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Abstract: In order to identify and attack the multi-UUV (unmanned underwater vehicle) groups,
this paper proposes a method for identifying the critical nodes of multi-UUV formations. This
method helps in combating multi-UUV formations by identifying the key nodes to attack them.
Moreover, these multi-UUV formations are considered to have an unknown structure as the research
object. Therefore, the network structure of the formation is reconstructed according to its space–time
trajectory, and the importance of nodes is determined based on network structure entropy. As for
the methodology, firstly, based on the swarm intelligence behavior method, the motion similarity of
multi-UUV nodes in the formation is analyzed in pairs; furthermore, the leader–follower relationship
and the network structure of the formation are calculated successively. Then, based on this network
structure, the importance of the network nodes is further determined by the network structure
entropy method. Finally, through simulation and experiments, it is verified that the algorithm can
accurately construct the network structure of the unknown multi-UUV formation, and the accuracy of
the calculated time delay data reaches 84.6%, and compared with the traditional information entropy
algorithm, the ordering of the important nodes obtained by this algorithm is more in line with the
underwater formation network.

Keywords: critical node; multi-UUV formation; network structural entropy; formation identification;
network reconstruction

1. Introduction

Compared to a single UUV, multi-UUV formations have the advantages of modularity,
high fault tolerance, high efficiency, etc., and they can also complete more challenging
work through cooperation between them [1]. While the technology of using multiple
UUV formations for coordinated search and exploration operations is becoming more
sophisticated, this technology poses a threat to national maritime security. Facing the
increasingly complex UUV formation structure, it is of great significance to effectively
configure the UUV nodes in different positions according to the position relationship
and the importance of UUV nodes in the cluster, save the equipment costs, improve the
formation operation efficiency, or strike the important nodes of the enemy’s UUV formation
to reduce the efficiency of the formation operation at a minimum cost [2].

The coordinated behavior of the underwater formations can be viewed as a form of
grouping of collaborative intelligence, which represents the traits of a group intelligence
behavior displayed by individuals with simple intelligence through mutual cooperation
and organization while maintaining the naturally distributed and self-organizing char-
acteristics [3,4]. In nature, there are several groups of cooperative intelligent behaviors,
such as flocks of birds and fish migrating in groups to adapt to air or seawater [5,6]. For
instance, using high-precision GPS tracking of pairs of pigeons, Biro et al. found that if the
conflict between two birds’ directional preferences was small, individuals averaged their
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routes [7]. This study shows that there is a leadership relationship exists between pairs of
pigeons when the directional relationship between them exceeds a certain value. Based on
the behavioral characteristics of crowd intelligence, several scholars have carried out a lot
of research on this topic. Based on the leadership stability of the flock, Huo et al. designed
a control model suitable for heterogeneous formation flight of UAVs, aiming to effectively
avoid obstacles in unknown environments [8]. Moreover, Park and Kahng proposed a syn-
chronous leader–follower switching method by observing the migration pattern of birds [9].
Furthermore, for hierarchical leader–follower networks with time-varying layer-to-layer
delay, Xu et al. propose a new Hierarchical Event-based Control (HEC) algorithm [10].

With the increase in UUV formation members, a complex network, along with complex
interaction relationships and a large number of nodes, has been formed; therefore, it is
necessary to further explore the impact of nodes on the entire network and improve
the management and the control efficiency of the actual UUV network [11]. Currently,
the identification methods of the critical nodes are mainly divided into adjacent node
methods and path propagation methods, such as the degree centrality method [12], the
local centrality method [13], and the mesocentric method [14]. For instance, Kitsak et al.
believed that the location of a node in the center of the network indicates that the node is
more critical, and they proposed a K-core decomposition method based on this theory [15].
Moreover, Yu et al. identified the key nodes from the perspective of entropy by using the
impact of node clustering coefficient and the number of first and second-order neighbors
on the node importance [16]. In addition, Wang et al. proposed a novel community-
based method to identify a set of vital nodes for influence maximization in the attributed
networks [17]. Finally, Jiang et al. developed an attenuation-based supra-adjacency matrix
(ASAM) modeling method to further evaluate the importance of the nodes by calculating
the similarity between adjacent layers and the cross-layer networks [18].

For underwater confrontation scenarios, Liu et al. proposed a multi-UUV maneuver-
ing decision-making algorithm for a counter-game with a dynamic target scenario [19]. The
algorithm uses interval intuitionistic fuzzy rules to model the game and uses fractional
order recurrent neural networks (RNN) to achieve optimal maneuvering strategies for the
confrontation. From another point of view, considering the characteristics of large delay
of underwater communication, the algorithm proposed in this paper is to reconstruct the
network structure of enemy formation based on the time delay from the perspective of
identification-strike, and then rank the importance of nodes based on the network, in order
to strike the critical nodes of enemy formation to maximize the destruction of enemy combat
effectiveness for confrontation. The innovations of this paper mainly include: 1. propos-
ing a network reconstruction algorithm for unknown structure underwater formation,
and reconstructing the formation network structure through its spatiotemporal trajectory;
2. based on the formation network, proposing a critical node identification algorithm with
comprehensive importance network structure entropy to analyze the importance of each
node in the multi-UUV formation.

To sum up, this paper is divided as follows: in Section 2, the formation network
reconstruction is provided whereas the key node identification algorithm is presented in
Section 3. As for Section 4, it represents the results and the discussion and finally, the
conclusion and some future works are proposed in Section 5.

2. Formation Network Reconstruction
2.1. Leader–Follower Relationship

According to the analysis method of group intelligence behavior, the formation with
group intelligence has some similarity with the leader in behavioral actions, and there is
a hierarchical relationship characterized by the time delay between individuals [20]. For
example, in a pigeon flock, the follower pigeons will observe the movements of the leader
pigeons visually and make corresponding movements to maintain the consistency of the
formation. In the underwater formation, other UUVs follow the trajectory of the leader
UUV and keep the relative angle and distance to stabilize the formation, i.e., there are also
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motion similarities between individuals and leaders in the group. In reverse analysis, the
leader–follower relation between UUVs in underwater formations can be derived based
on their motion similarity analysis. The spatiotemporal trajectory data of UUV nodes is
analyzed in arbitrary pairs by using the correlation function, and the obtained correlation
coefficient can be used to characterize the motion similarity between the paired UUVs.
Moreover, when the corresponding motion correlation coefficient remains at a fairly high
value at any given moment, it can be regarded as the behavior of one UUV being “inherited”
by another one, that is, it is considered that there is a leader–follower relation between the
UUVs. Among them, the “inherited” behavior is to follow the UUV whereas the other is to
pilot the UUV. To quantify this link, the spatiotemporal trajectory function of any UUV in
the formation and other UUVs is analyzed to determine the motion correlation, and the
motion similarity function is established as follows:

Rt
ij(τ) = dot

(
⇀
u i(t),

⇀
u j(t + τ)

)
(1)

where
⇀
u i(t) represents the UUVi’s normalized speed at moment t,

⇀
u j(t + τ) represents the

UUVj’s normalized speed at moment t + τ, τ is time delay which is a variable, dot is the
inner product operator sign, and Rt

ij(τ) is the function of the motion correlation coefficient
between UUVi and UUVj at time t but for different delay times.

In addition, we set a threshold RT : when the motion correlation coefficient at a certain
point in time is bigger than the threshold (e.g., Rt

ij(τ) > RT), it is believed that there is a
leader–follower relation between the two UUVs at this moment. Therefore, in order to
better determine the appropriate delay time, in the actual calculation process, individual
motion correlation coefficients, having smaller values than the threshold, and mainly
caused by the instability of the data or the error of acquiring the data, are used. Thus, the
average motion correlation coefficient is determined as follows:

Rij(τ) =
1

mt − 1

(
mt−1

Σ
t=1

Rt
ij(τ)

)
(2)

where mt is the number of spatiotemporal trajectories, t ∈ [1, mt − 1], that is, a total of
mt − 1 motion correlation coefficients are generated in mt trajectory points at time delay τ.
Rij(τ) is the average motion correlation coefficient between the UUVi and UUVj at different
delay times τ. Moreover, the similarity of motion between the pairs of UUV is determined.

By establishing the above similar motion model, the correlation coefficient Rij(τ)

relative to the action between the paired UUVs under different time delays τ is obtained,
and the threshold to RT is set. Moreover, if Rij(τ) > RT is obtained for any value of τ, it is
considered that there is a leader–follower relationship between the paired vehicle; therefore,
the delay time τ resulting in the maximum value of Rij(τ) is defined to be the relevant time
delay between the paired UUVi and UUVj, and it will be denoted by τ∗ij . Thus, the next step

consists of setting the time delay matrix Tn×n =
(

τ∗ij

)
to represent the delay relationship

between the formation UUVs: when τ∗ij is positive, it means that the navigation direction
of UUVi is ahead of the UUVj, that is, UUVi is the leader, and UUVj is the following UUV.
However, if τ∗ij is negative, the roles of the UUVs are the opposite.

2.2. Formation Hierarchy

Limited by the narrow bandwidth of the underwater acoustic channel and the UUV
formation method, the UUV formation movement mostly adopts a hierarchical interac-
tion structure [21]. Moreover, it is faster and more efficient in navigation and command
execution than in the equal interaction structure. While using hierarchical interaction in
the underwater unmanned cluster formation, there is a hierarchical structure relationship
between UUVs, and the higher the level of UUVs, the better its control and the greater the
importance in the formation network will be.
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Based on the similar motion model, the leader–follower relationship between all UUVs
and other UUVs in the formation is obtained and the hierarchical relationship of the entire
network is analyzed. In the leader–following model, the movement command is issued
according to the hierarchy, and the UUV at the top of the hierarchy has a certain leadership
relationship with the other UUVs. However, when both UUVi and UUVj of the previous
level have a leadership relationship with the UUVk pair of the next level, returning to the
judgment of the time delay τ∗ is performed: if τ∗ji > τ∗ki > 0, it Is considered that it has
a leadership following relationship of the UUV with a smaller delay, that is, UUVk has a
leadership relationship with UUVj.

2.3. Network Weight Matrix

In the network topology diagram, there is a certain weight coefficient between the two
nodes to characterize the location proximity relationship between them. For example, when
vertices represent some physical locations, the weight of the edge between two vertices can
be set to the actual distance. During network formation, the distance between the different
UUVs reflects the proximity relationship between the nodes, and here the normalized
distance is used to represent the weight of the connected edges of nodes, usually the closer
the distance the more reliable the interaction between two nodes is, and the weight of the
connected edges is considered to be higher. Moreover, the distance dij between UUVi and
UUVj is normalized as one of the factors affecting the weights on the edges; thus, one can
get the following equation:

Dij =

dij −min
i,j

(
dij
)

max
i,j

(
dij
)
−min

i,j

(
dij
) (3)

where Dij is the result of normalized distance dij. In addition, considering that the correla-
tion between the different UUVs is related to the motion similarity, higher motion similarity
implies higher inheritance, and the more important the connected edge is considered to
be. Thus, the average motion correlation coefficient Rij(τ

∗) of UUVi and UUVj at the time
delay τ∗ij is introduced into the weights on the edges of both nodes i and j in the network
topology. It is then combined with the above-normalized distance in order to obtain the
weight on the edge formed by both nodes:

wij =
1

Dij
+ Rij(τ

∗) (4)

2.4. Mobile Formation Network Structure

According to the above steps, the leader–follower relationship, the hierarchical struc-
ture, and the weights on the edges of two nodes in the network were obtained. Therefore,
the adjacency matrix An×n =

(
aij
)
, pointed to the network nodes, and the weight matrix

Wn×n =
(
ωij
)

representing the weights of the nodes, was established. In this matrix, if
there is a leader–following relationship between nodes, the value of the cell will be equal to
one (e.g., aij = 1), and vice versa, the absence of a relation yields a null value (e.g., aij = 0).
Based on these definitions, we attained a map of the network topology of the mobile UUV
formation. The following guidelines are made when creating the network topology dia-
gram, though, in order to be more in line with the characteristics of the underwater cluster
formation. This is because underwater communication has a distance limit, each UUV in
the unmanned cluster formation has a different task, and the sensors carried on the boat
are also different. Information is only dealt with layer by layer across neighboring levels;
each UUV only receives instructions provided by one UUV, but can issue instructions to
several UUVs. Thus, through regular filtering, the network structure reconstruction of the
mobile UUV formation is completed.



J. Mar. Sci. Eng. 2023, 11, 1538 5 of 18

3. Key node Identification Algorithm
3.1. Network Structure Model

In order to represent the connection between the different individuals in the mobile
UUV formation in a more intuitive and clear way, the use of diagrams, where the nodes
represent UUVs and the edges represent the interconnections between UUVs, was the
applied solution. This network structure model is usually expressed as G = (V, E, W),
where V = {v1, v2, · · ·, vn} is the set of network nodes and n = |V| is the total number of
nodes in the network. Moreover, E = {e1, e2, · · · , em} is the set of edges between nodes,
and m = |E| is the total number of edges in the network. Finally, W =

(
wij
)

N×N represents
the weight matrix where wij represents the weight value on the edge of nodes i and j, and
generally has wij 6= wji in directed networks. As for a weighted network, it can be thought
of as a weighted network with all the weight values of 1. Finally, it is important to mention
that there are four basic types of networks: undirected networks, weighted undirected
networks, unweighted directed networks, and weighted directed networks [22]. All types
are shown in Figure 1:
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3.2. Network Structure Entropy

In the network topology, the performance of the network scalelessness is considered
a kind of network “heterogeneity”, and this “heterogeneity” of complex networks can be
described using the concept of “entropy”, that is, the entropy of the network structure [23].

In order to better establish the entropy model based on the network structure, the
following keywords have been defined:

(1) Degree value. The degree value of a node is called the node strength, and the
degree ki of node vi is defined as the number of nodes directly connected to the node vi.
Moreover, ki is expressed using the following relation:

ki =
n
Σ

j∈ Γi
vij (5)

where Γi is the collection of neighbor nodes of the particle node vi. As for the weighted network,

ki = Σ
j∈ Γi

wij (6)

where wij is the weight on the edge connecting node vi to node vj. In a directed network,
the degree value of a node is divided into an outdegree value and an in-degree value, and
it is generally believed that both values have different effects on the node, that is

ki = λkin
i + (1− λ)kout

i (7)
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where kin
i and kout

i are the indegree and outdegree values of node vi, respectively, and λ is
the influence coefficient. When λ > 0.5, the relevance of the node is thought to be more
influenced by its input strength.

(2) Adjacency. To more accurately reflect the impact of a node on its connected neighbor
nodes, the adjacency of a node is defined as follows:

Qi = ∑
w∈ Γi

kiw + ∑
w∈ Γi

kwi (8)

where kiw and kwi are the degree value of the node pointing to vi and the node pointed by
vi in the neighboring nodes of node vi, Γi is the set of neighbor nodes of node vi, and Qi is
the degree of adjacency of node vi (the greater the value of Qi is, the higher its impact on
neighboring nodes will be).

(3) Importance. The nodes in the network affect each other, and considering only the
degree value will lose the influence of indirect neighbors on the nodes, and considering
the global nodes will increase the complexity of the algorithm, and the effect may not be
very good. The influence of a node is limited, and it only has a large influence on its nearby
neighbors. The probability function is used to describe the chance to select a given node
among its neighbors, which is defined as:

pi =
ki
Qj

, j ∈ Γi (9)

In the entropy of network structures based on the node degree, the probability func-
tions can be used to express the importance of nodes. However, in underwater mobile
formations, often the higher the level of UUV is, the greater its importance will be. There-
fore, considering the importance of the degree and level of nodes, the comprehensive
importance is introduced to express the importance of the network nodes. Considering
that the control commands and the information transmission in the formation are carried
out layer by layer, the high-level UUV will have an impact on the low-level UUV; therefore,
for an N-level network, the importance of the hierarchical nodes should be continuously
reduced, and the weight factor δi of the nodes on the level n is expressed as follows:

δi =
1
N
(N − n + 1) (10)

The comprehensive importance of the node is calculated as follows:

Hi = pi · δi =
ki
Qj
· 1

N
(N − n + 1) (11)

(4) Network structure entropy. Information entropy uses probabilistic and statistical
methods to measure the complexity of a system, which represents the expectation of the
amount of information brought by all possible events, and it can be used as well to measure
the importance of network nodes. Consider the unrelated events x and y to be equal to the
sum of the information obtained when the observed events occur at the same time, that
is h(x, y) = h(x) + h(y), and p(x, y) = p(x)× p(y). Therefore, it can be obtained that h(x)
must be related to the logarithm of p(x). Thus, the relation between both variables can be
written as follows:

h(x) = − log2 p(x) (12)

Moreover, the expected amount of information is defined as follows:

E = E(h(x)) = −
n
Σ

i=1
p(x) log2 p(x) (13)
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Make sure, at this level, that the information entropy value is always positive, take
the absolute value of the node information entropy when calculating it, and replace the
probability function with the comprehensive importance Hi to obtain the entropy Ei of the
collar network structure. Therefore, the resulting equation is as follows:

Ei = ∑
j∈Γi

|(−Hi log2 Hi)| (14)

3.3. Critical Node Identification Algorithm

By analyzing the interaction between the nodes and their indirect nodes, the entropy
of the network structure is used to measure the importance of several nodes in the network.
Considering that in the formation network structure, the instruction is transmitted from
a high level to a low-level UUV, the node importance of the directed network is only
analyzed; therefore, it is considered that the entry value of the node is smaller than the
influence of the degree value on the node, and the impact factor is λ = 0.45. In more detail,
the milestone algorithm steps are presented as follows:

Step 1: Analyze the formation network according to the mobile UUV formation
spatiotemporal trajectory meter and get the adjacency matrix A and the weight matrix W.

Step 2: Calculate the node degree value according to the difference between the node
outdegree and indegree:

kin
i = ∑

j∈Γi

wji (15)

kout
i = ∑

j∈Γi

wij (16)

ki = λkin
i + (1− λ)kout

i (17)

Step 3: Calculate the degree of adjacency:

Qj = λ ∑
w∈Γj

kwj + (1− λ) ∑
w∈Γj

kwj (18)

Step 4: Calculate the overall importance:

pi =
ki
Qj

, j ∈ Γi (19)

Hi = pi · δi (20)

Step 5: Calculate the entropy of the network structure:

Ei = ∑
j∈Γi

|(−Hi log2 Hi)| (21)

The calculation process is shown in Figure 2. Based on the above steps, the network
structure entropy of each node in the network can be calculated. According to the size of
entropy, each node is ordered, and the node entropy value is classified from large to small
corresponding to the importance of this node.
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4. Validation and Analysis

The identification of the key nodes of the mobile UUV formation is to establish the
network topology of the mobile formation by analyzing spatiotemporal trajectories in
order to further rank the importance of the nodes by the key node identification algorithm.
Therefore, this section sets up the simulation experiments and the lake experiments to
verify the efficiency of the proposed algorithm.

4.1. Simulation and Experiments Analysis

In order to verify the effectiveness of the key node identification algorithm based on
the entropy of the network structure, this section uses Matlab© to perform the simulation
experiments. Based on the leader–follower formation control model, we considered one
leader and seven followers to navigate a “U” trajectory in a triangular formation to verify
the discrimination effect of the algorithm. In this simulation, the distance matrix d and
delay matrix T are set as follows. (In the matrix d A W, the element 0 indicates that the two
nodes are not directly related and have no real physical significance):

d =



0 10 10 0 0 0 0 0
10 0 0 0 6 0 6 0
10 0 0 6 0 6 0 0
0 0 6 0 0 0 0 5
0 6 0 0 0 0 0 0
0 0 6 0 0 0 0 0
0 6 0 0 0 0 0 0
0 0 0 5 0 0 0 0


, T =



0 1 2 3 3 3 3 4
−1 0 0 1 2 1 2 3
−2 0 0 1 1 1 1 2
−3 −1 −1 0 0 0 0 1
−3 −2 −1 0 0 0 0 1
−3 −1 −1 0 0 0 0 1
−3 −2 −1 0 0 0 0 1
−4 −3 −1 −1 −1 −1 −1 0


(22)

In addition, we added the trajectory of an unrelated UUV to the formation in the
simulation to compare and judge the effects of this additional feature. Therefore, the
simulation results are displayed in Figure 3.

Figure 3 shows that the follower trajectories the leader well at a predetermined angle
and distance based on the influence of the controller. Then, a pairwise analysis was
performed on the spatiotemporal trajectories of all UUVs using the aforementioned motion
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similarity model. The delay matrix and the motion correlation coefficient (refer to Table 1)
of the UUV formation are calculated as follows:

TU =



0 1 2 3 3 3 3 4 6
−1 0 0 2 2 1 2 3 6
−2 0 0 1 2 1 2 3 6
−3 −2 −1 0 0 0 0 1 6
−3 −2 −2 0 0 0 0 1 6
−3 −1 −1 0 0 0 0 2 6
−3 −2 −2 0 0 0 0 1 6
−4 −3 −3 −1 −1 −2 −1 0 6
−6 −6 −6 −6 −6 −6 −6 −6 0


(23)
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By comparing the time delay matrix T and TU , the accuracy of the time delay data
obtained by the algorithm was 84.6%, and in addition, the erroneous time delay data did
not appear between nodes with the direct leader–follower relationships, and the erroneous
data did not affect the accuracy of the subsequent reconstruction of the formation network
structure. Based on the above delay matrix, the time delay between UUVs with a leader–
following relationship represents an antisymmetric transfer, and the positive and negative
delays indicate whether the UUV is following or being followed. Moreover, these values
also specified the delay time for the follower to receive the leader’s movement information
and take action, which is in line with the law of following a relationship. When the time
delay was null, it means that there was no leader–following relationship between the
paired UUVs.

Referring to Table 1, the correlation coefficient corresponds to the time delay, and
the motion correlation coefficient between the UUVs is varying at different time delays,
as shown in Figure 4. Since the leader following the model does not introduce errors,
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such as propulsion, hydroacoustic delay, and complex environmental interference, the
motion correlation coefficient between each UUV at the corresponding delay time was
very large; however, when being compared to the motion correlation coefficient of the
unrelated-UUV, there was a significant gap, and the unrelated UUV’s motion correlation
coefficient was much smaller than others. Setting the threshold value Rmin = 0.9, and as
∀Runretaed(τ

∗) < Rmin, the correlation coefficient of the motion of the unrelated UUV and
any other UUV was less than the threshold; therefore, it is considered that the unrelated
UUV does not have a leader–follower relationship with any other UUV.

Table 1. “U” shape trajectory motion correlation coefficient.

Leader
Follower

Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7 Unrelated

Leader 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8271
Follow1 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8347
Follow2 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 0.8363
Follow3 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 0.8438
Follow4 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000 0.8444
Follow5 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 1.0000 0.8424
Follow6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 0.8448
Follow7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 0.8507

Unrelated 0.8250 0.8326 0.8341 0.8416 0.8423 0.8402 0.8427 0.8486 1
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Referring to the TU matrix Equation (23), and according to the size of the delay, the
leader–following relationship of UUVs between pairs was judged, and it was sorted ac-
cording to the leader–follower level, and the following points were calculated: all followers
had a following relationship for the leader, whereas Follow1 and Follow2 had a leadership
relationship for the remaining UUVs, and Follow3, Follow4, Follow5, and Follow6 had a
leadership relationship for Follow7.

Therefore, the formation network hierarchy was obtained: the UUV leader belonged
to the first level, Follow1, Follow2 were part of the second level, Follow3, Follow4, Follow5,
and Follow6 belonged to the third level, and, finally, Follow7 belonged to the fourth
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level. The network relationship, obtained through the above analysis, was still relatively
complex where one UUV had a following relationship with multiple UUVs at the same
time. Considering the communication restrictions of the underwater formation, etc., it was
considered to have a following relationship with the nearest vehicle. Through the analysis
of the network again using this rule, the network structure of the formation can be obtained,
as shown in Figure 5.
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Therefore, the collar matrix A of the formation network was obtained as follows, and,
when being combined with the behavioral correlation coefficient matrix, it was brought into
the established node edge weight coefficient model; hence, the weight coefficient matrix W
of the formation network can be expressed as follows:

A =



0 1 1 0 0 0 0 0
1 0 0 0 1 0 1 0
1 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0


(24)

W =



0 2 2 0 0 0 0 0
2 0 0 0 1.2 0 1.2 0
2 0 0 1.2 0 1.2 0 0
0 0 1.2 0 0 0 0 1
0 1.2 0 0 0 0 0 0
0 0 1.2 0 0 0 0 0
0 1.2 0 0 0 0 0 0
0 0 0 1 0 0 0 0


(25)

According to the formation network structure and its corresponding collar relationship
and weight coefficient matrices, the node importance is calculated by using the network
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structure entropy model. Firstly, according to the adjacency and the weight matrices of the
network, the input intensity value kin

i and the output intensity value kout
i of each node are

calculated. Moreover, according to Equation (17), the comprehensive strength value of each
node is calculated to get Table 2.

Table 2. Node comprehensive strength value.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

ki 0.6 2.06 2.06 1.17 1.02 1.02 1.02 0.85

Then, also taking λ = 0.45, according to Equation (18), the comprehensive adjacency
strength value q of the node is calculated as shown in Table 3.

Table 3. Node adjacency strength value.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

Qi 0.9 2 2.15 2.7 2.55 2.55 2.55 1.7

Finally, according to Equation (21), the entropy of each network structure is calculated,
and the following results are presented in Table 4.

Table 4. Node network structure entropy.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

Ei 2.622 5.226 4.152 1.365 0.486 0.456 0.486 0.367

Based on the entropy of the network structure calculated above, the followers can be
arranged using the following order: Follow2 > Follow1 > Leader > Follow3 > Follow5 >
Follow4 = Follow6 > Follow7. According to the network structure, the relevance of the
Follow1 and Follow2 nodes was higher, since Follow1 and Follow2 regulated information
relative to the input and output flows. Moreover, Follow3 controlled Follow7; therefore,
it was more critical than other followers of the same level. Finally, Follow4, Follow5, and
Follow6 were all considered as edge nodes of the formation network; thus, their information
entropy was basically the same, and this was conforming to the network structure law.

By using the traditional information entropy algorithm [24], the information entropy
of each node under the network result was calculated as shown in Table 5.

Table 5. Node information entropy.

Node Leader Follow1 Follow2 Follow3 Follow4 Follow5 Follow6 Follow7

value 5.674 20.372 17.374 9.970 0.303 0.415 0.303 0.255

In the above table, the order of the information entropy of the nodes is: Follower1 >
Follower2 > Follower3 > Leader > Follower5 > Follower4 = Follower6 > Follower7, but
we believe that the node leader was more important than the node Follower3, and the
node Follower2 was more important than the node Follower1. Compared with the network
structure entropy results in Table 4, it can be obtained that the improved algorithm in this
paper was more in line with the actual situation in ordering the important nodes of the
underwater network structure than the traditional information entropy algorithm.

4.2. Lake Experiments and Analysis

In order to verify the effectiveness of critical node identification of the multi-UUV
formation algorithm proposed in this paper, the lake formation experiment was carried out,
and the real dead reckoning data were obtained to place the detection of UUV formations.
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Therefore, three vehicles set up the trajectory of vehicles, not linked to the formation
navigation, while sailing in linear and triangular formations on the Qiandao Lake in
Hangzhou City as the test location in order to confirm that the algorithm can successfully
recognize different network structures. Figure 6a shows the experiment platform and
Figure 6b shows UUV formation sailing on the water. Two sets of trajectory points recorded
by the UUV itself are shown in Figure 7:
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Referring to the paths of Figure 7, the follower has several degrees of error with respect
to the leader’s trajectory, but the trajectory it follows has generally the same shape. The
space–time UUV trajectories were substituted every two pairs with the motion similarity
model to obtain the following motion correlation coefficient (refer to Equation (25)) and
time delay tables (refer to Tables 6 and 7):
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Table 6. Liner shape motion correlation coefficient.

Leader
Follower

Leader Follow1 Follow2 Unrelated

Leader 1 0.995 0.987 0.769
Follow1 0.995 1 0.990 0.748
Follow2 0.987 0.990 1 0.788

Unrelated 0.767 0.742 0.788 1

Table 7. Triangular motion correlation coefficient.

Leader
Follower

Leader Follow1 Follow2 Unrelated

Leader 1 0.996 0.997 0.883
Follow1 0.997 1 0.999 0.861
Follow2 0.997 0.999 1 0.858

Unrelated 0.856 0.839 0.828 1

In the above motion correlation coefficients table, the average motion similarity be-
tween the leaders and the followers was high; however, the motion similarity coefficients
of spatiotemporal trajectories of unrelated UUV and other UUVs were quite different com-
pared to others. Setting the threshold Rmin = 0.9, the similarity coefficient of the motion
between the unrelated UUV and any other UUV was below the threshold; therefore, it is
considered that there is no leader–follower relationship with any other UUV.

Tline =


0 3 5 6
−3 0 3 6
−5 −3 0 −6
−6 −6 −6 0

, Ttri =


0 2 1 5
−2 0 0 5
−1 0 0 5
5 5 5 0

 (26)

In the above time delay matrix, when the formation was carried out in a liner shape,
if the UUV leader is the leader, the time delay between it and Follow1 and Follow2 is
greater than zero. However, when Follow1 was the leader, the time delay between it
and the UUV leader was less than zero, and the time delay with Follow2 was greater
than zero. Therefore, the UUV leader had the leadership relationships for Follow1 and
Follow2, and Follow1 also had leadership relationships for Follow2, which resulted in the
structural relationship shown in Figure 8a. When moving in a triangle, the UUV leader
had a leadership relationship with Follow1 and Follow2. Regardless of whether Follow1
or Follow2 were leaders or followers, the time delay between them was equal to zero,
that is, there was no leader–following relationship, belonging to the same level, and the
structural relationship, shown in Figure 8b, can be obtained, which was in line with the
experimental setting.

Thus, the adjacency matrix A1 and A2 of the formation network was obtained:

A1 =

0 1 0
1 0 1
0 1 0

, A2 =

0 1 1
1 0 0
1 0 0

 (27)

In this experiment, the distances between the vehicles were all the same, and, combined
with the motion similarity coefficient, the weight matrices under the two formations can
be obtained:

W1 =

 0 1.005 0
1.005 0 1.01

0 1.01 0

, W2 =

 0 1.004 1.003
1.004 0 0
1.003 0 0

 (28)
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structure. The letters L and F stand for leader UUV and follower UUV; F1 denotes Follow1 UUV
and F2 denotes Follow2 UUV. The arrows indicate the direction of information transmission in the
formation network.

According to the weight coefficient matrix, we found out that the difference between
the weight coefficients was very small, so the directed weightless network structure entropy
algorithm was applied to calculate the importance between the nodes.

According to the Equation (17), the comprehensive strength value of each node in both
networks is calculated to get Tables 8 and 9.

Table 8. Liner shape node comprehensive strength value.

Node Leader Follow1 Follow2

ki 1.103 0.451 0.451

Table 9. Triangular node comprehensive strength value.

Node Leader Follow1 Follow2

ki 0.553 1.009 0.456

Then, also taking λ = 0.45, according to the Equation (18), the comprehensive adjacency
strength value of the node in both networks was calculated as shown in Tables 10 and 11.

Table 10. Liner shape node adjacency strength value.

Node Leader Follow1 Follow2

Qi 0.496 0.496 0.496

Table 11. Triangular node adjacency strength value.

Node Leader Follow1 Follow2

Qi 0.555 0.499 0.454

Finally, according to Equation (21), the entropy of each network structure was calcu-
lated, and the following results of both networks are presented in Tables 12 and 13.
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Table 12. Liner shape node network structure entropy.

Node Leader Follow1 Follow2

Ei 0.162 4.128 0.120

Table 13. Triangular node network structure entropy.

Node Leader Follow1 Follow2

Ei 5.120 0.125 0.125

According to the node network structure entropy obtained in the above tables, the
size of the entropy of each node was ordered, in the liner shape formation, as Follow1 was
responsible for connecting the UUV leader and Follow2 in the middle position of the line
shape; therefore, this position was more critical, and the UUV leader was responsible for
piloting and sending data, so its importance was greater than that of Follow2.

As for the triangular formation, the UUV leader was responsible for connecting
Follow1 and Follow2, and it was also responsible for calculating and sending the route
data, which was more critical than the other two; moreover, the other two followers had
the same position, the same role, and the same importance.

In this paper, the trajectory used was recorded by the aircraft itself. The experiment in
this paper was mainly to prove that under a series of continuous spatiotemporal trajectories,
the algorithm of this paper can be used to reconstruct the network structure of unknown
formations and effectively rank the importance of nodes. However, in real situations, the
results obtained when observing the formation’s trajectory through sonar equipment or
other methods will not be so dense, and the results obtained due to sensor interference will
be biased. It is possible to consider adding an error model and using a filtering algorithm
to process the tracks detected by the sonar.

5. Conclusions

Aiming at the critical node identification problem of UUV formation, this paper pro-
posed a formation key node identification method, based on network structure entropy,
which establishes the network structure of mobile UUV formation by presenting the motion
similarity model, and then calculating the information entropy of network nodes by using
the weighted network structure entropy algorithm to determine the importance of each
node. The simulation experiments and lake experiments in this paper fully verify the effec-
tiveness of the identification algorithm, which can be calculated from the spatiotemporal
trajectory of the formation to calculate the importance ranking of the formation nodes, and
also verify that it is feasible to use this method for underwater cluster countermeasures.
As for future works, it should be considered to use sonar equipment to acquire formation
trajectory data with disturbances to further validate the effectiveness of the algorithm. In
the next step, it is planned to further enhance the structure reconstruction of unknown
multi-UUV formations in other complex situations for discontinuous multi-UUV spatiotem-
poral trajectories, considering the impact of the hydroacoustic communication packet’s loss
and other effects on the control formation for more accurate critical node identification.
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