying marine waters and underwater
topography to ensure the safety of navigation [1]. It is carried out according to the standards
and specifications defined by the International Hydrographic Organization (IHO) [2,3].
The IHO divided the world into 15 regions and encouraged the establishment of Regional
Hydrographic Commissions (RHCs) to coordinate hydrographic activity and cooperation
at the regional level [4]. The RHCs are made up of IHO member states, together with
other regional states that wish to participate. Therefore, the task of the RHCs task is to
complement the work of the IHO at the regional level. It is well-known that the importance
of hydrographic surveys is related to obtaining accurate data. Also, it is to make nautical
charts and navigation publications with particular emphasis on the possibilities that may
affect the safety of navigation [5,6]. Navigation charts are essential tools for marine naviga-
tion, especially when it is known that more than 80% of international world trade occurs at
sea [7,8].

Despite all the efforts of the IHO to improve the state of implementation of hydro-
graphic surveys in the world, the problem of accuracy and coverage of the survey still
exists. In the last few decades, the need for adequate coverage of hydrographic surveys
and the production of nautical charts and navigation publications has increased [9]. Some

J. Mar. Sci. Eng. 2023, 11, 1498. https://doi.org/10.3390/jmse11081498 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11081498
https://doi.org/10.3390/jmse11081498
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-1420-3197
https://orcid.org/0000-0002-5825-8026
https://doi.org/10.3390/jmse11081498
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11081498?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1498 2 of 17

of the critical factors that influenced this were the increasing number of very large crude
carriers with extremely large drafts, the need to protect the marine environment, changes
in maritime trade patterns, the increasing importance of seabed resources, etc.

A large percentage of the world’s seas, straits, and ports do not have adequate nautical
chart coverage. Many nautical charts that were accurate and reliable in previous years do
not represent today’s real situation. Most charts contain a mixture of surveys of differing
quality or rely on data from hydrographic survey methods that were limited. Although
current technical and technological solutions for implementing a hydrographic survey
demonstrate high development, they are incomplete and inaccurate [3,10–12].

A lack of relevant hydrographic survey information can lead to maritime accidents
and hinder maritime trade development [13]. Maritime causalities often result from several
factors, and it is very difficult to conclude whether this situation is caused solely by inade-
quate hydrographic data. It can be concluded that incomplete and inaccurate hydrographic
data are one of the causes of maritime accidents that can result in shipwrecks.

In the present study, the main contribution is to identify the potential risk regions
for navigation and point out the possibility of rationalizing the distribution of the IHO
region concerning the sea surface and coastline length. Therefore, the aim of this study is to
investigate the quantitative and quality status of hydrographic surveys in IHO regions, to
analyze the data of stranded ships from 2010 to 2021 by IHO regions, to estimate coastline
length and sea surface by regions, and to establish relationships between the coastline
length, sea surface, and stranded ships.

The rest of the paper is arranged in the following manner. Section 2 presents a literature
review. Section 3 describes and discusses the methodology utilized in this study. The case
study results are presented and discussed in Section 4. Section 5 presents the limitations
of the study. Finally, Section 6 concludes the study and provides recommendations for
future studies.

2. Literature Review

Based on previous research, the authors’ points of interest can generally be divided
into traditional and modern or remote hydrographic survey techniques. The importance
of accurate bathymetric and hydrographic data is recognized. The authors of [14–19] pro-
posed and analyzed methods and algorithms that will make it easier to recognize the data
obtained by using multi-beam echosounder datasets. Onwards, new correction methods
were researched and proposed to obtain data using air and satellite platforms [20–25].
Additionally, the impact of new technologies and computational techniques, such as deep
learning and artificial intelligence, is investigated [26–33].

Within the hydrographic and bathymetric survey field, some studies were based on the
methodology of survey planning [10,34–36]. They emphasized the importance of defining
priorities that would ultimately reduce risks and increase hydrographic surveying [35,36].
The problem with some areas, such as the Arctic, Antarctic, and some tropical areas, is due
to the fact that they are under pressure to increase vessel transits, as well as tourism and
exploration of natural resources, as recognized in [37]. They are relatively unknown in
terms of hydrographic surveys and nautical chart content.

The importance of safe maritime transport, quantifying the risk level of the operating
world fleet, and developing a risk management process has become the focus of some
authors. Statistical analysis regarding the main causes for major types of collision, contact,
stranding, fire, explosion, and failure of machinery equipment is presented in [38]. A
chronological overview of the contribution of ship stranding frequency is presented in [39].
The stranding, causes, and risk assessments are investigated and discussed in [40,41]. The
authors of [42–44] presented a statistical analysis of ship accidents and the relationship
between accident rates and ship age. Onwards, risk estimation based on accident analysis
is performed by [45,46]. Most of the literature investigates the main factors influencing
maritime accidents, including labor conditions, seafarer competence, situation awareness,
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and so on [47–51]. Extensive and detailed research on the risk indicators in maritime accidents
and how they are considered in reporting maritime accidents are presented in [52].

To improve maritime safety, the state of hydrographic surveying, and nautical chart
accuracy, the IHO divided the world into regions. It has to be pointed out that, from the
available literature, the geographical disparity between IHO regions has not been explored
so far. Some authors recognized the importance of the coastline for various applications,
such as coastal zone management, navigation safety, etc. [53–56]. Geographical information
system (GIS) technology is used to extract coastlines and analyze the changes. A dedi-
cated geographic information system (GIS) for satellite-based bathymetry estimation is
represented in [57].

Based on the available literature and from everything presented, it is reasonable to
investigate the proposed research and aims.

3. Methodology

Considering the aim of the study and that the riskiness of a particular region for
navigation is closely related to the state of the hydrographic survey, we propose the
methodological framework as shown in Figure 1. Also, the potential problem of the survey
state in some regions can be influenced by the dimensions of important geographical
characteristics, for instance, coastline length and sea surface.
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Figure 1 shows that the presented methodology consists of five stages, which are
explained in detail in the next sections.
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3.1. Stage 1: Analysis of the Current State of the Hydrographic Survey by IHO Regions

This stage consists of obtaining information on the current status of the hydrographic
survey. The main source of hydrographic survey data is the IHO Publication C-55 [58]. The
publication’s content is maintained in a database on the IHO website and includes data for
90% of the world’s coastal states. It should be noted that each member state entered the
data into its designated area. Furthermore, to obtain the status of the hydrographic survey
by the IHO regions, the following procedure is proposed, as shown in Figure 2.
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As shown in Figure 2, the represented procedure consists of three steps. The first step,
data collection, includes loading the data from IHO Publication C-55 into the database. The
second step, data analysis, is divided into three parts: grouping of data by the IHO region,
grouping of data by the state of the hydrographic survey, and calculating the arithmetic
mean from the data, considering every IHO region, using Equation (1) [59]:

x “
x1 ` x2 ` . . .` xi

N
“

1
N

n
ÿ

i“1

xi (1)

where xi is the single value of the variable and N is the total number of data.
Finally, the third step is reserved for the results and interpretation. The final step

includes data visualization and knowledge extraction.

3.2. Stage 2: Determining Coastline Length and Sea Surface by IHO Regions

The coastline length and sea surface are among the country’s most important geo-
graphical characteristics [60]. To the best of our knowledge, these mentioned characteristics
have never been calculated for the IHO regions. These calculations were performed in
this study using the quantum geographic information system QGIS software. QGIS is an
open-source geographic information system licensed under the GNU general public license.



J. Mar. Sci. Eng. 2023, 11, 1498 5 of 17

QGIS allows the capture, storage, query, analysis, and display of geospatial data [61,62].
The general framework for QGIS is shown in Figure 3.
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QGIS has a built-in function and algorithms to calculate various properties based
on the feature’s geometry, such as line length and area. The coastline length and sea
surface of each IHO region were calculated via automation, which was designed in a QGIS
environment with an integrated approach involving several procedures. The methodology
details are represented in the process flowchart in Figure 4.
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IHO regional boundaries were extracted from existing data from the “IHO web cata-
logue” [63] and georeferenced with data from “IHO world seas” data [64]. Georeferencing
requires using QGIS software to assign new coordinates according to the shapefile by
applying a geometric transformation. The affine transformation function is used and can
be represented as expression (2) [65]:

x1 “ Ax` By` C
y1 “ Dx` Ey` F

(2)
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where x and y are the coordinates of the input layer; x1 and y1 are the transformed coordi-
nates; A, B, C, D, E, and F are determined by comparing the locations of the source and
destination control points.

The IHO coastline was extracted from the “IHO world seas” data. Since polygons
represent the seas, it was necessary to convert them into lines to get the shape line of the
world’s coastline. The boundaries of the IHO regions and IHO coastlines were made and
extracted in the new shapefiles to the reference input data. The new shapefiles are created
for each feature: the points, polylines, and polygons, and they need to be georeferenced to
the reference data.

The coastline length of each IHO region was obtained using a vector geometry tool to
reference the input data. Every point Ppx, yq in R2 can be represented by its point vector, as
shown in expression (3) [66,67]:

á

P “
ˆ

x
y

˙

(3)

The length of a vector in R2 is defined using (4):

|
á

P | “
b

x2 ` y2 (4)

Polylines within the boundaries of IHO regions that correspond to the region’s coast-
line have been calculated for length using the QGIS vector geometry tool. From the gained
boundaries, polygons of the IHO regions were made. The surfaces of these polygons that
correspond to the sea surface of a given region were calculated using vector geometry
algorithms embedded in QGIS tools.

3.3. Stage 3: Calculating the Correlation between Hydrographic Survey Status and Geographical
Characteristics between IHO Regions

Various techniques can be used to analyze the correlation relationships in the dataset.
Furthermore, the Pearson correlation has been adopted to identify the impact of coastline
length and sea surface on the status and quality of the hydrographic survey. This is a
statistical analysis of the colinear relationships between variables and represents the most
common method for numerical variables [68]. Pearson’s correlation coefficient, considering
two variables, can be calculated using Equation (5) [69]:

CA,B “
CovariancepA, Bq

σAσB
(5)

where CA,B is the correlation coefficient, CovariancepA, Bq is the covariance, and σA and σB
are the standard deviations of variables A and B.

The correlation coefficient for a dataset of two sets, ta1, a2, . . . , anu and tb1, b2, . . . , bnu,
can be calculated using Equation (6) [69,70]:

C “

řn
i“1 pai ´ aq

´

bi ´ b
¯

b

řn
i“1pai ´ aq2

c

řn
i“1

´

bi ´ b
¯2

(6)

where n is the sample size, ai and bi are the ith data values, and a, b are the mean values.
It is well known that the Pearson correlation coefficient value changes between ´1

and 1 [71–73]. The value of the correlation coefficient from 0 to 1 is positive, indicating the
proportional growth of values in both datasets. A correlation coefficient value from 0 to ´1
indicates a negative correlation, i.e., a rise in the value of one variable that is proportional
to a decline in the value of the other. The strength of the association for different ranges of
the coefficient is shown in Table 1 [73].
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Table 1. Strength of association for different ranges of the coefficient.

Range Strength of Association

0 No association
0 to ˘0.25 Negligible association

˘0.25 to ˘0.50 Weak association
˘0.50 to ˘0.75 Moderate association

˘0.75 to ˘1 Very strong association
˘1 Perfect association

3.4. Stage 4: Analysis of Stranded Ships by IHO Regions

Under the Safety of Life at Sea (SOLAS) regulation and marine pollution (MARPOL)
international convention, the IMO requires respective nation-states to submit accident
casualty reports to their global integrated shipping information system (GISIS) [52]. In this
stage, publicly available stranded ship reports submitted to the IMO from 2010 to 2021 were
used as the data source. The obtained data are classified according to the IHO regions with
regard to the known position of the stranding, which has never been performed before.

In order to examine the relationships between coastline length and sea surface with
respect to the number of stranded ships by the IHO regions, the correlation is calculated.

3.5. Stage 5: Results and Conclusions

This stage is the final part of the proposed methodology. In addition, the results are
obtained and analyzed. The conclusions are presented and explained.

4. Results and Discussion

The case study of this paper is composed of two main parts. The first part includes
the hydrographic survey results, coastline length, and sea surface of the IHO regions. The
second relates to the data of stranded ships from 2010 to 2021 by the IHO regions and
establishes relationships between the coastline length, sea surface, and stranded ships.

4.1. The Results of the Hydrographic Survey, Coastline Length, and Sea Surface by IHO Regions

The first study stage involved obtaining information on the current status of the
hydrographic survey for depths up to 200 m. This paper did not investigate the depths over
200 m because it is justifiably considered that their influence on the safety of navigation
is far less significant. Each member state entered the data in its designated area, which
includes the percentages of adequate, resurvey, and unsurveyed coverage. The status of
implementing an adequate hydrographic survey at depths up to 200 m in world seas is
calculated and shown in Figure 5.

All adequate hydrographic surveys were divided into four categories for better visi-
bility to easier meet the goals of this study. For all of these four categories, we calculated
the percentage of the total number of seas listed in [57] that performed an adequate hy-
drographic survey. The obtained data indicate just about 10% of the total seas performed
an adequate hydrographic survey within the scope of 90–100%. Less than 20% of the seas
have an adequate hydrographic survey in the scope of more than 50%. About 30% of the
total number has conducted an adequate survey in the 11–49% range. Finally, almost 40%
of the seas have more than 90% of their territory unsurveyed. The results of the scope of
implementation of an adequate hydrographic survey worldwide point to the fact that the
state of the survey is generally unsatisfactory.
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Given that the International Hydrographic Organization divides the world into 15 re-
gions (letters from A to N), to obtain a more precise insight into the coverage of hydro-
graphic surveys worldwide, the data regarding the IHO regions have been obtained and
extracted, Figure 6.
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Figure 6. The state of the hydrographic survey by IHO regions at depths up to 200 m.

According to Figure 6, the status of the hydrographic survey is divided into three
categories: an adequate survey area (blue color), an area that needs to be resurveyed (orange
color), and an area that has never been surveyed (grey color). An adequate hydrographic
survey exceeding 50% of the total water is evident only in regions C2 (Southeast Pacific),
D (North Sea), and E (Baltic Sea). The regions A (US/Canada), L (Southwest Pacific), and
M have less than 20% of adequately surveyed sea areas. The region where it is necessary to
repeat the hydrographic survey, in more than 40% of the total water, is the hydrographic
region C1 (Southwest Atlantic). These regions require a resurvey due to outdated data,
or the technology is not compliant with IHO standards. In regions A, G (East Atlantic),
H (South Africa and Islands), J (North Indian Ocean), L, M, and N, more than 40% of the
water surface at depths of up to 200 m has not been surveyed. By observing the ratio of the
unsurveyed area, it can be concluded that the worst situation is in region L, except in the
pole regions (regions M and N).

It is important to note that the areas that have never been surveyed and those that
require a resurvey have unreliable data. Such data directly affect the reliability of nautical
charts and navigation publications. Therefore, these IHO regions are potentially dangerous
because they can threaten navigation safety.
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After the analysis of the current state of the hydrographic survey by IHO regions,
we investigated the important geographical characteristics of the regions. Since previous
research paid no attention to calculating the coastline length and the sea surface by regions,
such analysis has become a subject of interest in this paper. The final appearance of the
IHO regions made in QGIS, which can be further manipulated to calculate geographical
parameters, is shown in Figure 7.
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Based on the model in Figure 7, the coastline length and sea surface calculations for
the IHO regions have been performed using QGIS algorithms. It is possible to notice the
ratio of reliable and unreliable sea areas. The IHO regions with more than 50% of total
water not adequately surveyed are A, B (Middle America and Caribbean), C1 (Southwest
Atlantic), F (The Mediterranean and the Black Sea), G, H, I (Persian Gulf), J, L, M, and N
regions. The mentioned regions represent more than 70% of the total IHO regions. Using
this approach, it is possible to assume potentially risky regions. The most challenging
situation is in the hydrographic regions A, G, H, L, M, and N, where more than 70% of the
total water needs to be adequately surveyed.

The data relating to the highest values of individual characteristics depending on the
IHO regions are presented in Figure 8.
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According to Figure 8a, it can be noticed that more than 60% of the world’s sea
coastline belongs to four regions, N, A, K, and L. In terms of the sea surface area (Figure 8b),
almost 60% belongs to four regions, L, A, H, and K, out of which region L encompasses
22% of the total surface area.

The presented analysis also includes a deeper investigation of a possible relationship
between the coastline length, sea surface, and the status of a hydrographic survey by
IHO regions. The strength of the relationship between the two variables is determined by
performing a Pearson correlation analysis. The six attributes tested for correlation, Table 2,
and their graphical reviews are presented in Figure 9.

Table 2. Correlation matrix between attributes.

Attributes Sea Surface Coastline
Length

Adequate
Survey

Need to be
Resurveyed Unsurvey Inaccurate

Data

Sea Surface 1 0.146 ´0.516 ´0.353 0.631 0.408
Coastline Length 1 ´0.162 ´0.299 0.351 0.171
Adequate Survey 1 ´0.291 ´0.865 ´0.983

Need to be resurveyed 1 ´0.198 0.358
Unsurvey 1 0.845

Inaccurate Data 1
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Table 2 shows the selected attributes, including geographical characteristics by the
IHO regions and attributes that determine the status of a hydrographic survey by regions.
Geographical characteristic attributes refer to the sea surface and coastline length. The other
attributes include adequate survey, need to be resurveyed, unsurveyed, and inaccurate data.

Table 3. Sea surface, coast length for each IHO region, and maritime causalities from 2010 to 2021.

Regions Sea Surface
(km2)

Coast Length
(NM)

Number of Stranded Ship’s in IHO Regions through the Years

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

A 51,227,091.1 179,875 6 4 8 4 3 3 4 7 0 1 0 0 40
B 17,593,214 71,012 5 2 9 0 5 5 2 8 4 3 1 0 44

C1 18,347,282.6 33,285 2 0 1 0 2 1 0 0 0 0 1 1 8
C2 29,173,572.1 49,303 11 0 2 2 2 2 0 1 1 4 0 0 25
D 5,394,984.57 56,478 5 12 8 15 5 6 13 5 4 6 4 0 83
E 410,040.85 34,170 6 1 2 5 7 3 1 5 2 1 2 2 37
F 2,986,455.38 33,696 15 7 19 12 15 10 13 9 5 8 5 4 122
G 14,776,171.6 30,830 8 2 4 10 2 1 3 5 2 3 1 0 41
H 43,040,129.9 24,052 0 3 2 4 0 0 3 3 1 0 1 0 17
I 1,050,337.55 11,734 1 1 1 2 1 0 1 4 1 2 0 1 15
J 22,245,978.8 46,379 6 6 1 2 1 1 4 2 0 0 0 0 23
K 40,773,776.2 179,220 11 13 17 14 4 2 15 21 4 6 2 2 111
L 79,721,336.4 89,256 4 2 3 0 0 1 1 2 4 0 1 1 19
M 2,163,382,645 29,519 0 0 0 0 0 0 0 0 0 0 1 0 1
N 1,246,495,013 202,414 1 0 3 0 1 0 0 0 1 1 0 0 7

Total 3,736,618,029 1,071,223 81 53 80 70 48 35 60 72 29 35 19 11 593

A higher number of coefficients indicates that the two variables have a strong cor-
relation, and a lower value indicates otherwise [69]. Each factor correlates 1 with itself,
resulting in a total of 21 possible relationships between factors. Based on Table 2, and re-
garding the rules from Table 1, the inaccurate data and unsurveyed were strongly positively
correlated (C = 0.845). Furthermore, there are two strongly negative correlations: one is
between the adequate survey and the unsurveyed (C = ´0.865), and the other is between
the adequate survey and inaccurate data (C = ´0.983). There is a moderately negative
association between the sea surface and an adequate survey (C = ´0.516). Also, a moderate
positive association exists between the sea surface and the unsurveyed (C = 0.631). The
correlation between attribute points and coastline length has no significant effect on the
status of the hydrographic survey by the IHO regions. The obtained correlation coefficients
show that variables with adequate survey, inaccurate data, and unsurveyed variables have
very strong relationships. Contrarily, the variable coastline length has weak or non-existent
correlations with all other variables, which indicates that the variable is an appropriate
choice to investigate the other variables. The sea surface variable has weak to moderate
correlations with the other variables and an almost non-existent correlation with the coast-
line surface variable (C = 0.146). Due to weak or moderate dependence relationships with
other variables, variables such as sea surface and coastline length with the stranded ships
variable are chosen as variables to identify the potential risk region for navigation and
point out the possibility of rationalizing the distribution of the IHO region concerning the
sea surface and coastline length.

4.2. Stranded Ships from 2010–2021 by IHO Regions (Case Study Results)

This section presents the proposed methodology using 15 IHO regions with coastlines
and sea surfaces. We show the relationships between the coastline length, sea surface, and
stranded ships. Table 3 shows the variables from all 15 IHO regions.

In Table 3, three variables are presented for all 15 IHO regions (A–N). The first variable,
the sea surface, represents the estimated sea surface area for each IHO region. It is calculated
using the methodology described in Section 3.2 and represents the contribution of the
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proposed paper. The second variable, the coastline length, represents the length that
bounds the sea surface for each IHO region. Also, it represents the proposed paper’s
contribution and is estimated using the methodology described in Section 3.2. It should be
noted that these two variables represent the geographical characteristics of the IHO regions.
They are chosen because both variables have non-existent or weak correlations with other
variables (Table 2). Finally, the third variable, the stranded ships, represents the number of
stranded ships in each IHO region. They were collected between 2010 and 2021. Also, the
total number of stranded ships (denoted as Total) is also included in the study as a variable.
From the table, it can be observed that the total number of stranded ships from 2010 to 2021
is 593. Further, the number of stranded ships has declined over the years. Also, regions
F and K, which cover the Mediterranean and Pacific regions, respectively, had the most
stranded ships in the last 12 years: 122 and 111, respectively. Regions M and N, which
cover the Artic and Antarctica regions, respectively, had the least number of stranded ships
in the last 12 years: 1 and 7. The sea surface variables and coastline length are shown in
Figure 8, which shows the percentage coverage for each IHO region.

It can be observed that regions F and K occupy 0.08% and 1.09% of the world’s sea
surface, and 3.15% and 16.73% of the coastline length, respectively. Similarly, regions M
and N occupy 57.90% and 33.60% of the world’s sea surface, and 2.76% and 18.90% of the
coastline length, respectively.

To establish a relationship between coast length, sea surface, and maritime causalities
concerning IHO regions and to prove the proposed concept, data obtained from a number
of stranded ships are processed in the following procedure. Moving average filtering, with
k = 3, is performed to eliminate outliers in the number of stranded ships from 2010 to 2021.
Such a procedure is shown in Figure 9.

A weighting method is performed since each IHO region occupies a different sea
surface and has a different coastline length, i.e., when performing the correlation analysis,
it is necessary to consider such variations. Weights are obtained by transforming the
percentage of variables sea surface and coastline length in decimal numbers and multiplying
with the variable number of stranded ships, respectively. This provides a weighted number
of stranded ships per coastline length and a weighted number of stranded ships per
sea surface.

A Smirnov–Kormogolov test was performed on the sea surface, the coastline length,
and the number of stranded ship variables to check if the data were normally distributed.
The test showed that the variables did not have a normal distribution.

Next, correlation coefficients (5) and (6) were analyzed for the following variables:
the number of stranded ships, sea surface, and coastline length, and the results are shown
in Table 4.

Table 4. Establishing the relationships between the proposed variables.

The Number of Stranded Ships

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

Coastline
Length

C
[%] 61.97 67.44 62.29 65.15 56.29 58.09 58.37 58.15 60.12 52.27 47.73 32.02 60.99

p-value 0.014 0.006 0.013 0.009 0.029 0.023 0.022 0.023 0.018 0.046 0.072 0.245 0.016

Sea
Surface

C
[%] 18.24 35.75 32.53 38.00 23.29 23.18 ´22.32 10.68 31.89 92.26 98.83 84.85 54.94

p-value 0.515 0.191 0.237 0.162 0.404 0.406 0.424 0.705 0.247 0.000 0.000 0.000 0.034

From Table 4., it can be observed that the correlation coefficients between variables,
the number of stranded ships, and coastline length are between 67.44% (p < 0.01) and
32.02% (p = 0.244), with an average of 54.77%, which indicates moderate relationships. Also,
correlations between the sea surface and the number of stranded ships for 12 years range
between 18.24% (p = 0.515) and 98.83% (p < 0.01), with an average of 32.21%, which indicates
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weak relationships. Furthermore, if two correlations are compared and investigated, the
results would be as shown in Figure 10.
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Figure 10 shows that the coastline length variable has a higher average correlation
coefficient and lower standard deviation than the sea surface variable, which shows that
the number of stranded ships has a weaker dependence on the sea surface variable. If we
perform a two-sided Wilcoxon rank sum test since the Smirnov–Kormogolov test rejected
the null hypothesis that two samples have a normal distribution, we would obtain p = 0.078
(z = 1.7609). This shows that there is no statistical significance between the two analyses.
Considering that ship strandings are related to shallow waters and coastlines, the expected
results are a weak correlation between stranded ships and the sea surface.

5. Limitations of the Study

The content of IHO publication C-55, which is used as the main source of hydrographic
survey data, includes 90% of the data. The most significant gaps, where data are not
available for analysis, are found in Central America, the Mediterranean, the Black Sea,
some parts of the Indian Ocean and neighboring seas, and the South Chines Sea and
neighboring straits and seas [14]. The information provided in C-55 is not entirely accurate
since it is left to each state to determine how to use the data to estimate the percentages of
adequate survey coverage. Therefore, it is justifiably considered that the state of coverage
by adequate measurement covers a smaller area than that shown in the study’s analysis.
For the reasons mentioned above, a global picture of the implementation of hydrographic
surveys by the IHO regions is provided in this paper.

The data obtained using QGIS related to the coastline length and sea surface by the
IHO regions are not entirely accurate. The task of shoreline extraction and the sea surface is
very difficult because the coastal area is highly dynamic and environmentally sensitive to
many physical processes. The exact extraction requires knowledge of using algorithms and
methods. Nevertheless, we acknowledge the importance of obtaining the baseline coastline
length and sea surface data. The mentioned data are indicative of the differences between
the IHO regions and the comparison analysis performed in this study.
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6. Conclusions

The International Hydrographic Organization has adopted standards and recommen-
dations for conducting hydrographic surveys to achieve the maximum standardization of
nautical charts, navigation publications, services, and hydrographic surveying practices.
Despite many efforts, the state of the hydrographic surveys remains unsatisfactory. The
proposed research has exposed, confirmed, and represented this fact. An analysis of the
hydrographic survey status in the world seas was conducted using the data acquired from
the IHO publication C-55 and standard statistical metrics. Also, at depths of up to 200 m,
approximately 10% of the total seas listed in the C-55 performed an adequate hydrographic
survey in the 90–100% range.

Furthermore, after the analysis of the global state of the hydrographic survey, data
on the status of IHO regions at depths of up to 200 m are also obtained and analyzed. It
should be noted that pole regions M, N, and L have the worst situation with unsurveyed
areas. The mentioned regions have more than 50% of the total sea area that has never been
measured. In addition, areas that have never been surveyed or need to be resurveyed have
unreliable data on nautical charts.

The proposed research results have brought to our attention the need to significantly
improve the state of the hydrographic survey in almost all IHO regions. The obtained
data precisely indicate the persistence of unreliable data on the nautical charts. Irrelevant
hydrographic survey information can be closely related to navigation safety. Therefore, the
proposed study shows the potentially risky IHO regions for navigational safety.

The results of this study numerically support the observed disparities between regions.
It can be observed that more than 40% of the world’s sea coastline and sea surface belong
to only three regions: A, K, and L. Comparing the obtained numerical results from QGIS
and the results of the status of the hydrographic survey by IHO regions, it is possible to
conclude their somewhat mutual correlations. The correlation among attributes indicates
that the coastline length attribute has no significant effect on the status of a hydrographic
survey by the IHO regions. It was established that a moderately negative association was
there between the sea surface and adequate survey. Also, a moderate positive association
was found between the sea surface and the unsurveyed.

The proposed case study identified the relationships between the coastline length, sea
surface, and stranded ships. It is evident that regions F and K, which cover the Mediter-
ranean and Pacific regions, had the most stranded ships in the last 12 years. The average
correlation coefficient between the number of stranded ships and coastline length variables
is 54.77%, indicating moderate relationships. Also, the average correlation coefficient
between the sea surface and the number of stranded ships is 32.21%, indicating weak
relationships. Although the number of stranded ships has a weak dependence on the sea
surface variable, there is a moderate association between the sea surface and adequate
survey, as well as the unsurveyed variable. Such a result indicates the importance of the
sea surface in the context of the status of the hydrographic survey. The coastline has no
significant effect on the status of the hydrographic survey, but a connection with the number
of stranded ships has been proven.

In this paper, the assumption that a more rational distribution of IHO regions con-
cerning the sea surface and coastline length is needed and can potentially improve the
hydrographic survey by regions is mathematically supported. Considering that incom-
plete and inaccurate hydrographic data are one of the causes of maritime accidents, the
proposed results of this case study can be a building block for further study to improve
navigation safety.

The study’s results provide perspectives for further research disparity in IHO regions,
such as the volume of maritime traffic, development of technical and technological solutions,
and available financial budget.
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