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Abstract: This paper presents a systematic investigation that encompasses the safety assessment
of a fuel preparation room (FPR) intended for a hydrogen-fueled ship. The primary objective is
to determine the appropriate ventilation strategy to mitigate the risks associated with potential
hydrogen leakage. The study focuses on a case involving an FPR measuring 10.2 m × 5.3 m × 2.65 m,
which is part of a 750 DWT hydrogen-powered fishing vessel. To identify the potential events leading
to hydrogen dispersion, an event tree analysis is conducted. Additionally, existing regulations and
guidelines related to the safety assessments of hydrogen leakage in enclosed areas are summarized
and analyzed. Computational fluid dynamics, FLACS-CFD, are utilized for the consequence analysis
in order to evaluate the impact of ventilation on hydrogen dispersion and concentration within
the FPR. The research findings indicate significant effects of ventilation on the hazards and safety
assessments of FPRs and high-pressure fuel gas supply systems. The study highlights that hydrogen
vapor tends to accumulate at the ceiling and in the corners and spaces created by the equipment.
The position and size of ventilation openings greatly influence the dispersion of hydrogen leakage.
Proper ventilation design, including top inlet ventilation and outlet ventilation on the opposite side,
helps to maintain a safe FPR by facilitating the efficient dispersion of hydrogen vapor. Moreover,
locating inlet ventilation on the same side as the outlet ventilation is found to hinder dispersion,
while the cross-ventilation achieved by placing inlets and outlets on opposite sides enhances airflow
and dispersion. Consequently, it is recommended to prioritize the structural design of FPRs and
implement enhanced safety measures. Additionally, updating the relevant regulations to address
these concerns is strongly advised.

Keywords: hydrogen as marine fuel; fuel preparation room; safety assessment; hydrogen leakage;
ventilation

1. Introduction

Maritime transportation is the most effective means of shipping goods and is responsi-
ble for 80% of the total volume and more than 70% of the overall value of global trade [1,2].
Ship operations contribute to the release of greenhouse gases (GHGs) and pollutants, such
as carbon dioxide (CO2), methane (CH4), sulfur oxides (SOx), and nitrogen oxides (NOx),
due to fuel consumption [3]. The increasing concern regarding air pollution-induced cli-
mate change has led to the enforcement of stringent regulations aimed at reducing the
emission of greenhouse gases (GHGs) and hazardous substances into the atmosphere [4].
These pollutants play a significant role in exacerbating the issue of air pollution. In order to
address this problem, the International Maritime Organization (IMO) has implemented
multiple guidelines and regulations aimed at managing greenhouse gas emissions (GHGs)
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and addressing airborne pollutants [5]. As part of these efforts, MARPOL Annex VI im-
plemented a reduction in the allowable sulfur content in marine fuel from 3.5% to 0.5%,
effective as of 1 January 2020 [6,7]. This initiative has fostered the adoption of innovative
technologies, sustainable fuel sources, and alternative fuels that comply with permissible
carbon emission standards for international maritime trade [8–10]. Hydrogen has emerged
as a highly promising energy source [11] for future use due to its renewable nature and
environmentally friendly characteristics [12,13]. By reducing dependence on fossil fuel [14]
and minimizing greenhouse gas emissions, hydrogen has the potential to make a significant
impact [15]. It can be effectively utilized as a fuel in different applications, including trans-
portation and power generation [4,16]. Hydrogen showcases effective power generation
capabilities, whether employed in a conventional engine or a fuel cell. Due to its distinctive
physical properties, hydrogen possesses safety characteristics [17] that significantly differ
from commonly utilized fuels such as gasoline and natural gas. Its significantly low density,
which is 14 times lighter than air, contributes to its overall safety when compared to other
fuels. In well-ventilated areas, hydrogen disperses rapidly, leading to a reduced energy
release in the event of an explosion. However, after an accidental release, hydrogen fuel
is more prone to fire hazards due to its lower ignition temperature and wider range of
flammability limits (4–75%) [18]. Moreover, since hydrogen is both odorless and colorless,
the primary focus in the development of hydrogen sensors is to detect any leaks and
prevent hydrogen-related accidents. Consequently, there exists a significant risk of fire
or explosion incidents in the event of a hydrogen leak [19,20]. Therefore, it is crucial to
prioritize the management of leaks, as well as the installation of detection and ventilation
systems, to ensure safety in situations involving hydrogen energy where fire and explosion
incidents may occur [21].

In response to this concern, the International Maritime Organization (IMO) has imple-
mented resolution MSC.391(95), referred to as the International Code of Safety for Ships
using Gases or Low-flashpoint Fuels (IGF Code) [22], which specifically includes hydrogen
as a viable fuel alternative. As stated in this resolution, the IMO requires the design and
installation of a fuel preparation room for the ship using low-flashpoint fuel. A fuel prepa-
ration room refers to an area that houses the pumps, compressors, and/or vaporizers used
for the purpose of preparing fuel [23]. The alarm is operated if gas is detected at 20% of the
lower flammable limit (LFL) of the fuel leakage. Despite the existence of the IGF Code and
other relevant regulations and standards, there is a lack of adequately specific guidance
regarding the design and layout of a fuel preparation room (FPR) that accommodates
high-pressure FGSSs (fuel gas supply systems) [23]. Sufficiently detailed standards and
guidance for the ventilation of the fuel preparation room which contains the high-pressure
fuel gas supply system are necessary and required to reduce the harmful effect in the case
of hydrogen leakage.

Jeong et al. [24] analyzed the safety assessment of fuel preparation room for the
300,000 DWT of an LNG-fueled ship. The quantitative risk assessment approach was
employed for analysis and showed that the existing regulations pertaining to the safety
of fuel preparation rooms did not sufficiently address the significant risk of explosions.
The frequency of such explosions was estimated at 3.13 × 10−4 per year. However, the
current IGF Code lacks specific safety requirements regarding the potential risk of ex-
plosions in LNG-fueled ships that could result in damage to the fuel preparation room.
The extent of an explosion impact on the structures is notably influenced by the ignition
point and fuel composition. This suggests that effectively controlling ignition points and
fuel–air ratios can serve as effective safety measures to mitigate the impact of explosions.
Dadashzadeh et al. [25] simulated a hydrogen release process from a fuel gas supply system
using the computational fluid dynamics tool (CFD). The dispersion behavior of hydrogen in
the enclosed area was evaluated. The findings demonstrated a notable enhancement in ven-
tilation through the utilization of natural airflow. With one opening, there was a reduction
in fuel gas in the parking area of 47%, and with two openings, the reduction reached 59%.
Nonetheless, additional measures were deemed necessary to achieve a gas concentration
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below 5%, which is considered an acceptable level. Sehefer et al. [26] investigated the flow
characteristics and dimensional properties of hydrogen released in the small-scale area.
The experiment and CFD modeling are combined to measure the hydrogen distribution
characteristics. The centerline probability density distributions reveal that pure hydrogen
(H2) disperses and mixes with the entrained air within a range of 10 diameters from the
jet exit. As we progress downstream, these distributions exhibit slight deviations from
Gaussian statistics and display a negative skewness, indicating a preference for lower
values of the H2 mole fraction. Hydrogen poses risks because of its characteristics, such as
a low ignition temperature, minimal ignition energy, broad explosion range, and rapid com-
bustion rate. When confined, hydrogen, like other flammable gases, becomes hazardous.
In an open environment, the likelihood of a hydrogen explosion is reduced compared to a
confined space due to its high buoyancy. Despite the mandate of the IGF Code, the previous
work primarily focuses on adhering to general assessment regarding hydrogen dispersion
and explosion [16]. Nevertheless, there has been a deficiency in comprehensive research
regarding the safety aspects of FPRs that are equipped with high-pressure fuel gas supply
systems (FGSSs), particularly in terms of understanding the impact of ventilation on the
dispersion behavior of hydrogen.

The risks associated with accidents like dispersion and explosions in the hydrogen
preparation room escalate significantly. However, there has been limited research dedi-
cated to studying the diffusion behavior of hydrogen and the effect of the ventilation on
dispersion characteristics in the context of hydrogen-powered ships. Previous studies have
primarily focused on the dispersion behavior or risk assessment of low-flashpoint fuel
release in the open or enclosed space area. This study seeks to fill this knowledge gap
by investigating how the placement and size of ventilation systems affect the dispersal
of unintentional hydrogen releases. The general scheme of ventilation designation for
the fuel preparation room is discussed. In addition, a case study is also performed with
a fuel preparation room of 750 DWT in a fishing ship powered by hydrogen. Using the
simulation results and software, FLACS-CFD, the safety consideration is assessed by tak-
ing into account the variable factors affecting the dispersion behavior. Furthermore, the
considerations and recommendations regarding the importance of selecting ventilation for
a fuel preparation room to mitigate the worst effects of released hydrogen are presented. It
is anticipated that the results of this research will offer valuable knowledge that can con-
tribute to enhancing the regulations concerning the design and layout of fuel preparation
rooms (FPRs).

2. Risk Assessment of FPRs

The objective of this study was to assess the risk levels associated with FPRs equipped
with high-pressure FGSSs. To accomplish this, a four-step procedure was developed, fol-
lowing the guidelines for Formal Safety Assessment (FSA) provided by the International
Maritime Organization (IMO) [27]: accident scenario analysis, frequency analysis, con-
sequence analysis, and risk assessment. The procedure of risk assessment for FPRs is
presented in Figure 1.

Scenario analysis: If a hydrogen leak occurs in FPRs, there is a possibility of dispersion
and ignition, resulting in various types of fires [28]. However, if the ignition is delayed
until the gas disperses and forms a flammable vapor cloud [29], there is a potential for an
explosion depending on the concentration of the gas [30]. The occurrence of an explosion
can be influenced by multiple scenarios and events [31]. To identify all the potential
pathways resulting in an explosion, an ETA was conducted to consider the safety systems
typically installed in FPRs.
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Consequence analysis involves three main components [32]: leakage development,
dispersion analysis, and structural and effected parameter analysis. The model and various
leak scenarios are established. During the explosion analysis, a CFD program is used to
simulate the explosion and calculate the resultant load on the FPR structure. On the other
hand, the structural analysis focuses on evaluating the impact of this load on the boundary
wall of the FPR.

Ventilation position and designation scenarios are examined to discuss the influence
of ventilation on the dispersion and the harmful effects of hydrogen release [3].

Risk assessment: Risk can be defined as the result of multiplying the likelihood of
an accident occurring by its impact [33,34]. Typically, the impact is measured in terms
of lives lost, injuries sustained, or financial losses incurred [35]. However, in the present
situation, there is no immediate threat to human life since the FPR and its surrounding
areas are typically unoccupied. Determining the extent of property damage is a complex
task since it is contingent upon the unique circumstances involved, making it difficult
to quantify [36–38]. Due to these factors, it was determined that an assessment of the
likelihood of an explosion occurring should be undertaken to compare it against the
acceptable probability levels within the industry. Furthermore, the assessment of the
impact can be conducted by examining the potential structural strains that the building
may experience in the event of an explosion and by comparing them to the allowable stress
thresholds of the material.

The framework of the study, as illustrated in Figure 2, consists of three distinct stages.
Initially, the design philosophy of the FPR was examined by considering the functional
structure of the hydrogen fuel supply system and the safety requirements outlined by the
IMO guidelines and local authorities’ regulations. This analysis facilitated the identification
of hydrogen leakage scenarios and the determination of calculation parameters. The next
part of this study focused on analyzing the theory of hydrogen leakage and dispersion,
including the development of a mathematical model for numerical calculations. The out-
comes of previous studies were utilized to validate the computational fluid dynamics
(CFD) simulation model, and input parameters were established within this model. In
the third stage, the simulation results were utilized to analyze the effects of various fac-
tors on hydrogen dispersion and concentration within the FPR. Based on these findings,
recommendations for safety design were proposed for ships.
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3. Methodology for Safe Design Ventilation of FPRs
3.1. Hydrogen Leak Event Tree in the Confined Spaces

The diagram depicted in Figure 3 illustrates the event tree for hydrogen leakage
within enclosed or confined areas. The occurrences of leakage, detection, ignition sources,
and cloud formation are the initial events that lead to the occurrence of hydrogen-related
accidents [39,40]. Consequently, comprehending the progression patterns of these events
is of utmost importance in managing hydrogen safety, and it represents a central area of
focus in FPR research [41].
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In confined spaces, a hydrogen leak event can be analyzed using an event tree to
understand the potential consequences and pathways that may result from the leak [42].
The event tree provides a systematic framework for assessing the sequence of the events
and their outcomes. The hydrogen leak event tree in confined spaces can be explained in a
simplified manner as:

Hydrogen leakage: The event tree begins with the occurrence of a hydrogen leak within
the confined space, which could be caused by equipment failure, system malfunction, or
human error.

Leak detection: The first branch of the event tree focuses on leak detection mecha-
nisms. If a leak is promptly detected, it leads to the shutdown of the process due to the
activation of the emergency shutdown system (ESD). This may involve gas sensors, alarm
systems, or visual observation. Upon early detection of the leak, appropriate actions are
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taken to mitigate the situation. These actions may include activating ventilation systems,
isolating the area, and initiating emergency procedures to evacuate personnel [43]. If the
early detection and mitigation measures are successful, the event tree proceeds to the
“effective mitigation” [44,45]. This indicates that the leak is controlled, and the hydrogen
concentration is reduced to safe levels.

No ignition: The “ignition” branch further divides into two possibilities. One possibil-
ity is that no ignition source is present within the confined space, leading to the outcome of
“no ignition.” In this case, the hydrogen disperses harmlessly, and the incident is resolved
without any adverse consequences. The other possibility in the “ignition” branch is the
presence of an ignition source. In order to ascertain the likelihoods of instant ignition and
delayed ignition, it is crucial to estimate the rate of leakage (in kg/s) for each particular
scenario. In the case of a liquid leak, the hydrogen’s initial leak rate can be calculated by
conducting the following calculations or procedures [46]:

Qin_leak = CL AL

√
2ρL(Ps − Pa) (1)

where Qin_leak is the initial leak rate (kg/s), CL is the coefficient of the leak, AL is the area of
the leak hole size (m2), ρL is the density of the hydrogen (kg/m3), and Ps, Pa is the pressure
inside and outside the pipe, respectively (Pa). If an ignition source is present, it leads to the
next branch immediately.

Ignition occurs: An ignition event takes place due to the presence of a spark, flame, or
other sources of ignition. This can result in a fire or explosion within the confined space,
leading to potential damage to the equipment, infrastructure, and, most importantly, the
risk of injuries or fatalities to personnel.

Consequences: The “ignition occurs” branch further divides into potential conse-
quences [47,48]. These consequences may include fire suppression efforts, evacuation
procedures, medical assistance, and damage control measures to limit the impact of the fire
or explosion.

Incident resolution: The final outcome of the event tree is the resolution of the inci-
dent [49,50]. This entails extinguishing the fire, securing the area, conducting investigations
to determine the root cause, implementing corrective measures, and ensuring that the
confined space is safe for re-entry [51,52].

It is crucial to acknowledge that the actual event tree could be more intricate and
comprehensive due to the specific factors and mitigation strategies that are pertinent to
the particular confined space and hydrogen system under consideration. The event tree
analysis assists in understanding the potential outcomes of a hydrogen leak event and aids
in developing preventive and responsive measures to enhance safety and minimize risks.

3.2. Leakage Progress of Hydrogen Release

The release of hydrogen is followed by low-flashpoint fuel characteristics and includes
four stages [53–55]:

Initially, this phase involves the occurrence of a hydrogen leak from the tank, piping,
hoses, and so on. During this stage, hydrogen comes into contact with the surrounding
air. As hydrogen, in its cooled state, is denser than air, it gathers to form a pool of low-
temperature hydrogen [56].

In the second phase, hydrogen that has accumulated as a low-temperature pool, either
on the ground or on the surface of the floor, is dispersed extensively [57].

Subsequently, in the third stage, due to the typically higher atmospheric temperature
compared to the boiling point of hydrogen [58], the surrounding heat causes the hydrogen
to evaporate.

Consequently, a broad vapor cloud consisting of low-temperature gas is generated [59].
Ultimately, the vapor cloud undergoes diffusion through ventilation, spreading, and dis-
persion in the surrounding area [60,61].
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Figure 4 illustrates a schematic diagram depicting the process of hydrogen leakage
and diffusion. Each step of the process involves variations in the state of the leaked
hydrogen, the quantity of leakage, and the extent of diffusion. Furthermore, considering
the time required for hydrogen to leak, absorb heat, evaporate, and diffuse, both the leakage
duration and the time taken for CFD analysis are crucial factors when establishing the
safety management area for hydrogen leakage.
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However, in previous studies conducted in relation to the safety assessment of hy-
drogen leakage in confined spaces, the difference between leakage time and interpretation
time is not large. Due to this, it may be difficult to include various changes occurring in
the hydrogen leakage process. In this study, when performing an analysis to examine the
safety of FPR, the leakage trend and the lower flammable limit range according to the
analysis time are analyzed and reflected in the designation of ventilation related to the
safety of FPRs.

3.3. Safe Designation of Ventilation for FPRs

When there is a leak of liquid or gaseous fuel from a section of the fuel gas sup-
ply system (FGSS), it has the potential to vaporize, disperse, and accumulate within the
room [62]. The ventilation system plays a crucial role in effectively eliminating the fuel
release and reducing its concentration levels. However, if the ventilation system fails
during a leak incident, this important safety mechanism becomes ineffective and unable
to fulfill its purpose because the dispersion and explosion can have a detrimental effect
on the structural integrity of the FPR in any direction. This damage can potentially result
in the further propagation of the accident to adjacent compartments or areas. Due to
the significance of damage to adjoining spaces, the ventilation design for the FPR is of
utmost importance. A poorly designed ventilation system can contribute to significantly
more severe consequences. Consequently, the consequence analysis conducted in this
study specifically concentrated on assessing the impact of the ventilation position on the
dispersion characteristics of hydrogen.

Figure 5 presents the procedure for the safe designation of FPRs for the hydrogen-
fueled ship by employing the deterministic approach.

The safe design process for the ventilation of FPRs in this study is an improved version
of the deterministic approach recommended by Dadashzadeh et al. [25]. The procedure for
this study is organized into three primary steps, aligning with the intended purpose and
scope of the research: (i) dispersion analysis, (ii) sensitivity analysis, (iii) mitigation.
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3.4. Dispersion Analysis

During the initial phase, an extensive review is conducted on the regulations and
guidelines provided by the classification societies and management authorities. The insights
and recommendations obtained from these sources serve as the foundational references
for developing and implementing ventilation systems to ensure the safety of FPRs. The
field survey of the FPRs of the targeted vessel is carried out to gather and measure the
geometry and other affected parameters. All the accident scenarios determined from the
scenario analysis were subject to the estimation of the probability of their occurrence and
to the evaluation of their consequent impact in the following steps. A field survey is
conducted in the FPRs of the targeted vessel to gather and measure various parameters
related to their geometry and other relevant factors. Subsequently, all potential accident
scenarios identified through scenario analysis undergo an assessment in the subsequent
steps. This assessment involves estimating the probability of occurrence for each scenario
and evaluating the resulting impact it would have.

3.5. Sensitivity Analysis

The frequency analysis results represent the likelihood of each accident scenario in
relation to the initial gas dispersion behavior. The grid size is optimal to form a balance
between the output results and computational costs.

3.6. Mitigation

Multiple ventilation scenarios were devised and evaluated, considering factors such
as ventilation size, position, and geometry effects. The impact of these factors on the
ventilation system was estimated and incorporated into the scenarios. The frequency of
occurrence for each accident scenario can be calculated by multiplying the probabilities of
each variable under the given conditions.
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On the other hand, the outcomes of the consequence analysis were expressed as the
safety assessment of the FPRs in each ventilation case.

4. Case Study
4.1. Selected Information

In order to assess the risk associated with FPRs, a 750 DWT powered by hydrogen
was selected as the ship for this case study. This ship is a type of fishing ship designed by
Hanjin Heavy Industry, Co., Ltd., Busan, Republic of Korea. The FPR is 10.2 m long, 2.65 m
high, and 5.3 m wide. The main specifications of the target ship are presented in Table 1.

Table 1. Selected conditions for bunkering accident.

Items Specification

Vessel type Fishing
Deadweight (ton) 750

L.O.A (m) 71.6
Hydrogen tank capacity (m3) 450

Tank type (according to IMO classification) IMO Type C
Size of FPR (m) 10.2 × 5.3 × 2.65
Number of FPR 1

Flammable limit of hydrogen 4–75%

The arrangement of the FPRs on the target ship is presented in Figure 6.
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Initially, the FPR’s boundary walls were constructed without specific regard for po-
tential leakage dispersion and the ventilation of hydrogen dispersion to minimize the
consequences and damage. Instead, it was designed in accordance with the standard
approach to ship structural design, which focuses on withstanding machinery and on the
availability in comparable situations. Nonetheless, in the process of analyzing the potential
outcomes, four scenario groups of improved designs were also examined.

In the event of a gas leak being identified, the ESD system is activated to isolate the
engine room that is affected, allowing the other engine rooms to remain operational. Due to
this setup, there is no need for double-walled pipes. Furthermore, all the enclosed areas are
equipped with mechanical ventilation systems of the exhaust type, ensuring a minimum
air exchange rate of 30 times per hour.

4.2. Mathematical Models

For this analysis, a simulation was conducted using a commercial CFD software called
FLACS-CFD Ver. 20.2, developed by Gexcon AS (Bergen, Norway). The software combines
the Reynolds-averaged Navier–Stokes equations with the k-ε model for turbulence equa-
tions. In order to achieve research targets, a two-dimensional (2D) cut plane simulation
model was created and visualized using Flowvis. This model was employed to determine
the distance of the vapor dispersion in the event of a leakage scenario. The release of
flammable gas was assumed to be continuous, and the rate of leakage was calculated using
the Bernoulli equation. The simulation focused on two main aspects: hydrogen leakage at
the source and the subsequent dispersion in the atmosphere.
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The mass flow rate of an ongoing leakage source resulting from a bunkering hose
failure can be determined by [63,64]:

Qm = ρACo[2
(

PT − PTatm
ρ

+ ghr

)
]

1/2

(2)

where Co is the flow coefficient of the leakage, A is the flow area of the leakage, hr is the
vertical distance from the surface of the hydrogen pool to the center of the leakage hole (in
this case, hydrogen leakage is assumed at the bunkering hose; so, hr is taken to 0).

The transition between the liquid and vapor phases is represented through the utiliza-
tion of the mixture multiphase flow in the modeling process. When hydrogen leaks, heat
conduction occurs between the hydrogen and the ground, causing a drop in temperature at
the lower part of the pool. Consequently, the temperature disparity between the hydro-
gen and the surface of the pool diminishes rapidly, resulting in a reduction in the rate of
hydrogen evaporation.

Turbulent kinetic energy k equation [45]:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xi

[(
µ +

µt

σk

)
+ Gk + Gb − ρε−YM + Sk

]
(3)

Turbulent dissipation rate ε equation [37,44,45]:

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xi

[(
µ +

µt

σε

)
∂ε

∂xi

]
+ ρC1Eε− ρC2

ε2

k +
√

vε
+ C1ε

ε

k
C3εGb + Sε (4)

Conservation of mass [65]:
∂ρ

∂t
+∇(ρu) = 0 (5)

Conservation of momentum [65]:

∂ρu
∂t

+∇(ρuu) = −∇ρ +∇τ + ρg (6)

Conservation of energy [65]:

∂ρhs

∂t
+∇(ρuhs) =

Dp
Dt
−∇

.
q′′ + τ∇u (7)

where C1, C2, C3 represent the constant coefficients, Gk represents the kinetic energy
turbulent by laminar velocity gradient, YM represents the wave produced by transition
diffusion, YM represents the kinetic energy turbulent produced by buoyancy, u is the
velocity, ρ is the density, ε is the kinetic energy turbulent of dissipation, p is the pressure,
and t is the time.

In the event of a sudden hydrogen leak occurring at a particular location, there is a
drop in pressure, leading to a flashing phenomenon where the leaked hydrogen rapidly
transitions from a liquid to a vapor state. This flashing process consumes the heat required
for evaporation, causing a decrease in temperature for the remaining liquid inside the pipes.
To calculate the proportion of hydrogen that has evaporated in this situation, the following
calculation can be employed:

F = CP(
T − T0

H
) (8)

From the F value, the prediction of the form of leakage out of the bunkering hose can
be made [63]: (i) F = 0: there is no liquid out; (ii) F = 0.1: there is 50% of the liquid at the
time of calculation; (iii) F > 0.2: there is a pool which is liquid in form; (iv): F < 0.2: linear
relation between F and liquid.
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In the simulation case, where the formation of a liquid pool and flashing only occur
shortly after the initial leakage, the vaporization rate can be calculated by:

Q1 =
KA1(To − Tb)

H
√

παt
+

KNu A1

HL
(To − Tb) (9)

4.3. Scenarios

The process of hydrogen leakage takes place in the FPR; so, the flow and dispersion
process of the gas is greatly affected by the ventilation condition (position of ventilation),
the shape of the FPR, and the arrangement of the equipment in the FPR. According to
the IGF code [22,66] and other classification regulations [23,67], the flat type of FPR is
selected for modeling. The arrangement of ventilation is changed based on the type of FPR,
accordingly. The cylinder type of equipment is arranged in the FPR to model the machinery
and devices.

The FPR used in this case study had dimensions of 10.2 m× 5.3 m× 2.65 m. According
to the IGF Code, it is obligatory for all FPRs to be fitted with a gas detection system. In
this case, the assumption was made that the gas detection system would be activated after
10 s of leakage [68,69]. Furthermore, a mechanical ventilation system of the exhaust type
was required, with a capacity to provide 30 air changes per hour. This ventilation system
serves the purpose of constantly expelling flammable gases from the space. The release
rate is assumed to be 0.05 kg/s for 10 s. After 10 s of leakage, the emergency shutdown
system is operated and provides a quick and efficient means of shutting down equipment
or processes in these emergency situations. The two example types of considered geometry
are presented in Figures 7 and 8 below. As presented in the figures, the two forced inlet
and outlet ventilation fans are arranged in the FPR with a rectangle shape. The original
case of ventilation is arranged in the top side. The scenarios are made on the long side and
short side of the FPR to examine the trend of hydrogen dispersion in the FPR and effect of
ventilation on the safety of the FPR.
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Dispersion and ventilation scenarios comprise the following ten (10) cases, based on
the facility in which a dispersion of hydrogen leakage gas takes place in the FPR. The
multiple cases of inlet ventilation are arranged and examined to show the effect of inlet
ventilation on the cloud dispersion and the hazard level of the FPR in the case of leakage.
The four scenario groups that were made are:

Scenario group 1: Ventilation inlets are arranged in the top side of the FPR.
Scenario group 2: Ventilation inlets are arranged in the back wall of the FPR.
Scenario group 3: Ventilation inlets are arranged in the long side (front) of the FPR.
Scenario group 4: Ventilation inlets are arranged in the long side (back) of the FPR.
The details of the analyzed cases are presented in Table 2 below.

Table 2. Arrangement of ventilation cases.

Case Items Position
(m)

High
(m)

Note
(Position)—(Number)

1. Top side 9.69 × 4.885 × 2.6 2.6 (right)—(1)

2. Top side 9.69 × 0.41 × 2.6 2.6 (left)—(2)

3. Back wall 9.69 × 0.41 × 1.98 1.98 (top-left)—(3)

4. Back wall 9.69 × 4.885 × 1.98 1.98 (top-right)—(4)

5. Back wall 9.69 × 0.41 × 0.67 0.67 (bottom-left)—(5)

6. Back wall 9.69 × 4.885 × 0.67 0.67 (bottom-right)—(6)

7. Long side (front) 9.69 × 4.885 × 1.98 1.98 (top)—(7)

8. Long side (font) 9.69 × 4.885 × 0.6625 0.6625 (bottom)—(8)

9. Long side (back) 9.69 × 0 × 1.98 1.98 (top)—(9)

10. Long side (back) 9.69 × 0 × 0.6625 0.6625 (bottom)—(10)

A typical outlet position at the top was selected as the standard case; the leak hole
area was set as 0.06 m2, the release pressure was 10 bars, and the initial gas temperature
was −252 ◦C. According to Equation (2), the leakage rate of the hydrogen release was
0.05 kg/s. In order to investigate which kind of gas has more influence on the deck, the gas
composition was chosen based on buoyancy considerations and gas reactivity. Based on
the analysis conducted, two potential harmful outcomes were identified: dispersion and
explosion. However, the possibility of asphyxiation was disregarded in this assessment.
This choice was determined by assuming that the likelihood of individuals being present
in the fuel preparation room (FPR) was low, considering that the FGSS is usually operated
remotely and duty engineers are not directly exposed to any potential leakage occurring in
the room.

4.4. Simulation Domain and Mesh

The hydrogen leakage experiment mentioned above was chosen as the basis of the
physical model, which was carried out by Flacs-CFD geometry. The simulation was
performed in the 3D computational domain with dimensions of 14.6 m × 9.7 m × 6.2 m
in the X, Y, and Z directions. The core domain was selected to have the dimensions
10.2 m × 5.3 m × 2.65 m. The simulation domain was refined with a total of 36,270 grid
cells. The setting up of smallest grid cell had a size of 0.63 m in all the planes. The size of
the grid cells was extended in all directions away from the leak position. The hydrogen
was assumed to release at a rate of 0.05 kg/s into 0.06 m2 of leak hole area. The leakage
position was at (7.6, 3.5, 0.2) for the (x, y, z) axials. The 3D geometrical of computational
domain is presented in Figure 9.
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In the simulation conducted, it was assumed that the ventilation velocity and tem-
perature remained constant based on the simulation conditions. Both air and hydrogen
were treated as incompressible fluids in the simulation. The effects of turbulence in the
surrounding atmosphere and hydrogen vapor were predicted using the k-ε model. The
heat transfer was calculated using the energy equation.

When it comes to describing turbulent motion, two commonly used models are the
standard k-ε model and the realizable k-ε model. However, the realizable k-ε model offers
advantages in solving curved wall flows and simulating free flows with jets and mixed
flows. Therefore, the realizable k-ε model was selected to model gas diffusion turbulence
in this study.

In the leakage region, a class of neutral stability (Pasquill D class) was used in the
simulations, and the supposed average wind speed was 3.6 m/s at a height of 4.6 m. The
wind direction was set to be north (x direction in this simulation). The wind profile was
established at the inlet boundaries, and the stability class is used to calculate the profiles
of the turbulent kinetic energy and turbulent dissipation rate. At the ground, a no-slip
condition was specified, and the exits used a passive outflow condition.

Monitoring the changing fuel concentration over time in an FPR is an important task
to ensure the quality and consistency of the fuel being produced. Placing a monitoring
point in the fuel preparation room can be an effective way to record the changing fuel
concentration over time (Figure 10). By monitoring the fuel concentration at this location,
the valuable data can be gathered, and insights into the fuel quality and its variations can
be gained.
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arrangement of the vapor cloud. The specifics of each monitoring point are described in
Table 3 below.

Table 3. Arrangement of monitoring points in the FPR.

Monitoring Point Position Monitoring Point Position

x y z x y z

1. 9.7 0.5 2.6 17. 7.6 4 1

2. 0.5 4.8 2.6 18. 5.1 0.5 2.6

3. 5.1 4.8 2.6 19. 2.6 1.3 2

4. 2.6 1.3 1.5 20. 2.6 2.65 2

5. 2.6 2.65 1.5 21. 2.6 4 2

6. 2.6 4 1.5 22. 5.1 1.3 2

7. 5.1 1.3 1.5 23. 5.1 2.65 2

8. 5.1 2.65 1.5 24. 5.1 4 2

9. 5.1 4 1.5 25. 7.6 1.3 2

10. 7.6 1.3 1.5 26. 7.6 2.65 2

11. 7.6 2.65 1.5 27. 7.6 4 2

12. 7.6 4 1.5 28. 5.1 2.65 1

13. 2.6 1.3 1 29. 5.1 4 1

14. 2.6 2.65 1 30. 7.6 1.3 1

15. 2.6 4 1 31. 7.6 2.65 1

16. 5.1 1.3 1

These monitoring points play a crucial role in tracking and analyzing how these pa-
rameters evolve over time within the FPR during the dispersion event. At each monitoring
point, these parameters are measured and monitored to observe and analyze the changes
that occur over time during the dispersion process within the FPR. By monitoring these pa-
rameters, the sensors provide valuable information about the behavior and characteristics
of the fuel and vapor cloud throughout the dispersion period in the FPR. These data are
used for analysis and safety assessment or to inform decision-making processes related to
the management and control of the fuel or vapor in the FPR environment.

5. Results and Discussion

The simulation provided insights into the dispersion characteristics of the hydrogen
vapor cloud within the FPR. It revealed the spatial distribution and movement of the cloud,
allowing for a better understanding of how it spreads and interacts with the surrounding
environment. Based on the simulation findings, discussions can revolve around potential
optimization opportunities for the FPR design, ventilation system layout, or safety protocols.
The data obtained from this study can be utilized to identify areas that require improvement,
to enhance safety measures, and to mitigate the risks associated with the dispersion of
hydrogen vapor clouds. It may be beneficial to perform a sensitivity analysis to explore
the impact of various factors on hydrogen dispersion. This could involve assessing the
effects of ventilation configurations or FPR geometries on the diffusion characteristics of
the hydrogen vapor cloud.

The hydrogen velocity and concentration inside the FPR were observed for each
scenario. These parameters play a crucial role in the analysis of hydrogen release and
dispersion since they directly impact the risk of ignition. The hydrogen concentration
profile within the compartment indicates areas that carry the risk of fire, which falls within
the hydrogen concentration range of 4–75%.



J. Mar. Sci. Eng. 2023, 11, 1639 15 of 26

5.1. Ventilation in Top Side Plan

Based on the information presented in Figure 11, elevated concentrations were ob-
served in the upper regions of the compartment, specifically near the ceiling. This con-
centration pattern is attributed to the accumulation of hydrogen gas, which is lighter than
air and exhibits a significant buoyancy effect. The findings indicate that the entire com-
partment is exposed to the possibility of catching fire. However, the front section of the
compartment and the regions beneath the ceiling are particularly susceptible to ignition.
Specifically, the hydrogen supply system starter situated at the front of the FPR and the
light bulbs or electric devices mounted under the ceiling could potentially act as sources of
ignition in these areas. Due to its buoyancy and because it weighs 14 times less than air,
the gas flow moves upwards and from the rear to the front of the compartment after being
released as it becomes trapped beneath the ceiling.
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Figure 11. The 3D plant of hydrogen leakage dispersion.

The 3D simulation results and the 2D cut plan of hydrogen dispersion after 10 s (the
time that the ESD is in operation) are presented in Figure 12. The 3D simulation results likely
illustrate the spatial distribution of the hydrogen vapor cloud within the FPR, providing a
comprehensive view of its dispersion pattern in three dimensions. Additionally, the 2D cut
plan, which represents a section or slice of the FPR, allows a more detailed visualization of
the dispersion characteristics of the hydrogen vapor cloud at the specified time. This cut
plan provides information on the concentration levels and the spatial arrangement of the
hydrogen cloud within the FPR.

Figure 12 illustrates the dispersion concentration of hydrogen release in two diffe-
rent cases of inlet ventilation. In both cases, the ventilation is located in the two corners of
the top plate of the FPR. The figure specifically depicts the dispersion concentration at 10 s
after the release of hydrogen. The analysis of the results shows that in both cases, the high
concentration of the dispersed hydrogen is observed in the confined space formed by the
equipment and the wall. This indicates that there is a localized accumulation of hydrogen
in that particular area, which could pose a potential risk. Furthermore, the figure highlights
the differences in the dispersion arrangement between the two ventilation cases. Although
these differences exist, they are not significantly large. This implies that the choice of
ventilation location has some influence on the dispersion pattern, but the overall impact
on the concentration distribution within the FPR is relatively minor. By considering these
findings, it is important to acknowledge the presence of high hydrogen concentrations in
confined spaces within the FPR, regardless of the specific ventilation arrangement. This
information can help in implementing appropriate safety measures, such as improved
ventilation strategies or modifications to the FPR design to mitigate the risks associated
with hydrogen dispersion.
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After 138 s of leakage, the dispersion cloud was almost discharged out of the FPR
under the effect of inlet and outlet ventilation. However, for the top-right inlet ventilation,
the small cloud accumulated on the long side of the FPR, as shown in Figure 13. Thus, inlet
ventilation on the same side as the outlet ventilation resulted in a longer dispersion time
and concentration in the FPR.

If the inlet ventilation and outlet ventilation in the fuel preparation room are located
on the same side, it can indeed result in longer dispersion times and higher concentrations
of hydrogen vapor within the room. This configuration can hinder the effective removal of
the gas and increase the risk of accumulation. When the ventilation inlets and outlets are
located on the same side, the airflow within the room becomes limited and less efficient.
The fresh air brought in by the inlet ventilation may not effectively mix with the hydrogen
vapor, leading to slower dispersion. At the same time, the outlet ventilation may struggle to
exhaust the hydrogen-laden air adequately. As a result, the concentration of hydrogen can
increase in the fuel preparation room, particularly in areas farther away from the ventilation
openings. The longer dispersion time means that it will take more time for the hydrogen to
disperse and dilute to safe levels [70]. To address this issue, it is generally recommended to
design the ventilation system in a way that promotes good airflow and effective dispersion
of hydrogen vapor. This often involves having the inlet and outlet ventilation located on
opposite sides of the room, which facilitates cross-ventilation and a more efficient exchange
of air. By optimizing the ventilation system’s design and positioning, the dispersion time of
hydrogen vapor can be reduced, and the concentration levels can be kept within safe limits.
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In addition to the ventilation position, the arrangement and size of the equipment in
the FPR also affect the dispersion characteristics of the hydrogen release. In the FPR, the
arrangement and size of the equipment can indeed influence the dispersion characteristics
of the hydrogen release. Hydrogen is a highly flammable gas, and its dispersion behavior
is important to consider for safety reasons. When equipment is placed in a fuel preparation
room, it can create spaces or corners where hydrogen vapor tends to accumulate. This
can happen when there are obstructions or barriers that impede the free flow of the gas.
Hydrogen, being lighter than air, tends to rise and accumulate in areas where it cannot
easily disperse. The accumulation of hydrogen vapor in confined spaces or corners can be
hazardous because it increases the likelihood of a flammable mixture forming. If there is an
ignition source present, such as a spark or flame, it can lead to a fire or an explosion. To
mitigate this risk, it is important to carefully plan the layout and size of the equipment in
the fuel preparation room. This involves considering factors such as the spacing between
equipment, the positioning of ventilation systems, and the overall design of the room to
ensure adequate dispersion of the hydrogen vapor.

Additionally, other safety measures can be implemented, such as installing gas de-
tection systems that can monitor hydrogen levels in the room. These systems can provide
early warning signs if there is a potential buildup of hydrogen vapor. Overall, ensuring
proper ventilation and thoughtful equipment arrangement and considering the dispersion
characteristics of hydrogen release are crucial for maintaining a safe environment in a fuel
preparation room.
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5.2. Ventilation in Width Side (Back Wall)

As in the initial simulation, elevated fuel concentrations were noted in the vicinity
of the release point and beneath the ceiling. However, there was a slight decline in fuel
concentration at the lower sections of the compartment near the opening.

Based on the findings depicted in Figures 14 and 15, which illustrate the dispersion
results in both 2D and 3D after 10 s, the hydrogen flow initially moves upwards following
the release due to the pronounced buoyancy effects. Subsequently, the flow transitions to-
wards the front of the compartment as a result of the accumulation of hydrogen underneath
the ceiling. At the exhaust location, a pathway is created for the gas to be released into the
surrounding atmosphere. The outward flow of the hydrogen creates a negative pressure on
the inner side of the exhaust opening. Consequently, the accumulated hydrogen under the
ceiling, influenced by this negative pressure, moves downwards and escapes through the
exhaust, leading to a significant decrease in hydrogen concentration within the FPR.
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As presented in Figure 16, after 178 s of hydrogen leakage, the ventilation in the top
position ventilated more quickly than the ventilation in the bottom position. The ventilation
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in the left side (opposite the side with the outlet ventilation) dispersed more quickly than
that in the right side (same side as the outlet ventilation).
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The ventilation openings located at the top of the room generally facilitated quicker
ventilation compared to those at the bottom. This is because hydrogen is lighter than air and
tends to rise. When the ventilation was positioned at the top, it allowed the direct removal
of the hydrogen vapor, enabling faster dispersion and reducing the risk of accumulation.

On the other hand, ventilation openings on the bottom may not be as effective in
removing hydrogen vapor since the gas tends to rise and accumulate near the ceiling.
However, having ventilation openings at the bottom can still be beneficial in promoting
general air circulation and preventing stagnant pockets of hydrogen. Regarding the side
of the room where the ventilation is placed, the ventilation on the left side (opposite side
to the outlet ventilation) is indeed likely to result in quicker dispersion compared to the
right side (same side as the outlet ventilation). This is because a cross-ventilation pattern
is generally more effective at promoting air circulation and dispersion. When ventilation
openings are positioned on opposite sides, they allow air to flow across the room, carrying
the hydrogen vapor with it and facilitating faster dispersion. On the other hand, having
both ventilation openings on the same side, where the outlet ventilation is located, can
hinder the cross-ventilation and result in slower dispersion.

It is important to consider these factors when designing the ventilation system for a
fuel preparation room to ensure effective dispersion and minimize the risk of hydrogen
accumulation. By strategically placing ventilation openings at the top and on the opposite
side of the outlet ventilation, quicker and more efficient ventilation can be promoted,
improving the safety of the environment.

5.3. Ventilation in Long Side (Top and Bottom Places of Front and Back Wall of FPR)

The fuel mole concentration arrangement after 10 s of hydrogen release is presented in
Figures 17 and 18. Following the release, the flammable gas exhibits an upward movement
owing to the buoyancy effect at the rear of the area. However, the air flow, facilitated by
the fan, counteracts this movement by pushing the gas downwards, compelling it to escape
through the rear exhaust. As a result, the forced air flow becomes dominant, rendering
the rear vent as effective as the front opening in terms of gas dispersion. The remaining
flammable gas, accumulated beneath the ceiling, is pushed towards the front section of the
FPR due to the forced airflow. Subsequently, it flows downwards near the front wall due to
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the combination of forced ventilation and the negative pressure generated at the inner side
of the front opening.
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after 10 s with ventilation inlet in side parts.

As presented in Figure 19, after 155 s of hydrogen release, the inlet ventilation in the
top sides was more efficient than the inlet ventilation in the bottom position. The inlet
ventilation on the same side (same plate) as the outlet ventilation was more effective than
the inlet ventilation on the side opposite to the outlet ventilation.
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after 155 s with ventilation inlet in side parts.

Inlet ventilation located at the top of the room is generally more efficient than inlet
ventilation at the bottom. This is because hydrogen is lighter than air and tends to rise. By
placing the inlet ventilation openings at the top, it allows the direct introduction of fresh air
and the efficient removal of hydrogen vapor, facilitating quicker dispersion.

Additionally, having inlet ventilation on the same side (same plate) as the outlet
ventilation can indeed be more effective than having the inlet ventilation on the side of
the FPR opposite to that of the outlet ventilation. When the inlet and outlet ventilation
are on the same side, it creates a flow pattern that promotes more direct airflow across
the room. This can enhance the exchange of air, leading to better dispersion of hydrogen
vapor and more efficient ventilation. On the other hand, if the inlet and outlet ventilation
are on opposite sides of the room, the airflow may not be as direct or effective in carrying
the hydrogen vapor across the room. This can result in slower dispersion and potentially
higher concentrations of hydrogen in certain areas. Therefore, placing the inlet ventilation
at the top and on the same side as the outlet ventilation can improve the efficiency of the
ventilation system and contribute to better dispersion characteristics in a fuel preparation
room. It is important to consider these factors and consult with experts or adhere to the
relevant safety guidelines when designing the ventilation system for a fuel preparation
room to ensure proper dispersion of hydrogen vapor and maintain a safe environment.

5.4. The Change of Scalar Time through Four Typical Case Scenarios

Based on the simulations and analysis of the four scenario groups mentioned above,
the four optimal inlet ventilating cases are selected and compared in Figure 20. As in
above analysis, the four typical cases of each scenario group are selected, including: case
numbers 2 (top-left ventilation), 3 (back wall top left), 7 (long side top front) and 9 (long
side top back).

Figure 20 illustrates the temporal changes in fuel mole concentration for each scenario.
The y-axis in each scenario represents the relative fuel mole concentration, referenced
to the concentration designated as 0 on the y-axis at the initial time of dispersion. The
concentration diagram is made from the information of the 31 sensors (monitoring points)
mentioned in Table 3. Four quick and optimal ventilation cases are compared and presented
in Figure 20. In the comparison of the four highest concentration cases, it is important to
note that the flammable limit of hydrogen falls within the range of 4–75%. Therefore, any
dispersion that falls outside of this range can generally be considered as safely dispersed.
Thus, as presented in Figure 20, the top-left and back wall top-left ventilation are presented
to a higher concentration than the others.
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When evaluating the dispersion characteristics, it is crucial to analyze the concentration
levels of hydrogen vapor in the FPR. Cases with concentrations below 4% or above 75%
are typically considered to have lower risks of ignition or explosion. By comparing the
concentration levels of hydrogen vapor in the four highest concentration cases, it becomes
possible to identify the scenarios that pose the highest potential risks. Understanding
these concentrations aids in assessing the effectiveness of the ventilation system and in
determining whether additional measures are necessary to ensure safe dispersion.

However, it is important to emphasize that even concentrations falling within the
flammable range of 4–75% should be treated with caution. Proper ventilation, equipment
arrangement, and adherence to safety guidelines remain critical in mitigating the potential
hazards associated with hydrogen release and dispersion. By considering the concentration
levels and implementing appropriate safety measures, it is possible to minimize the risks
and create a safer environment in the fuel preparation room.

6. Conclusions

In conclusion, the dispersion characteristics of hydrogen release in the FPR are in-
fluenced by several factors, including the arrangement and size of equipment and the
positioning of ventilation openings. Hydrogen vapor tends to accumulate in corners and
spaces formed by the equipment, posing potential risks of flammable mixtures. Effective
ventilation is crucial for promoting the safe dispersal of hydrogen vapor and minimizing
the concentration levels within the room. Our discussion highlighted the importance of
considering the position of ventilation openings, with top inlet ventilation proving more
efficient in facilitating quick dispersion. Additionally, locating the inlet ventilation on the
same side as the outlet ventilation was found to hinder dispersion, while cross-ventilation,
achieved by placing inlets and outlets on opposite sides, enhanced airflow and dispersion.
These insights emphasize the significance of careful design and adherence to safety guide-
lines in ensuring proper ventilation and mitigating the potential hazards associated with
hydrogen release in FPRs:
1© The arrangement and size of the equipment in the FPR can impact the dispersion

of hydrogen vapor. The hydrogen vapor tends to accumulate in corners and spaces
created by the equipment.

2© The efficiency of ventilation is influenced by the position of the inlet and outlet
openings. Top inlet ventilation is generally more efficient in promoting the quick
dispersion of hydrogen vapor.
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3© Inlet ventilation on the same side as the outlet ventilation can hinder dispersion
and increase the risk of accumulation. Cross-ventilation, achieved by placing inlet
ventilation on the opposite side to that of the outlet ventilation, enhances airflow
and dispersion.

4© Consideration of airflow patterns, hydrogen behavior, and safety guidelines is crucial
in designing the ventilation system. Thus, the proper ventilation design, including
top inlet ventilation and outlet ventilation on the opposite side, helps maintain a safe
FPR by facilitating efficient dispersion of hydrogen vapor.
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Abbreviations

FPR Fuel Preparation Room
DWT Deadweight (ton)
GHGs Greenhouse Gases
IMO The International Maritime Organization
MARPOL The International Convention for the Prevention of Pollution from Ships
MSC Maritime Safety Committee

IGF Code
The Code addresses all areas that need special consideration for the
usage of the gas or low-flashpoint liquids as fuel

LFL Lower Flammable Limit
FGSS Fuel Gas Supply system
LNG Liquefied Natural Gas
CFD Computational Fluid Dynamics
FSA Formal Safety Assessment
ETA Even Tree Analysis
L.O.A Length Overall
Co Flow coefficient of the leakage
A The flow area of the leakage (m2)
hr The vertical distance of surface of hydrogen pool to the center of leakage hole
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