
Citation: Pernas-Álvarez, J.;

Crespo-Pereira, D. A Constrained

Programming Model for the

Optimization of Industrial-Scale

Scheduling Problems in the

Shipbuilding Industry. J. Mar. Sci.

Eng. 2023, 11, 1517. https://doi.org/

10.3390/jmse11081517

Academic Editors: Songhan Zhang,

Guangdong Zhou and Jian Li

Received: 27 June 2023

Revised: 20 July 2023

Accepted: 20 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

A Constrained Programming Model for the Optimization
of Industrial-Scale Scheduling Problems in the
Shipbuilding Industry
Javier Pernas-Álvarez * and Diego Crespo-Pereira

Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Grupo Integrado de Ingeniería, Campus de
Esteiro s/n, 15403 Ferrol, Spain; diego.crespo@udc.es
* Correspondence: javier.pernas2@udc.es

Abstract: This work presents an innovative constrained programming model for solving a flexible
job-shop scheduling problem with assemblies and limited buffer capacity based on a real case from
the shipbuilding industry. Unlike the existing literature, this problem incorporates the manufacturing
and assembly of blocks from subblocks to the final ship erection, while considering the limited buffer
capacity due to the size of blocks, which has been often overlooked. The objectives considered
are the minimization of the makespan and tardiness based on ship erection due dates. To demon-
strate the model’s effectiveness, it is initially validated using various scheduling problems from the
literature. Then, the model is applied to progressively challenging instances of the shipbuilding
problem presented in this work. Finally, the optimization results are validated and analyzed using
a comprehensive simulation model. Overall, this work contributes to reducing the gap between
academia and industry by providing evidence of the convenience of the application of constrained
programming models combined with simulation models on industrial-size scheduling problems
within reasonable computational time. Moreover, the paper emphasizes originality by addressing
unexplored aspects of shipbuilding scheduling problems and highlights potential future research,
providing a robust foundation for further advancements in the field.

Keywords: shipbuilding; MILP; CP; scheduling; optimization

1. Introduction

Shipbuilding is an extraordinarily complex and Engineering-to-Order industry where
each order (ship) is managed as a customized project and involves an endless amount of
resources and technologies [1–5]. Thus, each project entails a high degree of uncertainty
and associated risk, leading to the need for methods and systems to plan, monitor, and
control the production systems involved. Furthermore, the current global political context
and derived conflicts have prompted a race toward digitalization and efficiency within the
industry. Manufacturers are striving to reduce costs and lead times to become more com-
petitive while keeping quality standards. In doing so, they have been adopting techniques
and production methodologies that come traditionally from other industries such as Lean
Manufacturing and Product Lifecycle Management (PLCM) [3,4,6].

Since ship manufacturing is large-scale and greatly non-standardized [7], the produc-
tion process of a ship involves thousands of operations that are interrelated and many times
performed in parallel, thus depending on each other. This is especially noticeable in the
block assembly process, the problem that this paper addresses, which requires a high degree
of coordination between resources to meet deadlines and avoid cost overrunning [7,8].

Currently, the construction of ships is mostly based on the assembly of blocks made
in turn of subblocks which are assembled in cells [7–9]. Conversely, the scheduling of
subblocks determines the availability of blocks, which in turn constrains the assembly
strategy of the ship at the dock. On top of this, the characteristics and size of subblocks

J. Mar. Sci. Eng. 2023, 11, 1517. https://doi.org/10.3390/jmse11081517 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11081517
https://doi.org/10.3390/jmse11081517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-9185-3583
https://doi.org/10.3390/jmse11081517
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11081517?type=check_update&version=1

J. Mar. Sci. Eng. 2023, 11, 1517 2 of 23

and blocks make intermediate storage a critical element in operation scheduling. The
timing of each operation must also be carefully considered to avoid costs associated with
either the unavailability of sufficient storage space or the need to rent additional storage
capacity. Thus, the construction sequence adopted in these stages not only influences the
total completion time but also dictates the storage requirements, ultimately impacting the
overall efficiency of the ship construction process. Based on this, following the notation
of [10], a flexible job-shop scheduling problem with assembly operations and limited buffer
capacity (FJSP-A-LBC) can be defined. Different computerized optimization techniques
can be used to address this problem.

Refs. [1,10] point out that so far, few works have addressed the FJSP in shipbuilding.
Mixed-Integer Linear Programming (MILP) as described in [5,7,10] and discrete-event
simulation models like the ones used in [8,10–13] are the main approaches used in this area.
Beyond shipbuilding, MILP is by far the most common approach to address the FJSP [14],
although it has been frequently combined with other techniques. MILP-based hybrid ap-
proaches include heuristics [15–17], metaheuristics [15,18], and constrained programming
(CP) [14]. Techniques of decomposition–aggregation and improvement algorithms like
in [10] must be mentioned too. These alternatives to exact optimization methods provide
reasonable computational times for large-sized cases at the expense of optimal solutions.

Since MILP models usually entail long computational times [18] in medium- and large-
sized problems, another optimization approach that has recently been emerging as a serious
alternative for scheduling problems is CP [14]. CP is an optimization approach to solving
constraint satisfaction problems (CSP) [19,20] that has not yet received much attention from
practitioners. This is due to several reasons such as semantics (CP is based on restrictions
that are not as familiar as pure mathematical formulations), a certain skepticism of whether
CP optimizers outperform other approaches on scheduling problems [19,21], and even
commercial pressures [22]. The first efforts to incorporate CP into scheduling problems
are based on Logic-based Benders Decomposition (LBBD) [19,22–24], a hybrid approach
that combines CP and MILP. However, within CP, Constrained Integer Programming
(CIP) has arisen as a promising optimization approach that seems to outperform both
MILP and hybrid approaches like LBBD. This is stated in [22], where CIP models are
able to solve more problems to optimality than Mixed Integer Programming (MIP) and
LBBD models. In [24], the CP Optimizer (CPO), IBM’s proprietary CP solver, is upgraded
with interval and sequence variables [25], thus substantially reducing the number of
variables. CPO outperforms the rest of the approaches in the instances examined in [24].
Ref. [25] recommends using CPO in industrial-size scheduling applications. For readers
who are unfamiliar with CP, Refs. [20,26] provide a good overview of the history of CP and
related software.

Ref. [26] also provides an explanation of CPO Automatic Search, CP’s optimization
algorithm. Different techniques are combined like constraint propagation [27], CP search
tree, Large Neighborhood Search (LNS) [28], linear relaxation, failure-directed search
(FDS) [29], and iterative diving along with parallelization. The criteria for the use of each
of them depends on the size of the problem and the evolution of the optimization. For
instance, if the problem is small enough or the solution is not being improved, FDS performs
a complete search. Likewise, LNS performs a meta-heuristic search in medium- to large-
sized cases. CP resorts to aggressive dives in the CP search tree from the iterative diving
algorithm when the problem is too large for LNS. Ref. [20] provides a recent comparison
between CPO and Google’s OR-Tools (ORT) for the job-shop scheduling problem (JSP),
concluding that CPO outperforms ORT in large-scale cases (limitations of the benchmarking
must be considered). In fact, Ref. [20] expects a rise in the number of industrial applications
of CP.

When it comes to the incorporation of limited buffers in job-shop scheduling prob-
lems, to the best of our knowledge, this aspect has received limited attention in previous
research [30–32]; most efforts have been dedicated to the flow-shop scheduling problem.
Moreover, it has been even less explored in the context of shipbuilding production sys-

J. Mar. Sci. Eng. 2023, 11, 1517 3 of 23

tems. Ref. [33] already showed that the two-machine flow-shop problem with a limited
buffer capacity between the first two machines is NP-hard. Most recent studies in the field
like [14,19,20] consider either flow- or job-shop problems with assemblies but assume no
constraint regarding buffer capacity, the latter thus becoming infinite, as in classical prob-
lems [32,34]. If we resort to other areas, buffering constraints have barely been included
in the MILP model. Ref. [31] provides a good reference to classify job-shop problems
according to the type and capacity of buffers:

• Output buffers: Machines have an output buffer downstream with limited capacity
where the job can be stored once the operation on the machine is finished.

• Input buffers: Machines have an input buffer upstream with limited capacity where
the job can be stored once the operation on the previous machine is finished.

• Pairwise buffers: Each pair of consecutive machines has a specific buffer to store the
job, if necessary, when it goes from the machine upstream to the machine downstream.

• Job-dependent buffers: There is a dedicated buffer for each job, so the assignment of
the operations of a job to buffers depends on the job itself.

• Blocking scheduling problem: A special case where buffers have no capacity, so
operations may block machines if subsequent machines are busy.

Taking this notation as reference, Ref. [30] studies the multi-route job-shop scheduling
problem with limited output buffers comparing a hybrid artificial immune-simulated
annealing algorithm with a MILP model. Ref. [35] uses MILP to solve a blocking flow-
shop model with up to 20 jobs and seven machines, which is still far from large-scale
problems derived from shipbuilding. Ref. [36] investigates the job-shop problem of a robotic
manufacturing cell with intermediate buffers. In their case, they consider restrictions on
the time a manufactured piece can block a station if the downstream buffer is blocked: no-
wait, free pick-up (unlimited time), and a time window (limited time). Ref. [37] proposes
a MILP model to study a cyclic hybrid flow-shop problem with limited output buffer
capacity, obtaining an assignment heuristic algorithm to generate initial sequences for the
MILP model.

Beyond MILP, metaheuristics are the most common approach to address scheduling
problems with buffering constraints. Ref. [32] applies a novel heuristic algorithm based
on simulated annealing to the job-shop scheduling problem considering four different
buffering constraints: no-wait, no-buffer, limited-buffer, and infinite-buffer. Ref. [38] uses
tabu search to obtain good solutions for a flow-shop problem with limited buffer capacity.
Ref. [39] applies an extended version of a genetic algorithm to optimize the makespan
of a flow-shop problem with sequence-dependent setup times and output buffers with
limited capacity.

For a comprehensive literature review, Ref. [40] provide insights on job-shop schedul-
ing problems (JSP) and flow-shop scheduling problems (FSP) with buffering constraints.
However, there is no study that specifically examines the job-shop scheduling problem
with assembly operations and buffering constraints. Similarly, Refs. [31,32] offer refer-
ences on flow-shop scheduling problems with buffering constraints, but do not address
the specific combination of assembly operations and buffering constraints in the job-shop
scheduling context.

Therefore, given the potential that CP seems to have in scheduling problems and the
existing gap in the shipbuilding literature, this study first formulates a CP model of the
FJSP-A for the case studies examined in [10] and compares the results of the minimization
of the makespan between models. Since CP outperforms both the monolithic MILP for-
mulation and the MILP-based decomposition algorithm proposed by [10] for the larger
cases, a new variant of the FJSP with assemblies and limited buffer capacity is formulated
and investigated. The problem derives from a real case from the shipbuilding industry
and tackles the criticality of intermediate storage between stages due to the size of blocks
and subblocks. Hence, several instances are defined based on buffer capacity, optimization
objective, and number of blocks. MILP and CP models are formulated for each instance and
a detailed comparison of the computational performance and the quality of the solutions is

J. Mar. Sci. Eng. 2023, 11, 1517 4 of 23

presented. Discrete-event simulation models are used to further validate the results and
obtain insights into various key performance indexes that cannot be directly extracted from
the optimization. Overall, our primary objective is to bridge the gap between academic
research and industrial practice by demonstrating the effectiveness of constrained pro-
gramming on large-scale scheduling problems, particularly in shipbuilding, where efficient
production plans and storage capacity limits are crucial. We strive to develop a computer-
ized optimization methodology that can accommodate manufacturing complexities and
provide efficient production plans within reasonable computational time. Additionally,
the approach must be designed so that results can be easily communicated to non-expert
personnel, thereby supporting decision-making processes in various stages of the project.

2. The Shipbuilding Manufacturing Process

The assembly process of subblocks and blocks is a complex production process that
starts with the manufacturing of sheets and profiles, components of blocks. Following a
high-level modeling approach, activities can be grouped into parent activities according to
different criteria such as activity location, nature, or personnel involved. We grouped the
activities according to the workshops and flows between them (Figure 1). In doing so, we
consider the following workshops (W), each one containing several multipurpose cells:

• WA1, WA2: Workshops for assembly operations. Cells in WA1 and WA2 can also
execute outfitting operations if needed.

• WO1, WO2: Workshops designed for outfitting operations. Cells belonging to WO1
and WO2 can also perform assembly operations if needed.

• BTC: Outside block turning cells for subblock turning.
• PC: Painting cabin.
• SW: Slipway for block erection.

We consider the following operations:

1. Subblock assembly 1 (SB-A1): Sheets and profiles that have been cut, formed, and
welded are delivered to subblock assembly 1 area (SB-A1) to form subblock subassem-
blies. It can be executed in WA1 and WA2 cells.

2. Subblock assembly 2 (SB-A2): Subblock subassemblies are welded together to form
subblocks. This operation can be continued in WA1 and WA2 workshops or executed
in WO1 and WO2 if necessary.

3. Turning (SB-T): Some subblocks must be turned upside-down to proceed to block
assembly. Turning can only be performed in BTC.

4. Block assembly (B-A): Subblocks are welded together to form blocks, which are the
component parts of the frigate hull. This can be executed in WA1, WA2, WO1, WO2,
or in the previous cell of BTC.

5. Outfitting 1 (B-O1): Piping, brackets, and other equipment fabricated in auxiliary
workshops are installed on the block. This can be performed in WO1 and WO2 or in
WA1 and WA2 if necessary.

6. Blasting and Painting (B-P): Block blasting and painting are performed in painting
cabins. Blasting and painting can only be performed in PCs.

7. Outfitting 2 (B-O2): Electrical equipment, ducts, and other equipment fabricated
in auxiliary workshops that could have been affected by the painting process are
installed on the painted block. This can only be performed in WO2.

8. Block Erection: Once blocks are completed, they are erected and welded in a slipway
to form the frigate hull according to a predefined strategy. Each block enables adjacent
blocks to be erected and welded, so the production of blocks should be adjusted to
hull construction to avoid unnecessary blockages and storage. This is executed in
the SP.

J. Mar. Sci. Eng. 2023, 11, 1517 5 of 23

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 25

6. Blasting and Painting (B-P): Block blasting and painting are performed in painting
cabins. Blasting and painting can only be performed in PCs.

7. Outfitting 2 (B-O2): Electrical equipment, ducts, and other equipment fabricated in
auxiliary workshops that could have been affected by the painting process are in-
stalled on the painted block. This can only be performed in WO2.

8. Block Erection: Once blocks are completed, they are erected and welded in a slipway
to form the frigate hull according to a predefined strategy. Each block enables adja-
cent blocks to be erected and welded, so the production of blocks should be adjusted
to hull construction to avoid unnecessary blockages and storage. This is executed in
the SP.

Figure 1. Process flow of the shipbuilding process.

Refs. [8,9 depict a similar process flow, but two extra operations (SB-A2 and SB-T)
are included in this paper to consider the flow of parts between workshops. It is also re-
markable how cells in different workshops are multipurpose and can hold different oper-
ations.

Finally, it is worth noting the impact of the block erection strategy on the scheduling
problem. In this sense, we have considered a twofold objective: the makespan (MK) and
the minimization of total tardiness according to predefined blocks’ due dates (DD). The
latter allows for the adjustment of the solutions to the scheduling problem to a predefined
block erection strategy.

3. Materials and Methods
3.1. Problem Statement

The flexible job-shop scheduling problem with assembly operations considers the
following assumptions:
• The set of jobs 𝐽 = {𝑗ଵ, 𝑗ଶ, … 𝑗} are to be processed in a set of stages 𝑆 = {𝑠ଵ, 𝑠ଶ, … 𝑠}.

WA1 WA2
WO1 WO2
BTC

Block
Assembly

WA1 WA2
WO1 WO2

Subblock
Assembly 2

WA1
WA2

Subblock
Assembly 1

PC
Painting
and Blasting

SW
Block
Erection

BTC Turning

WA1 WA2
WO1 WO2 Outfitting 1

WO2 Outiftting 2

Finished
Subblocks

Finished
Blocks

Subblock Level
Operations

Block Level
Operations

Ship Level
Operations

Figure 1. Process flow of the shipbuilding process.

Refs. [8,9] depict a similar process flow, but two extra operations (SB-A2 and SB-T) are
included in this paper to consider the flow of parts between workshops. It is also remarkable
how cells in different workshops are multipurpose and can hold different operations.

Finally, it is worth noting the impact of the block erection strategy on the scheduling
problem. In this sense, we have considered a twofold objective: the makespan (MK) and
the minimization of total tardiness according to predefined blocks’ due dates (DD). The
latter allows for the adjustment of the solutions to the scheduling problem to a predefined
block erection strategy.

3. Materials and Methods
3.1. Problem Statement

The flexible job-shop scheduling problem with assembly operations considers the
following assumptions:

• The set of jobs J = {j1, j2, . . . jn} are to be processed in a set of stages S = {s1, s2, . . . sn}.
• Each job j ∈ J is composed of a variable number of operations o ∈ Oj to be executed

in the set of stages S. For each job, there is a predefined sequence to execute the
operations which depends on the type of job, not necessarily using all the stages.

• Only one operation of a given job can be processed at a time in a given stage.
• Each stage s ∈ S is made up of a subset of workstations w ∈Ws. A workstation can per-

form operations in various stages, thus belonging simultaneously to the given stages.
• One given workstation can only perform one operation at a time. No other equipment

constraint is considered.
• For assembly operations, the set of jobs J is split into two subsets Jsa and Ja to consider

subassemblies Jsa and final assemblies Ja.
• Oa represents the set of the last operation of jobs j ∈ Ja

• Jobs j ∈ Jsa are available to be scheduled at time 0.
• Jobs j ∈ Ja can only start processing when all their subassemblies (complementary

jobs j′ ∈ Jsa) are completed.
• Operations of jobs j ∈ Jsa follow always the same sequence of stages.

J. Mar. Sci. Eng. 2023, 11, 1517 6 of 23

• Operations of jobs j′ ∈ Ja follow always the same sequence of stages which is different
from jobs j ∈ Jsa operations’ sequence.

• Both jobs j ∈ Jsa and j′ ∈ Ja may have operations assigned to the same stage s ∈ S.

• For a given operation o ∈ Oj of a job j ∈ J, the processing time PT j
o is always known

in advance.
• Transportation times of jobs between stages are negligible and thus ignored. The same

happens with setup and changeover times.
• Machine breakdowns and preventive operations are not considered.
• All model parameters such as processing times are deterministic.

Two goals have been considered:

• The minimization of the makespan (MK), which is the total time to complete all the
operations belonging to all jobs.

• The minimization of the total tardiness (DD), which is the sum of the tardiness of all
jobs according to predefined due dates.

For the modeling of storage areas, we have taken a similar approach to [31]. Therefore,
buffers are considered additional workstations in the model and mandatory steps for a
job when an operation is completed in a stage. Therefore, when considering the FJSP with
assembly operations and limited buffer capacity, we add the following assumptions:

• There is a set of storage areas B = {β1, β2, . . . βn} to store jobs when the next operation
cannot be processed for workstation availability.

• Each storage area β ∈ B is composed of a subset of buffers b ∈ Bβ of one unit
of capacity.

• The size of the storage area β is given by the length of the subset of buffers b ∈ Bβ.
• The size of the storage area β is a positive integer that ranges from 0 to ∞. A size of ∞

for all storage areas simplifies the problem to the FJSP with assembly operations.
• For a given job j ∈ J, the list of operations Oj is modified so that between every

two operations o− 1s and os′ o ∈ Oj, (s, s′) ∈ S, a new operation o′ is inserted and
assigned to storage area βs.

• The set of single-unit buffers b ∈ βs, s ∈ S are modeled as workstations w ∈W with a
processing time of 0 or higher.

Based on these assumptions, two variants of the base case are considered in this paper
according to [31]:

• Blocking FJSP with assembly operations: The size of all storage areas β is null or 0.
• FJSP with assembly operations with output stage-dependent buffers: Each stage s has

been assigned an output storage area βs with limited capacity (< ∞) to move jobs
when their operation in the current stage has been finished.

Finally, a mapping of the previous assumptions and definitions is performed for the
shipbuilding case considered in this paper. Therefore:

• Jobs Ja represent the blocks and jobs Jsa represent the subblocks.
• A workstation w ∈W represents a workshop slot or cell for performing operations in

a given block or subblock.
• Stages s ∈ S are groups of workstations according to the shipbuilding operations

shown in Figure 1. Therefore, each stage s ∈ S represents a shipbuilding process and
not a workshop.

• Operations o ∈ O are the shipbuilding processes represented in Figure 1 from subblock
“Assembly 1” to “Outfitting 2”.

• Block erection operation is indirectly considered by means of due dates. Thus, block
erection start dates are parameters of the model that considers due dates.

• Subblocks Jsa follow the sequence of operations represented in Figure 1 from “As-
sembly 1” to “Block Assembly”. Blocks Ja follow the sequence of operations from
“Outfitting 1” to “Outfitting 2”.

J. Mar. Sci. Eng. 2023, 11, 1517 7 of 23

3.2. Mathematical Formulations
3.2.1. MILP Model

The mathematical formulation of the MILP model for FJSP-A-LBC is based on [7,10]
and illustrated here in Equations (1)–(8). In fact, Ref. [7] tackles a similar problem and
demonstrates that the general precedence formulation is the most adequate formulation for
this type of problem.

The notation used in our mathematical formulation is summarized in Table 1:

Table 1. List of symbols for the MILP model.

Nomenclature

Indices

j, j′ Job
w Workstation

o, o′ Operation
s, s′ Stage

β Storage area
b, b′ Single− unit buffer
Sets

J Jobs
W Workstations
Ws Workstations in stage S
Oj Operations of job j ∈ J
Os Operations to be assigned to stage S
Jsa Subset of jobs J that are subassemblies
Ja Subset of jobs J that are assemblies
Oa Subset of operations O that are final operations

Parameters

M Big−M constraint constant
DD Due dates

Continuous variables

MK Makespan
TT Total tardiness
STo Start time of operation o
FTo Completion time of operation o
PTo Processing time of operation o

Binary variables

Zoo′ 1 if operation o is processed before o′, otherwise 0
Yow 1 if operation o is assigned to workstation w, otherwise 0

Based on this notation, we define the following Mixed Integer Linear Programming model:

• Minimize Makespan (MK):

MK ≥ FTo ∀o ∈ O (1)

• Minimize Total Tardiness (TT):

TT ≥ ∑n
0=1FTo − DDj ∀o ∈ Oa (2)

• Allocation Constraints:

∑
w∈Ws

Yow = 1 ∀s ∈ S, o ∈ Os (3)

• Time Constraints:

FTo ≥ STo + PTo ∀o ∈ O (4)

STo′ ≥ FTo ∀j ∈ J,
(
o, o′

)
∈ Oj / o′ > o (5)

• Sequencing Constraints:

J. Mar. Sci. Eng. 2023, 11, 1517 8 of 23

STo′ ≥ FTo −M(1− Zoo′)−M(2−Yow −Yo′w) ∀
(
s, s′

)
∈ S, o ∈ Os, o′ ∈ O′s′ , w ∈Ws ∩Ws′ (6)

STo ≥ FTo′ −MZoo′ −M(2−Yow −Yo′w) ∀
(
s, s′

)
∈ S, o ∈ Os, o′ ∈ Os′ , w ∈Ws ∩Ws′ (7)

• Assembly Constraints:

STo′ ≥ FTo ∀ j′′ ∈ J / j′′ = j ∪ j′, j ∈ Jsa, j′ ∈ J f , o ∈ Oj, o′ ∈ Oj′ ,
(
o, o′

)
∈ Oj′′ (8)

• Limited Buffer Capacity Constraint:

STo = FTo−1 ∀ s ∈ Sa, j ∈ Jf, t ∈ Tj, t ∈ Ts : s > 1 t′ (9)

Equations (1) and (2) define the two goals of the optimization studied in our work:
the minimization of the last operation to be executed, that is, the makespan (MK) and the
total tardiness (TT) of the final operations of the assembly jobs. Constraint (3) ensures
that each operation can only be assigned to one workstation within its respective stage.
Constraint 4 sets the ending time of operation o ∈ O, while Constraint (5) establishes
the precedence relationship between operations within a job according to the predefined
sequence. Formulated as big-M constraints, Constraints (6) and (7) sequence any pair of
operations assigned to the same workstation so that they do not overlap with each other.
Constraint (8) restricts operations o′ ∈ Oj′ to be started if and only if all operations o ∈ Oj

have been finished being (o, o′) ∈ Oj′′ and j ∈ Jsa, j′ ∈ Jf /j′′ = j ∪ j′. Finally, for the
model that considers limited buffer capacity, constraint (9) ensures that jobs cannot leave a
workstation if the workstation downstream is blocked. For the blocking of FJSP, no storage
area is added so the constraint applies directly between consecutive workstations for a
given operation. It is worth noting that, when considering limited buffer capacity, this
model adds unnecessary 0-time steps to jobs, since buffers are modeled as mandatory
workstations with processing time 0. This makes the optimization more complex in terms
of assignments, but simpler when it comes to the number of variables.

3.2.2. CPO Model

CP is based on computer-based syntax, and the syntax usually depends on the solver
employed. Here, we represent the problem using CPO Optimizer from IBM as in [14]. It is
worth noting that decision variables in CPO are a special type of variable called interval
variable x whose domain dom(x) is a subset {⊥} ∪ {[s, e)|∈ Z, s < e}. An interval variable
replaces several variables of the MILP formulation: for a given operation o, variables STo
and Yow are now contained in the interval variable υ

ops
o , o ∈ Oj, j ∈ J. Ref. [25] explains the

syntax of CPO and the fundamentals of interval variables and CPO constraints. For the
notation and representation of the problem, we follow [14].

The notation for the CP model of the FJSP-A-LBC is given in Table 2.
Based on this notation, the following CPO model can be defined:

• Minimize Makespan (MK):

minimize
(

max
(

endO f
(

υ
ops
o

)))
∀o ∈ O (10)

• Minimize Total Tardiness (TT):

minimize(sum
(

end_eval
(

f tardiness
(

υ
ops
o

)))
∀o ∈ O (11)

• Allocation Constraints:

alternative
(

υ
mops
o,w

)
∀ s ∈ S, o ∈ Os, ∀ w ∈Ws (12)

• Timing Constraints:

endBe f oreStart
(

υ
ops
o−1,j, υ

ops
o,j

)
∀j ∈ J, o ∈ Oj i f o > 0 (13)

J. Mar. Sci. Eng. 2023, 11, 1517 9 of 23

• Sequencing Constraints:

noOverlap
(

υ
mops
o,w , υ

mops
o′ ,w

)
∀
(
s, s′

)
∈ S, o ∈ Os, o′ ∈ Os′ , w ∈Ws ∩Ws′ (14)

• Assembly Constraints:

endBe f oreStart
(

υ
ops
o , υ

ops
o′

)
∀ j′′ ∈ J / j′′ = j ∪ j′, j ∈ Jsa, j′ ∈ J f , o ∈ Oj, o′ ∈ Oj′ ,

(
o, o′

)
∈ Oj′′ (15)

• Limited Buffer Capacity Constraint:

endAtStart
(

υ
ops
o−1,j, υ

ops
o,j

)
∀j ∈ J, o ∈ Oj i f o > 0 (16)

Table 2. List of symbols for the CPO model.

Nomenclature

Parameters

opsj,o List of all operations o ∈ Oj, j ∈ J that are to be assigned

mopsj,o,s,w,pt
List of all possible assignments of operations o ∈ Oj,

j ∈ J, workstations w ∈Ws, s ∈ S and processing times PTo
Interval Variables

υ
ops
o

Interval variable for each operation o ∈ O contained in opsj,o.
The interval variable is defined by a start date STo, a size PTo and

and end date given by STo + PTo.

υ
mops
o,w , optional

Optional interval variable for each combination contained
in mopsj,o,s,w,pt. The variable is declared optional to model

parallel workstations.
Functions

f tardiness()
CpoSegmentedFunction (A piecewise linear function defined

on an interval [xmin, xmax) which is partitioned into segments
such that over each segment, the function is linear.

Equation (10) establishes the goal of the optimization as the minimization the makespan
while Equation (11) establishes the goal of the optimization as the minimization of the
total tardiness. Constraint (12) constrains the assignment of each operation to only one
workstation of the respective stage where the operation is to be assigned. Constraint (13)
ensures the precedence relation between the operations of a job. Constraint (14) forces
no overlap between operations executed on the same workstation. Constraint (15) adds
assembly restrictions, so the operations of a job that is an assembly cannot start until all the
operations of the jobs which are its subassemblies have been completed. Finally, for the
CPO model of the FJSP-A with limited buffer capacity, Constraint (16) forces consecutive
operations of a job to be non-stop.

3.3. Shipbuilding Case Data and Experiments

For the shipbuilding case, the mapping of the workshops and operations explained
in Section 2 is shown in Tables 3 and 4. Table 3 displays the workstations (cells or cabins)
that belong to each workshop while Table 4 maps the stages and workstations of the
FJSP-A to the real problem according to the diagram from Figure 1. To ensure experiment
reproducibility, in Appendix A, we provide detailed information in Tables A1 and A2, which
display the operations and durations of subblocks and blocks, respectively. Furthermore,
Table A3 provides a clear representation of the assembly relationships between blocks
and subblocks. Finally, Figure 2 illustrates the process flow along with the stage numbers
and workstations identifying the assembly stage. Buffers are also represented for limited
intermediate storage capacity instances.

J. Mar. Sci. Eng. 2023, 11, 1517 10 of 23

Table 3. Manufacturing cells (workstations) of each workshop.

Workshop Workstations (Cells)

WA1 w1, w2, w3, w4, w5, w6, w7, w8, w9,
WA2 w10, w11, w12, w13, w14, w15, w16, w17, w18
WO1 w19, w20, w21, w22
WO2 w23, w24, w25, w26
BTC w27, w28, w29, w30
PC w31, w32, w33, w34

Table 4. Mapping of the workstations, shipbuilding processes, and stages.

Stage Stage Name Workstations

s1 Subblock Assembly 1 w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16, w17, w18

s2 Subblock Assembly 2 w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16, w17, w18,
w19, w20, w21, w22, w23, w24, w25, w26

s3 Turning w27, w28, w29, w30

s4 Block Assembly w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16, w17, w18,
w19, w20, w21, w22, w23, w24, w25, w26, w27, w28, w29, w30

s5 Outfitting 1 w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16, w17, w18,
w19, w20, w21, w22, w23, w24, w25, w26

s6 Painting/Blasting w31, w32, w33, w34
s7 Outfitting 2 w23, w24, w25, w26

Different problem instances of increasing complexity have been considered for this
problem. While stages remain constant, we vary the number of jobs (blocks and subblocks)
and subsequent assembly operations to assess the problem’s scalability. To examine the
impact of limited buffer capacity, for each problem instance, we consider three scenarios:
infinite or no limited buffer capacity (NBC), zero-unit buffer capacity (0BC), and single-unit
buffer (1BC) capacity. In addition, for each of these scenarios, we focus on optimizing two
key objectives: the makespan (MK) and the minimization of the total tardiness of all jobs
(DD). Table 5 presents a summary of the experiments designed for the shipbuilding case.

Table 5. Instances defined for the shipbuilding case.

Problem Blocks × Subblocks
(N ×M)

Infinite Buffer
Capacity

0 Buffer
Capacity

1-Unit
Buffer Capacity MK DD

SB-01-NBC-MK 5 × 10 x x
SB-01-0BC-MK 5 × 10 x x
SB-01-1BC-MK 5 × 10 x x
SB-01-NBC-DD 5 × 10 x x
SB-01-0BC-DD 5 × 10 x x
SB-01-1BC-DD 5 × 10 x x
SB-02-NBC-MK 10 × 20 x x
SB-02-0BC-MK 10 × 20 x x
SB-02-1BC-MK 10 × 20 x x
SB-02-NBC-DD 10 × 20 x x
SB-02-0BC-DD 10 × 20 x x
SB-02-1BC-DD 10 × 20 x x
SB-03-NBC-MK 25 × 50 x x
SB-03-0BC-MK 25 × 50 x x
SB-03-1BC-MK 25 × 50 x x
SB-03-NBC-DD 25 × 50 x x
SB-03-0BC-DD 25 × 50 x x
SB-03-1BC-DD 25 × 50 x x

J. Mar. Sci. Eng. 2023, 11, 1517 11 of 23

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 25

and subsequent assembly operations to assess the problem’s scalability. To examine the
impact of limited buffer capacity, for each problem instance, we consider three scenarios:
infinite or no limited buffer capacity (NBC), zero-unit buffer capacity (0BC), and single-
unit buffer (1BC) capacity. In addition, for each of these scenarios, we focus on optimizing
two key objectives: the makespan (MK) and the minimization of the total tardiness of all
jobs (DD). Table 5 presents a summary of the experiments designed for the shipbuilding
case.

Figure 2. Detailed process flow of the production of subblocks and blocks.

Table 5. Instances defined for the shipbuilding case.

Problem Blocks × Subblocks
(N × M)

Infinite Buffer
Capacity

0 Buffer
Capacity

1-Unit
Buffer Capacity MK DD

SB-01-NBC-MK 5 × 10 x x

SB-01-0BC-MK 5 × 10 x x

SB-01-1BC-MK 5 × 10 x x

SB-01-NBC-DD 5 × 10 x x
SB-01-0BC-DD 5 × 10 x x
SB-01-1BC-DD 5 × 10 x x
SB-02-NBC-MK 10 × 20 x x

SB-02-0BC-MK 10 × 20 x x

SB-02-1BC-MK 10 × 20 x x

SB-02-NBC-DD 10 × 20 x x
SB-02-0BC-DD 10 × 20 x x
SB-02-1BC-DD 10 × 20 x x
SB-03-NBC-MK 25 × 50 x x

SB-03-0BC-MK 25 × 50 x x

SB-03-1BC-MK 25 × 50 x x

SB-03-NBC-DD 25 × 50 x x
SB-03-0BC-DD 25 × 50 x x
SB-03-1BC-DD 25 × 50 x x

Figure 2. Detailed process flow of the production of subblocks and blocks.

3.4. Experimental Setup

The workflow designed for the present work is illustrated in Figure 3. Python 3.9
and Python APIs, provided by Gurobi (Gurobipy [41]) and CPLEX (docplex.cp [42]),
respectively, were used to program the models. Gurobi Optimizer 10.0.1 was used as the
optimization engine for all MILP models, while CP Optimizer 22.1.0.0 was used for all CP
models. The computational experiments were conducted on a 14-core 12th Gen Intel(R)
Core(TM) i7-12700H 2.70 GHz processor.

To ensure a streamlined workflow, data were automatically imported from Excel files
at runtime using the Pandas library. The user defines the case number and the main
parameters such as time limit and search strategy beforehand. Once the optimization is run,
calls are made to the optimizer that returns the solution once the time limit is reached or
the optimality gap is reduced to 0%. Output data consisting of the list of jobs’ start and end
times and workstations’ assignments are automatically exported to an Excel file by using the
Matplotlib library. The first Gantt diagram is also built using this library for a first check.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 25

3.4. Experimental Setup
The workflow designed for the present work is illustrated in Figure 3. Python 3.9 and

Python APIs, provided by Gurobi (Gurobipy [41]) and CPLEX (docplex.cp [42]), respec-
tively, were used to program the models. Gurobi Optimizer 10.0.1 was used as the opti-
mization engine for all MILP models, while CP Optimizer 22.1.0.0 was used for all CP
models. The computational experiments were conducted on a 14-core 12th Gen Intel(R)
Core(TM) i7-12700H 2.70 GHz processor.

To ensure a streamlined workflow, data were automatically imported from Excel files
at runtime using the Pandas library. The user defines the case number and the main pa-
rameters such as time limit and search strategy beforehand. Once the optimization is run,
calls are made to the optimizer that returns the solution once the time limit is reached or
the optimality gap is reduced to 0%. Output data consisting of the list of jobs’ start and
end times and workstations’ assignments are automatically exported to an Excel file by
using the Matplotlib library. The first Gantt diagram is also built using this library for a
first check.

Figure 3. Workflow designed for the experimentation phase.

To evaluate the validity and robustness of the solution, FlexSim 22.0.8 was used to
create the discrete-event simulation models. The output data from the optimization were
seamlessly imported into the corresponding simulation model by using the Import/Export
Excel module provided by FlexSim. The simulation model also allows for a comprehen-
sive performance analysis of the solution, including the utilization of workstations and
buffers. Additionally, during the model run, a more detailed Gantt chart is automatically
generated, facilitating in-depth analysis at various simulation points. The model continu-
ously verifies that job completion times and assembly requirements are consistently met
throughout the simulation, promptly alerting the user in the event of any inconsistency.

Importantly, the model is designed to accommodate diverse types of buffer con-
straints, requiring only a single model for each specific case. It is worth noting that data
transfer processes are fully automated, eliminating the need for time-consuming manual
data management tasks.

4. Results and Discussion
In this section, we implemented the MILP and CP models to compare their perfor-

mance and scalability. The evaluation is based on the small example and three real-world
case studies previously studied by [10]. The aim is to determine the suitability of using
CPO as a scheduling optimization approach for industrial-size cases. While [10] published

Figure 3. Workflow designed for the experimentation phase.

J. Mar. Sci. Eng. 2023, 11, 1517 12 of 23

To evaluate the validity and robustness of the solution, FlexSim 22.0.8 was used to
create the discrete-event simulation models. The output data from the optimization were
seamlessly imported into the corresponding simulation model by using the Import/Export
Excel module provided by FlexSim. The simulation model also allows for a comprehensive
performance analysis of the solution, including the utilization of workstations and buffers.
Additionally, during the model run, a more detailed Gantt chart is automatically generated,
facilitating in-depth analysis at various simulation points. The model continuously verifies
that job completion times and assembly requirements are consistently met throughout the
simulation, promptly alerting the user in the event of any inconsistency.

Importantly, the model is designed to accommodate diverse types of buffer constraints,
requiring only a single model for each specific case. It is worth noting that data transfer
processes are fully automated, eliminating the need for time-consuming manual data
management tasks.

4. Results and Discussion

In this section, we implemented the MILP and CP models to compare their perfor-
mance and scalability. The evaluation is based on the small example and three real-world
case studies previously studied by [10]. The aim is to determine the suitability of using
CPO as a scheduling optimization approach for industrial-size cases. While [10] published
the results of the MILP models, we have updated the results in this paper to account for
computational characteristics and software adjustments.

As a second step, we applied the MILP and CP models to the FJSP-A-LBC instances
presented in Table 5 based on the shipbuilding industry. In each case, we compared the
computational efficiency of the two approaches and evaluated the impact of limited buffer
capacity for two different objectives: the minimization of the makespan and the minimiza-
tion of the total tardiness. To validate the results, we employed a discrete-event simulation
model, which allowed us to draw specific conclusions regarding the scheduling outcomes.

For the cases studied in [10], we followed the termination criterion for MILP optimiza-
tions based on either a 0% integrality gap or a maximum CPU time of 3600 s. For the cases
of FSJP-A with limited buffer capacity, a termination criterion of either a 0% integrality
gap or a maximum CPU time of 300 s (5 min) was considered. It is worth noting that
in real-world applications, shorter CPU times are typically required for prompt decision
making. Therefore, we consider CPU times longer than 5 min as impractical for the actual
implementation of optimization in real-world case scenarios.

4.1. Case Studies

The case studies examined in this research comprise the small illustrative example (CS0)
and three distinct case studies (CS1, CS2, CS3) selected from Sections 5.1, 5.2, 5.3, and 5.4
of [10]. Of specific interest, CS2 has been subdivided into three progressive complexity
levels: CS2.1, CS2.2, and CS2.3, corresponding to 4, 8, and 12 molds. For a comprehensive
understanding of the case studies’ intricacies and complexities, we refer the readers to the
original paper.

In the interest of brevity, we present the optimized results in Table 6 without extensive
elaboration. The CPO search strategy has been kept as default since no alternative search
strategy has been proven as more effective for the problems addressed. The CPO automatic
search is based on failure-directed search and iterative diving [26,43].

Given its simplicity in terms of the number of jobs and stages, CS0 serves to demon-
strate the convergence of the constrained programming model to the optimal solution of
the problem. Moving on to CS1, it represents an industrial-size instance of the FJSP without
assemblies. It is remarkable how the CPO model is capable of reaching the optimal solution
in only 2 s, compared to the iterative algorithm presented by [10], which required 1762 s and
already represented a substantial time reduction over the monolithic approach. Hence, the
CPO model proves highly suitable for scheduling problems of this kind without assemblies.

J. Mar. Sci. Eng. 2023, 11, 1517 13 of 23

Table 6. Results.

Problem MILP MILP [10] CP

Name J.* S.* A.* Obj. GAP CPU
Time (s) Obj. CPU

Time (s) Obj.* GAP CPU
Time (s)

CS0 9 3 x 31 0.00% 0.25 31 0.98 31 0.00% 0.02
CS1 79 24 24,774.2 48.86% 3600 23,015 1762 22,930.1 0.00% 1.26

CS2.1 (4m) 24 9 x 979 0.00% 15.26 979 28.8 979 0.00% 0.63
CS2.2 (6m) 36 9 x 1355 8.34% 3600 1355 455.7 1355 0.00% 0.1
CS2.3 (8m) 48 9 x 1764 28.04% 3600 1764 1145 1764 0.00% 0.25

CS3 75 7 x 200.5 31.62% 3600 229.6 1100 179.9 16.9% 3600

* J., number of jobs; S., number of stages; A., assemblies; Obj., objective.

When it comes to instances of FJSP-A, the increasing complexity of CS2 illustrates how
CPO is designed to tackle large-sized problems. Even in the most complex case (CS2.3), the
CPO model attains the optimal solution in less than a second while the iterative algorithm
needed at least 1100 s to reach the same solution. The monolithic approach fails to close the
gap, leaving it at 28%.

Lastly, the case study presented by [10] based on shipbuilding (CS3) involved 75 jobs
and seven stages, meaning 9275 binary variables and 226 continuous variables. Figure 4
shows the Gantt chart generated by the CPO model yielding a makespan of 179.9 days and a
GAP of 16.9%. It is worth noting that this result is obtained within 50 s of optimization, and
no further improvement is observed within the given optimization time. Comparatively, the
CPO model is capable of achieving a solution that is 50 days shorter in terms of workdays
than the solution achieved by [10] after an hour of computational time. Furthermore,
Ref. [10] was able to find a solution of 202.0 days after 50 h of optimization. This particular
solution is not considered in our study, as our aim is to obtain high-quality solutions within
reasonable computational times that are applicable in the industry.

Based on these outcomes, we can conclude that the CP formulation is highly suitable
for addressing FJSP-A, even in industrial-sized scenarios such as the one presented in this
paper. Consequently, the remaining sections of the paper compare the results obtained
from the MILP monolithic approach and the CP model for various problem sizes and
buffer capacities.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 25

Lastly, the case study presented by [10] based on shipbuilding (CS3) involved 75 jobs
and seven stages, meaning 9275 binary variables and 226 continuous variables. Figure 4
shows the Gantt chart generated by the CPO model yielding a makespan of 179.9 days
and a GAP of 16.9%. It is worth noting that this result is obtained within 50 s of optimiza-
tion, and no further improvement is observed within the given optimization time. Com-
paratively, the CPO model is capable of achieving a solution that is 50 days shorter in
terms of workdays than the solution achieved by [10] after an hour of computational time.
Furthermore, Ref. [10] was able to find a solution of 202.0 days after 50 h of optimization.
This particular solution is not considered in our study, as our aim is to obtain high-quality
solutions within reasonable computational times that are applicable in the industry.

Based on these outcomes, we can conclude that the CP formulation is highly suitable
for addressing FJSP-A, even in industrial-sized scenarios such as the one presented in this
paper. Consequently, the remaining sections of the paper compare the results obtained
from the MILP monolithic approach and the CP model for various problem sizes and
buffer capacities.

Figure 4. Results of the CPO model for Case Study 3 from [10].

4.2. Shipbuilding Case
Regarding the shipbuilding case, Table 7 presents the number of variables for the

MILP and the CP model. In the MILP model, variables are shown after applying the pre-
solve function, which transforms the problem into a smaller and more manageable equiv-
alent form. However, it is observed that the difference in the total number of variables of
both models increases as the problem size grows. For instance, considering scenario 3, the
MILP model consists of up to 233 continuous variables and 19,499 binary variables,
whereas the CP model comprises 4194 interval variables. Although interval variables con-
tain more information than binary variables, it suggests that the initial size of the problem
to be solved is smaller in the CP model.

Regarding the zero-unit buffer capacity problems, the number of variables is slightly
reduced in the MILP model after the presolve operation as the problem becomes more
constrained. In contrast, in the CP model, the number of interval variables remains the
same and there is an increase in the number of constraints.

Figure 4. Results of the CPO model for Case Study 3 from [10].

J. Mar. Sci. Eng. 2023, 11, 1517 14 of 23

4.2. Shipbuilding Case

Regarding the shipbuilding case, Table 7 presents the number of variables for the MILP
and the CP model. In the MILP model, variables are shown after applying the presolve
function, which transforms the problem into a smaller and more manageable equivalent
form. However, it is observed that the difference in the total number of variables of both
models increases as the problem size grows. For instance, considering scenario 3, the MILP
model consists of up to 233 continuous variables and 19,499 binary variables, whereas the
CP model comprises 4194 interval variables. Although interval variables contain more
information than binary variables, it suggests that the initial size of the problem to be
solved is smaller in the CP model.

Table 7. Number of variables and constraints in the MILP and CPO models for the shipbuilding case.

Problem MILP Model CP Model

Name Cont. Variables Bin. Variables Variables Constraints
SB-01-NBC-MK 47 1384 864 215
SB-01-0BC-MK 32 1369 864 246
SB-01-1BC-MK 63 1474 931 534
SB-01-NBC-DD 47 1384 864 215
SB-01-0BC-DD 34 1369 864 246
SB-01-1BC-DD 65 1474 931 534
SB-02-NBC-MK 93 4014 1694 396
SB-02-0BC-MK 63 3984 1694 458
SB-02-1BC-MK 125 4405 1823 1029
SB-02-NBC-DD 100 4014 1694 396
SB-02-0BC-DD 70 3984 1694 458
SB-02-1BC-DD 132 4405 1823 1029
SB-03-NBC-MK 233 19,499 4194 951
SB-03-0BC-MK 158 19,424 4194 1108
SB-03-1BC-MK 315 22,120 4513 2554
SB-03-NBC-DD 255 19,499 4194 951
SB-03-0BC-DD 180 19,424 4194 1108
SB-03-1BC-DD 337 22,120 4513 2554

Regarding the zero-unit buffer capacity problems, the number of variables is slightly
reduced in the MILP model after the presolve operation as the problem becomes more
constrained. In contrast, in the CP model, the number of interval variables remains the
same and there is an increase in the number of constraints.

Furthermore, the results indicate that considering buffers as machines in the current
problem formulation leads to a greater increase in problem size for the MILP model. For
example, in scenario 3 for MK, the MILP formulation shows an increase of 82 continuous
variables and 2621 variables when transitioning from the NBC to the 1BC case, resulting in
a total increase of 13.7% in the number of variables. On the other hand, the CP formulation
demonstrates a smaller increase of 7.6%, with the number of interval variables rising from
4194 to 4513.

It should be noted that a direct comparison of the number of variables suggests that
the CP model is more efficient in handling the problem. However, it is essential to refer to
the optimization results due to the different nature of variables in each model.

Table 8 presents the optimization results of the MILP and CP models for all instances,
with the objective of minimizing the makespan. The results reveal that for scenarios 1
and 2, both models are capable of closing the gap and reaching the optimal solution in
less than 10 s, with the CPO model achieving virtually instant results. These findings
serve to validate the formulation of the CP model, as the MILP model produces the same
optimal values.

J. Mar. Sci. Eng. 2023, 11, 1517 15 of 23

Table 8. Results of the MILP and CPO models for the shipbuilding case and the minimization of
the makespan.

Problem MILP Model CP

Name MK (days) GAP (%) CPU Time (s) MK (days) GAP (%) CPU Time (s)
SB-01-NBC-MK 191 0.00% 0.18 191 0.00% 0.05
SB-01-0BC-MK 191 0.00% 0.24 191 0.00% 0.06
SB-01-1BC-MK 191 0.00% 0.2 191 0.00% 0.06
SB-02-NBC-MK 197 0.00% 9.45 197 0.00% 0.32
SB-02-0BC-MK 197 0.00% 5.12 197 0.00% 1.24
SB-02-1BC-MK 197 0.00% 9.51 197 0.00% 0.32
SB-03-NBC-MK NA * - 300 267 19.30% 300
SB-03-0BC-MK NA * - 300 269 19.99% 300
SB-03-1BC-MK NA * - 300 279 22.81% 300

* A feasible solution was not generated within 300 CPUs.

However, in the case of the industrial-size scenario (scenario 3), the MILP model
fails to provide a feasible solution for any of the instances within the optimization time.
On the contrary, the CP model is able to obtain a feasible solution within 300 s, with
a GAP of approximately 20%. Considering the size of the problem, this GAP value is
deemed reasonable.

With regard to the impact of limited buffer capacity, it is found to have a negligible
effect for simpler instances such as scenarios 1 and 2. However, the results demonstrate
that as the intermediate storage capacity becomes more limited, the GAP becomes higher.
This outcome was expected for the single-unit buffer capacity, where the increased number
of variables contributes to the higher GAP. However, it was not as straightforward for the
0BC case, where only the constraints were increased.

Table 9 shows the results of the MILP and CPO models for minimizing tardiness. The
MILP model failed to find a solution for all the instances of case 3 within the optimization
time and was unable to determine the optimal value in scenario 2 with single-unit capacity
buffers. Conversely, the CPO model was able to achieve the optimal value in scenarios
1 and 2, whereas for scenario 3, it struggled to obtain solutions with GAPs exceeding
60%. Nevertheless, it managed to provide medium-quality solutions within the time limit.
The model shows high sensitivity to demanding due dates, resulting in higher GAPs and
lower-quality solutions.

Table 9. Results of the MILP and CPO models for the shipbuilding case and the minimization of the
total tardiness.

Problem MILP Model CP

Name MK (days) TT (days) GAP CPU Time (s) MK (days) TT (days) GAP CPU Time (s)
SB-01-NBC-DD 191 1 0.00% 0.18 191 1 0.00% 0.05
SB-01-0BC-DD 200 1 0.00% 0.23 191 1 0.00% 0.05
SB-01-1BC-DD 191 1 0.00% 0.21 191 1 0.00% 0.05
SB-02-NBC-DD 251 13 0.00% 28.94 200 13 0.00% 1.35
SB-02-0BC-DD 249 32 0.00% 43.73 199 13 0.00% 77.09
SB-02-1BC-DD 276 13 46.23% 300 198 13 0.00% 1.51
SB-03-NBC-DD - NA * - 300 296 18 60.95% 300
SB-03-0BC-DD - NA * - 300 301 43 84.26% 300
SB-03-1BC-DD - NA * - 300 294 18 60.95% 300

* A feasible solution was not generated within 300 CPUs.

The table also presents the makespan values for these cases. Notably, the makespan
increases significantly compared to the optimal value for larger cases, with differences
exceeding 30 days in scenario 3 when using the CP model. This emphasizes the need for a
trade-off between the makespan and meeting deadlines.

J. Mar. Sci. Eng. 2023, 11, 1517 16 of 23

Figures 5 and 6 depict the Gantt charts for the instances SB-03-1BC-MK and SB-03-
1BC-DD, respectively, as solved by the CP model. From these Gantts, we can observe that
the production of subblocks and blocks is more orderly and requires less intermediate
storage for SB-03-1BC-DD. Conversely, the use of buffers is more intensive in the case of
SB-03-1BC-MK, resulting in a more compacted production, particularly evident in the final
stage, O2. Additionally, Figure 7 shows the Gantt chart for the SB-03-0BC-MK instance,
representing the best solution in terms of makespan.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 25

Figure 5. Gantt chart for the SB-03-1BC-MK instance solved by the CP model.

By utilizing the simulation model, we gained further insights into the utilization of
buffers and machines. Figure 8 shows the evolution of the required intermediate storage
for the SB-03-NBC-MK instance that ignores buffers. Table 10 provides details on the max-
imum buffer content, buffer utilization, and workstation utilization for instances based on
scenario 3, as derived from the CP model.

Figure 6. Gantt chart for the instance SB-03-1BC-DD solved by the CP model.

Figure 5. Gantt chart for the SB-03-1BC-MK instance solved by the CP model.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 25

Figure 5. Gantt chart for the SB-03-1BC-MK instance solved by the CP model.

By utilizing the simulation model, we gained further insights into the utilization of
buffers and machines. Figure 8 shows the evolution of the required intermediate storage
for the SB-03-NBC-MK instance that ignores buffers. Table 10 provides details on the max-
imum buffer content, buffer utilization, and workstation utilization for instances based on
scenario 3, as derived from the CP model.

Figure 6. Gantt chart for the instance SB-03-1BC-DD solved by the CP model. Figure 6. Gantt chart for the instance SB-03-1BC-DD solved by the CP model.

J. Mar. Sci. Eng. 2023, 11, 1517 17 of 23J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 25

Figure 7. Gantt chart for the instance SB-03-NBC-MK solved by the CP model.

Table 10. Intermediate storage results for the best schedules of the shipbuilding case 3 solved by the
CP model.

CP Model Objective Max Content
U Buffer U Workstations

Case MK (Days) B1 B2 B3 B4 B5 B6
SB-03-NBC-MK 267 4 2 0 3 1 2 22.73% 71.62%
SB-03-0BC-MK 269 0 0 0 0 0 0 48.15%
SB-03-1BC-MK 279 1 1 1 1 1 1 8.48% 61.73%

Figure 8. Evolution of the intermediate storage necessities for the instance SB-03-NBC-MK.

Analysis of these results reveals that the infinite-capacity buffer case exhibits a total
buffer utilization of 22.73%, having several periods where up to three and two subblocks
wait for the subblock assembly 2 and block turning cells, respectively, and up to three
blocks wait after outfitting 1. Notably, there is even a brief period where up to four sub-
blocks must be stored to await assembly 2 operations.

Figure 7. Gantt chart for the instance SB-03-NBC-MK solved by the CP model.

By utilizing the simulation model, we gained further insights into the utilization of
buffers and machines. Figure 8 shows the evolution of the required intermediate storage
for the SB-03-NBC-MK instance that ignores buffers. Table 10 provides details on the
maximum buffer content, buffer utilization, and workstation utilization for instances based
on scenario 3, as derived from the CP model.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 25

Figure 7. Gantt chart for the instance SB-03-NBC-MK solved by the CP model.

Table 10. Intermediate storage results for the best schedules of the shipbuilding case 3 solved by the
CP model.

CP Model Objective Max Content
U Buffer U Workstations

Case MK (Days) B1 B2 B3 B4 B5 B6
SB-03-NBC-MK 267 4 2 0 3 1 2 22.73% 71.62%
SB-03-0BC-MK 269 0 0 0 0 0 0 48.15%
SB-03-1BC-MK 279 1 1 1 1 1 1 8.48% 61.73%

Figure 8. Evolution of the intermediate storage necessities for the instance SB-03-NBC-MK.

Analysis of these results reveals that the infinite-capacity buffer case exhibits a total
buffer utilization of 22.73%, having several periods where up to three and two subblocks
wait for the subblock assembly 2 and block turning cells, respectively, and up to three
blocks wait after outfitting 1. Notably, there is even a brief period where up to four sub-
blocks must be stored to await assembly 2 operations.

Figure 8. Evolution of the intermediate storage necessities for the instance SB-03-NBC-MK.

Table 10. Intermediate storage results for the best schedules of the shipbuilding case 3 solved by the
CP model.

CP Model Objective Max Content
U Buffer U Workstations

Case MK (Days) B1 B2 B3 B4 B5 B6

SB-03-NBC-MK 267 4 2 0 3 1 2 22.73% 71.62%
SB-03-0BC-MK 269 0 0 0 0 0 0 48.15%
SB-03-1BC-MK 279 1 1 1 1 1 1 8.48% 61.73%

J. Mar. Sci. Eng. 2023, 11, 1517 18 of 23

Analysis of these results reveals that the infinite-capacity buffer case exhibits a total
buffer utilization of 22.73%, having several periods where up to three and two subblocks
wait for the subblock assembly 2 and block turning cells, respectively, and up to three blocks
wait after outfitting 1. Notably, there is even a brief period where up to four subblocks
must be stored to await assembly 2 operations.

Furthermore, we observe that the utilization of cells is lower for the single-unit buffer
capacity and less than 50% for the zero-unit buffer capacity case. It is our belief that
accommodating subblocks and blocks in intermediate storage allows for better machine
utilization, although there is no direct correlation with the makespan. As anticipated, the
infinite buffer capacity case leads to the most compact schedule, albeit necessitating higher
intermediate storage.

Figure 9 shows the simulation model implemented in FlexSim. Aside from analysis,
this model has been instrumental in validating all instances by verifying start and finish
times, as well as contents and assembly requirements. In doing so, we identified several
deadlock situations (Figure 9) wherein jobs must exchange workstations simultaneously.
Without intermediate buffers, these jobs obstruct one another, leading to a halt in the
simulation. This is also informed by the Gantt chart generated by the simulation model
where blockages are indicated in red. We believe it is crucial to consider such situations in
the shipbuilding industry, particularly in terms of transport units and space management.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 25

Furthermore, we observe that the utilization of cells is lower for the single-unit buffer
capacity and less than 50% for the zero-unit buffer capacity case. It is our belief that ac-
commodating subblocks and blocks in intermediate storage allows for better machine uti-
lization, although there is no direct correlation with the makespan. As anticipated, the
infinite buffer capacity case leads to the most compact schedule, albeit necessitating higher
intermediate storage.

Figure 9 shows the simulation model implemented in FlexSim. Aside from analysis,
this model has been instrumental in validating all instances by verifying start and finish
times, as well as contents and assembly requirements. In doing so, we identified several
deadlock situations (Figure 9) wherein jobs must exchange workstations simultaneously.
Without intermediate buffers, these jobs obstruct one another, leading to a halt in the sim-
ulation. This is also informed by the Gantt chart generated by the simulation model where
blockages are indicated in red. We believe it is crucial to consider such situations in the
shipbuilding industry, particularly in terms of transport units and space management.

Deadlock

Blockages

Figure 9. Example of deadlock produced by the schedule and detected by the DES model.

5. Conclusions
The present work has presented a constrained programming model for solving an

industrial-size instance of the flexible job-shop problem with assemblies and limited
buffer capacity. The model was initially tested on the case studies from [10], demonstrat-
ing its potential for scheduling problems involving multipurpose machines and assem-
blies. Following this, the model was extended to incorporate limited buffer constraints to
apply it to a complex shipbuilding case and a comparison was made with a MILP model.

The results of this study confirm the validity of the proposed approach in tackling
the complex problem discussed in this paper. The model consistently produced efficient
solutions with reasonable gaps for the optimization of the makespan, even for industrial-
scale cases involving up to 75 jobs. The inclusion of buffer constraints did not hinder the
model’s ability to generate solutions, and it allowed for the evaluation of compact sched-
ules that consider the critical spatial requirements of ship blocks and subblocks. When
focusing on meeting due dates, the complexity is greatly influenced by the level of strin-
gency imposed by these deadlines. In fact, the demanding due dates considered in this
work resulted in a MILP model incapable of generating a feasible schedule and

Figure 9. Example of deadlock produced by the schedule and detected by the DES model.

5. Conclusions

The present work has presented a constrained programming model for solving an
industrial-size instance of the flexible job-shop problem with assemblies and limited buffer
capacity. The model was initially tested on the case studies from [10], demonstrating
its potential for scheduling problems involving multipurpose machines and assemblies.
Following this, the model was extended to incorporate limited buffer constraints to apply
it to a complex shipbuilding case and a comparison was made with a MILP model.

The results of this study confirm the validity of the proposed approach in tackling
the complex problem discussed in this paper. The model consistently produced efficient
solutions with reasonable gaps for the optimization of the makespan, even for industrial-
scale cases involving up to 75 jobs. The inclusion of buffer constraints did not hinder

J. Mar. Sci. Eng. 2023, 11, 1517 19 of 23

the model’s ability to generate solutions, and it allowed for the evaluation of compact
schedules that consider the critical spatial requirements of ship blocks and subblocks.
When focusing on meeting due dates, the complexity is greatly influenced by the level
of stringency imposed by these deadlines. In fact, the demanding due dates considered
in this work resulted in a MILP model incapable of generating a feasible schedule and
exceptionally large GAPs in the CP model. It is important to remark that the due dates play
a crucial role in aligning the availability dates of blocks with the block erection necessities.

Methodologically, the combination of optimization techniques and simulation models
proved valuable in assessing the solutions generated by the optimizer. It facilitated the
evaluation of other key performance indexes such as machine utilization or storage require-
ments. One interesting insight was the appearance of potential transportation deadlock
situations that could lead to shipyard logistic issues if left unaddressed (Figure 9). The
simulation model also enhanced the understanding of the schedule and the quality of
the solution.

Therefore, we can conclude that, overall, our approach represents a significant step
towards bridging the gap between academia and the shipbuilding industry. Under con-
ditions similar to the ones in the present study, the model demonstrates its capability to
provide optimal or near-optimal solutions while considering critical aspects of the process,
such as limited buffer capacity. The workflow facilitated the study of various cases in
reasonable computational times, supporting our goal of providing insights and effective
communication through simulation.

However, the primary limitations of the study revolve around the challenge of finding
optimal solutions under highly demanding due dates or when dealing with a reduced
number of machines. Moreover, we have identified an important increase in complexity
when reducing the number of available machines to the extent that the CPO model is
incapable of providing efficient solutions. It would be of great interest to us to explore
strategies that allow reducing the number of machines per workshop while keeping ac-
ceptable makespan values. Additionally, comparing the proposed approach with other
pseudo-optimal techniques such as metaheuristics could provide further insights.

Another limitation of our study is that it does not consider the block assembly strategy
when optimizing the makespan, which can result in a schedule that is not aligned with
the block erection strategy, potentially leading to the need for a buffer of blocks before the
block erection phase. Therefore, another future research endeavor is integrating the block
erection strategy in the CP model to achieve compact schedules that are aligned with the
hull’s construction strategy.

Furthermore, it would be of interest to integrate the optimizer and the simulation
model to create a dynamic scheduler that operates under real-time conditions at differ-
ent project stages. Such an integrated system would allow for real-time optimization
based on recent data, allowing for minor adjustments to the scheduling to accommodate
makespan objectives.

In conclusion, this work has demonstrated the effectiveness of a constrained program-
ming model in solving complex scheduling problems in the shipbuilding industry. The
combination of optimization techniques, simulation models, and the exploration of future
research directions provides a solid foundation for further advancements in this field.

Author Contributions: Conceptualization, J.P.-Á. and D.C.-P.; methodology, J.P.-Á. and D.C.-P.;
software, J.P.-Á.; validation, J.P.-Á.; formal analysis, J.P.-Á.; investigation, J.P.-Á. and D.C.-P.; data
curation, J.P.-Á. and D.C.-P.; writing—original draft preparation, J.P.-Á.; writing—review and editing,
J.P.-Á. and D.C.-P.; visualization, J.P.-Á.; supervision, D.C.-P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their sincere gratitude to the authors of [10]
for their invaluable support in providing the necessary data for part of the case studies conducted in
this work.

J. Mar. Sci. Eng. 2023, 11, 1517 20 of 23

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of subblocks with operations and durations for shipbuilding case 3.

Subblock ID Stage Duration (h) * Stage Duration (h) * Stage Duration (h) *

1 s1 922 s2 397 s3 24
2 s1 410 s2 300 s3 37
3 s1 375 s2 416
4 s1 874 s2 112 s3 28
5 s1 529 s2 430 s3 39
6 s1 415 s2 225
7 s1 985 s2 302 s3 41
8 s1 863 s2 322
9 s1 1272 s2 147 s3 30

10 s1 424 s2 363
11 s1 1128 s2 213 s3 25
12 s1 1359 s2 476
13 s1 682 s2 429 s3 42
14 s1 1491 s2 239 s3 36
15 s1 334 s2 181
16 s1 371 s2 118
17 s1 1337 s2 131 s3 37
18 s1 1466 s2 119
19 s1 1054 s2 453 s3 32
20 s1 760 s2 183 s3 33
21 s1 765 s2 357 s3 24
22 s1 1229 s2 372 s3 35
23 s1 874 s2 403
24 s1 620 s2 300 s3 25
25 s1 347 s2 392 s3 26
26 s1 1406 s2 174
27 s1 1260 s2 153 s3 43
28 s1 1048 s2 460 s3 26
29 s1 566 s2 461 s3 30
30 s1 733 s2 233
31 s1 459 s2 356 s3 26
32 s1 580 s2 163 s3 35
33 s1 473 s2 320
34 s1 1546 s2 298 s3 38
35 s1 938 s2 362
36 s1 1051 s2 264 s3 31
37 s1 647 s2 168 s3 26
38 s1 1099 s2 367 s3 25
39 s1 542 s2 475
40 s1 670 s2 370 s3 26
41 s1 966 s2 172
42 s1 1332 s2 186 s3 44
43 s1 366 s2 452 s3 44
44 s1 324 s2 427 s3 39
45 s1 1410 s2 164
46 s1 619 s2 168
47 s1 1085 s2 123 s3 37
48 s1 1117 s2 220 s3 33
49 s1 1536 s2 400 s3 32
50 s1 433 s2 177

* Times are provided in hours, with the consideration that 16 h is equivalent to 1 day of work.

J. Mar. Sci. Eng. 2023, 11, 1517 21 of 23

Table A2. List of blocks with operations, durations, and due dates for shipbuilding case 3.

Block ID Stage Duration (h) * Stage Duration
(h) * Stage Duration

(h) * Stage Duration
(h) * Due Date (h) *

51 s4 125 s5 506 s6 265 s7 176 2400
52 s4 256 s5 355 s6 383 s7 475 2600
53 s4 346 s5 187 s6 347 s7 370 2700
54 s4 481 s5 459 s6 379 s7 348 3000
55 s4 389 s5 624 s6 322 s7 269 3000
56 s4 184 s5 212 s6 271 s7 358 3000
57 s4 272 s5 464 s6 347 s7 473 3100
58 s4 438 s5 472 s6 303 s7 160 3100
59 s4 326 s5 345 s6 331 s7 433 3100
60 s4 289 s5 355 s6 325 s7 448 3300
61 s4 306 s5 343 s6 323 s7 423 3300
62 s4 236 s5 485 s6 252 s7 350 3500
63 s4 298 s5 510 s6 336 s7 222 3700
64 s4 304 s5 320 s6 254 s7 276 3700
65 s4 462 s5 334 s6 263 s7 364 3900
66 s4 419 s5 514 s6 261 s7 233 3900
67 s4 437 s5 483 s6 243 s7 397 4100
68 s4 265 s5 607 s6 267 s7 448 4100
69 s4 228 s5 308 s6 347 s7 478 4300
70 s4 412 s5 455 s6 289 s7 184 4300
71 s4 460 s5 519 s6 363 s7 369 4500
72 s4 276 s5 314 s6 248 s7 329 4500
73 s4 295 s5 398 s6 322 s7 457 4700
74 s4 383 s5 259 s6 344 s7 239 4700
75 s4 433 s5 469 s6 282 s7 387 4900

* Times are provided in hours, with the consideration that 16 h is equivalent to 1 day of work.

Table A3. List of assemblies for shipbuilding case 3.

Block ID Subassemblies
(Subblocks ID)

51 1 2 3
52 4
53 5 6
54 7 8
55 9 10
56 11 12
57 13
58 14 15 16
59 17 18
60 19 20
61 21 22 23
62 24
63 25 26
64 27 28
65 29 30 31
66 32 33
67 34 35
68 36
69 37 38 39
70 40 41
71 42 43
72 44 45
73 46 47 48
74 49
75 50

J. Mar. Sci. Eng. 2023, 11, 1517 22 of 23

References
1. Okubo, Y.; Mitsuyuki, T. Ship Production Planning Using Shipbuilding System Modeling and Discrete Time Process Simulation. J.

Mar. Sci. Eng. 2022, 10, 176. [CrossRef]
2. Song, Y.J. Research on the development of simulation-based ship block logistics system based on data, flow and space modelling.

Int. J. Manag. Decis. Mak. 2017, 16, 407–427. [CrossRef]
3. Oliveira, A.; Gordo, J.M. Lean tools applied to a shipbuilding panel line assembling process. Brodogradnja 2018, 69, 53–64.

[CrossRef]
4. Shahsavar, A.; Sadeghi, J.K.; Shockley, J.; Ojha, D. On the relationship between lean thinking and economic performance in

shipbuilding: A proposed model and comparative evaluation. Int. J. Prod. Econ. 2021, 239, 108202. [CrossRef]
5. Basán, N.P.; Achkar, V.G.; Méndez, C.A.; García-Del-Valle, A. A hybrid simulation-based optimization approach for scheduling

dinamic block assembly in shipbuilding. In Proceedings of the 29th European Modeling and Simulation Symposium, EMSS
2017, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2017, Barcelona, Spain, 18–20
September 2017; pp. 83–90.

6. Kolich, D.; Storch, R.L.; Fafandjel, N. Lean manufacturing in shipbuilding with Monte Carlo simulation. In Proceedings of the
RINA, Royal Institution of Naval Architects—International Conference on Computer Applications in Shipbuilding 2011, Trieste,
Italy, 20–22 September 2011; pp. 159–167. [CrossRef]

7. Basán, N.P.; Cóccola, M.E.; del Valle, A.G.; Méndez, C.A. An efficient MILP-based decomposition strategy for solving large-scale
scheduling problems in the shipbuilding industry. Optim. Eng. 2019, 20, 1085–1115. [CrossRef]

8. Cebral-Fernandez, M.; Rouco-Couzo, M.; Pazos, M.Q.; Crespo-Pereira, D.; Del Valle, A.G.; Abeal, R.M. Application of a multi-level
simulation model for aggregate and detailed planning in shipbuilding. In Proceedings of the Winter Simulation Conference,
Las Vegas, NV, USA, 3–6 December 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017;
pp. 3864–3875. [CrossRef]

9. Basan, N.P.; Achkar, V.G.; Mendez, C.A.; Garcia-Del-Valle, A. A heuristic simulation-based framework to improve the scheduling
of blocks assembly and the production process in shipbuilding. In Proceedings of the Winter Simulation Conference, Las Vegas,
NV, USA, 3–6 December 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 3218–3229.
[CrossRef]

10. Basán, N.P.; Cóccola, M.E.; del Valle, A.G.; Méndez, C.A. Scheduling of flexible manufacturing plants with redesign options: A
MILP-based decomposition algorithm and case studies. Comput. Chem. Eng. 2020, 136, 106777. [CrossRef]

11. Yue, W.; Rui, M.; Yan, L. The research of shipbuilding schedule planning and simulation optimization technique based on constant
work-in-process system. J. Ship Prod. Des. 2018, 34, 20–31. [CrossRef]

12. Wang, C.; Mao, Y.S.; Xiang, Z.Q.; Zhou, Y.Q. Ship block logistics simulation based on discrete event simulation. Int. J. Online Eng.
2015, 11, 16–21. [CrossRef]

13. Woo, J.H.; Oh, D. Development of simulation framework for shipbuilding. Int. J. Comput. Integr. Manuf. 2018, 31, 210–227.
[CrossRef]

14. Ham, A.M.; Cakici, E. Flexible job shop scheduling problem with parallel batch processing machines: MIP and CP approaches.
Comput. Ind. Eng. 2016, 102, 160–165. [CrossRef]

15. Xiong, F.; Xing, K.; Wang, F. Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time. Eur. J. Oper. Res.
2015, 240, 338–354. [CrossRef]

16. Maravelias, C.T. A decomposition framework for the scheduling of single- and multi-stage processes. Comput. Chem. Eng. 2006,
30, 407–420. [CrossRef]

17. Harjunkoski, I.; Bauer, R. Industrial scheduling solution based on flexible heuristics. Comput. Chem. Eng. 2017, 106, 883–891.
[CrossRef]

18. Verbiest, F.; Cornelissens, T.; Springael, J. A matheuristic approach for the design of multiproduct batch plants with parallel
production lines. Eur. J. Oper. Res. 2019, 273, 933–947. [CrossRef]

19. Laborie, P. An update on the comparison of MIP, CP and hybrid approaches for mixed resource allocation and scheduling.
In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Berlin/Heidelberg, Germany, 2018; pp. 403–411. [CrossRef]

20. Da Col, G.; Teppan, E.C. Industrial-size job shop scheduling with constraint programming. Oper. Res. Perspect. 2022, 9, 100249.
[CrossRef]

21. de Oliveira, R.M.E.S.; de Castro Ribeiro, M.S.F.O. Comparing Mixed & Integer Programming vs. Constraint Programming by
solving Job-Shop Scheduling Problems. Indep. J. Manag. Prod. 2015, 6, 211–238. [CrossRef]

22. Heinz, S.; Beck, J.C. Reconsidering mixed integer programming and MIP-based hybrids for scheduling. In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2012; pp. 211–227. [CrossRef]

23. Hooker, J.N. A hybrid method for the planning and scheduling. Constraints 2005, 10, 385–401. [CrossRef]
24. Heinz, S.; Ku, W.Y.; Beck, J.C. Recent improvements using constraint integer programming for resource allocation and scheduling.

In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Berlin/Heidelberg, Germany, 2013; pp. 12–27. [CrossRef]

https://doi.org/10.3390/jmse10020176
https://doi.org/10.1504/IJMDM.2017.086998
https://doi.org/10.21278/brod69404
https://doi.org/10.1016/j.ijpe.2021.108202
https://doi.org/10.3940/rina.iccas.2011.66
https://doi.org/10.1007/s11081-019-09457-y
https://doi.org/10.1109/WSC.2017.8248097
https://doi.org/10.1109/WSC.2017.8248040
https://doi.org/10.1016/j.compchemeng.2020.106777
https://doi.org/10.5957/JSPD.160025
https://doi.org/10.3991/ijoe.v11i6.4968
https://doi.org/10.1080/0951192X.2017.1407452
https://doi.org/10.1016/j.cie.2016.11.001
https://doi.org/10.1016/j.ejor.2014.07.004
https://doi.org/10.1016/j.compchemeng.2005.09.011
https://doi.org/10.1016/j.compchemeng.2017.02.018
https://doi.org/10.1016/j.ejor.2018.09.012
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1016/j.orp.2022.100249
https://doi.org/10.14807/ijmp.v6i1.262
https://doi.org/10.1007/978-3-642-29828-8_14
https://doi.org/10.1007/s10601-005-2812-2
https://doi.org/10.1007/978-3-642-38171-3_2

J. Mar. Sci. Eng. 2023, 11, 1517 23 of 23

25. Laborie, P. IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems. In Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2009; pp. 148–162. [CrossRef]

26. Laborie, P.; Rogerie, J.; Shaw, P.; Vilím, P. IBM ILOG CP optimizer for scheduling: 20+ years of scheduling with constraints at
IBM/ILOG. Constraints 2018, 23, 210–250. [CrossRef]

27. Laborie, P.; Rogerie, J. Reasoning with conditional time-intervals. In Proceedings of the 21th International Florida Artificial
Intelligence Research Society Conference, FLAIRS-21, Coconut Grove, FL, USA, 15–17 May 2008; pp. 555–560. Available online:
www.aaai.org (accessed on 12 July 2023).

28. Laborie, P.; Godard, D. Self-Adapting Large Neighborhood Search: Application to Single-Mode Scheduling Problems. In
Proceedings of the MISTA-07, Paris, France, 28–31 August 2007; p. 8. Available online: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.107.4415&rep=rep1&type=pdf (accessed on 12 July 2023).

29. Vilím, P.; Laborie, P.; Shaw, P. Failure-directed search for constraint-based scheduling. In Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2015; pp. 437–453. [CrossRef]

30. Zhang, P.; Song, S.; Niu, S.; Zhang, R. A Hybrid Artificial Immune-Simulated Annealing Algorithm for Multiroute Job Shop
Scheduling Problem With Continuous Limited Output Buffers. IEEE Trans. Cybern. 2022, 52, 12112–12125. [CrossRef] [PubMed]

31. Brucker, P.; Heitmann, S.; Hurink, J.; Nieberg, T. Job-shop scheduling with limited capacity buffers. OR Spectr. 2006, 28, 151–176.
[CrossRef]

32. Liu, S.Q.; Kozan, E.; Masoud, M.; Zhang, Y.; Chan, F.T.S. Job shop scheduling with a combination of four buffering constraints.
Int. J. Prod. Res. 2018, 56, 3274–3293. [CrossRef]

33. Papadimitriou, C.H.; Kanellakis, P.C. Flowshop Scheduling with Limited Temporary Storage. J. ACM (JACM) 1980, 27, 533–549.
[CrossRef]

34. Ruiz, R.; Vázquez-Rodríguez, J.A. The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 2010, 205, 1–18. [CrossRef]
35. Lebbar, G.; El Abbassi, I.; Jabri, A.; El Barkany, A.; Darcherif, M. Multi-criteria blocking flow shop scheduling problems:

Formulation and performance analysis. Adv. Prod. Eng. Manag. 2018, 13, 136–146. [CrossRef]
36. Fatemi-Anaraki, S.; Tavakkoli-Moghaddam, R.; Foumani, M.; Vahedi-Nouri, B. Scheduling of Multi-Robot Job Shop Systems in

Dynamic Environments: Mixed-Integer Linear Programming and Constraint Programming Approaches. Omega (UK) 2023, 115,
102770. [CrossRef]

37. Soltani, S.A.; Karimi, B. Cyclic hybrid flow shop scheduling problem with limited buffers and machine eligibility constraints. Int.
J. Adv. Manuf. Technol. 2015, 76, 1739–1755. [CrossRef]

38. Wang, X.; Tang, L. A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers. Comput. Oper. Res.
2009, 36, 907–918. [CrossRef]

39. Yaurima, V.; Burtseva, L.; Tchernykh, A. Hybrid flowshop with unrelated machines, sequence-dependent setup time, availability
constraints and limited buffers. Comput. Ind. Eng. 2009, 56, 1452–1463. [CrossRef]

40. Andrés, C.; Maheut, J. Secuenciación con A lmacenes L imitados. Una R evisión de la Literatura. Dir. y Organ. 2 El Probl. de
Secuenciación con al-Macenes Ltd. 2018, 66, 17–33.

41. Python API Details—Gurobi Optimization. Available online: https://www.gurobi.com/documentation/9.5/refman/py_python_
api_details.html (accessed on 12 June 2023).

42. Docplex.cp Reference Manual—DOcplex.CP: Constraint Programming Modeling for Python V2.25 Documentation. Available
online: https://ibmdecisionoptimization.github.io/docplex-doc/cp/refman.html (accessed on 12 June 2023).

43. Laborie, P. Planning/Scheduling with CP Optimizer; IBM: Armonk, NY, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-642-01929-6_12
https://doi.org/10.1007/s10601-018-9281-x
www.aaai.org
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4415&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4415&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-319-18008-3_30
https://doi.org/10.1109/TCYB.2021.3081805
https://www.ncbi.nlm.nih.gov/pubmed/34133309
https://doi.org/10.1007/s00291-005-0008-1
https://doi.org/10.1080/00207543.2017.1401240
https://doi.org/10.1145/322203.322213
https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.14743/apem2018.2.279
https://doi.org/10.1016/j.omega.2022.102770
https://doi.org/10.1007/s00170-014-6343-0
https://doi.org/10.1016/j.cor.2007.11.004
https://doi.org/10.1016/j.cie.2008.09.004
https://www.gurobi.com/documentation/9.5/refman/py_python_api_details.html
https://www.gurobi.com/documentation/9.5/refman/py_python_api_details.html
https://ibmdecisionoptimization.github.io/docplex-doc/cp/refman.html

	Introduction
	The Shipbuilding Manufacturing Process
	Materials and Methods
	Problem Statement
	Mathematical Formulations
	MILP Model
	CPO Model

	Shipbuilding Case Data and Experiments
	Experimental Setup

	Results and Discussion
	Case Studies
	Shipbuilding Case

	Conclusions
	Appendix A
	References

