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Abstract: The recognition of ice channels plays a crucial role in developing intelligent ship navigation
systems in ice-covered waters. Navigating through ice channels with the assistance of icebreakers
is a common operation for merchant ships. Maneuvering within such narrow channels presents a
significant challenge for the captain’s skills and ship performance. Therefore, it becomes essential to
explore methods for enabling ships to navigate through these channels automatically. A key step
in achieving this is the accurate recognition and extraction of boundary lines on both sides of the
ice channel. An ice channel line recognition method based on the lane line detection algorithm
UFAST is implemented. The method is trained and tested on the constructed ice channel dataset,
with the test results showing that the average recognition accuracy reaches 84.1% and the recognition
speed reaches 138.3 frames per second, meeting the real-time requirement. In order to solve the
current lack of authentic ice channel images, ice channel navigation scenes are built based on UE4,
and synthetic ice channel images are rendered. The method in this paper is also compared with
the traditional non-intelligent Otsu threshold segmentation method and the intelligent instance
segmentation method YOLACT for performance analysis. The method in this paper has 9.5% higher
ice channel recognition accuracy and 103.7 frames per second higher recognition speed compared
with YOLACT. Furthermore, ablation studies are conducted to analyze the relationship between the
number of gridding cells in the proposed method and ice channel recognition accuracy.

Keywords: polar ships; intelligent navigation; ice channel; recognition; synthetic dataset;
artificial intelligence

1. Introduction

In the past few years, the impact of global warming and the rapid melting of sea ice
has led to a growing recognition of the potential value of exploiting the oil, gas, and water-
way resources in polar regions. Advancements in science and technology have facilitated
increased navigation through the Arctic waterway, presenting new demands and areas
of research for the development, utilization, safety, and security of these routes [1]. Un-
manned ships have emerged as a crucial component in global trade and marine exploration,
representing the next stage in the ongoing advancement of the shipbuilding and navigation
industry. However, when it comes to studying vision-based driving technology for ships
in icy areas, there are numerous challenges that set them apart from inland waterway
vessels and traditional sea vessels [2,3]. It is a frequent occurrence for merchant ships to
navigate through ice channels or follow icebreakers. The task of maneuvering a large and
inertia-laden ship in a narrow channel presents a challenge for the captain’s maneuvering
skills, as well as the ship’s performance [4,5]. The foundation for achieving automated ship
piloting in ice channels lies in identifying the boundaries of the channel from the ship’s
perspective and creating a digital model of the channel, along with tracking the target
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ship ahead. By leveraging computer vision technology, specifically image recognition,
the channel can be automatically extracted. Advancements in recognition and extraction
technologies for ice channels can greatly contribute to the development and utilization of
Arctic routes, enhancing navigation efficiency and safety [6].

In this paper, an ice channel line recognition method based on the lane line detection
algorithm UFAST is implemented. The method is trained and tested on the constructed ice
channel dataset. The ice channel dataset consists of real ice channel images and synthetic
ice channel images. In order to solve the current lack of authentic ice channel images, ice
channel navigation scenes are built based on UE4, and synthetic ice channel images are
rendered. The method in this paper is also compared with the traditional non-intelligent
Otsu threshold segmentation method and the intelligent instance segmentation method
YOLACT for performance analysis. Furthermore, ablation studies are conducted to analyze
the relationship between the number of gridding cells in the proposed method and ice
channel recognition accuracy, and explanations are provided for the observed phenomenon.

2. Related Work

At present, the focus of onboard vision-based driving technology primarily revolves
around target recognition and tracking of ships or obstacles. However, there is limited
research on identifying sea ice within ice fields. Liu et al. introduced a ship detection
algorithm based on YOLO V5, which demonstrated improved detection accuracy compared
to the original YOLO V5 algorithm. Additionally, the proposed method resulted in a steady
decrease in GIoU (Generalized Intersection over Union) values [7]. In a separate study,
Wu et al. developed a deep learning-based multi-object tracking algorithm specifically
for ships [8]. The results indicated a 2.23% improvement in tracking accuracy, while
maintaining an average processing speed of approximately 21 frames per second, meeting
the requirements for real-time tracking applications. Another research by Liu et al. focused
on ship tracking and recognition [9]. They proposed a novel approach utilizing the Darknet
network model and the YOLOv3 algorithm, enabling real-time ship tracking and detection
as well as ship type recognition. Experimental results showcased an average recognition
accuracy of 89.5% at a speed of 30 frames per second.

In the domain of image recognition involving ice-related objects, Lu et al. employed
the gradient vector flow technique to process aerial images [10]. Their study focused on
extracting broken ice within ice area channels and exploring the relationship between the
width of icebreaker-induced fractures and the breakup of floating ice. Similarly, Cai et al.
utilized an image segmentation method to segment instances of broken ice and accurately
fit the parameters of individual ice blocks [11]. Their approach enabled precise analysis and
characterization of the fragmented ice. Furthermore, Panchi et al. proposed a three-stage
method for automated analysis of close-range optical images encompassing various ice
formations [12]. Their method facilitated the recognition and classification of icebergs,
deformed ice, level ice, broken ice, ice floes, floebergs, floebits, pancake ice, and brash ice,
enabling comprehensive analysis of different ice types within the images.

Lane line detection has been extensively studied and successfully implemented in
the field of smart cars [13]. This technology has proven to be beneficial for enhancing
the capabilities of autonomous vehicles. It is worth noting that the task of detecting lane
lines and identifying channels in ice areas share similarities in terms of their objectives
and challenges. Traditional methods for lane line detection primarily rely on detecting
the feature differences between the lane lines and the road surface. These methods utilize
threshold segmentation techniques to separate the lane line features from the road [14].
However, these algorithms are sensitive to noise, lack robustness, and are susceptible to
partial occlusion and lane line breakage [15]. In contrast, lane line detection methods
based on deep learning can be categorized into two main approaches: Segmentation-
based methods and row-based selecting methods. Segmentation methods aim to classify
each pixel in the input image as either a lane line or background. Pan et al. extended
the traditional convolutional neural network approach to a slice-by-slice convolutional
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approach, enabling pixel-level signaling between rows and columns [16]. This method
is particularly effective for detecting lane line structures with continuous and elongated
shapes, demonstrating significant performance in lane line detection tasks. On the other
hand, the row-based selecting method is a straightforward algorithm that performs raster
segmentation for road recognition. For each segmented row, this method selects the grid
that is most likely to contain a portion of the lane markings. These methods combine
the advantages of high accuracy and speed. Yoo et al. employed the row-based selecting
approach for lane detection, treating the task as identifying the specific location of each
lane in each row [17]. They achieved an accuracy of 74% on the challenging CULane
dataset. Lee et al. introduced a lightweight UNet architecture called DSUNet, which utilizes
depthwise separable convolutions, for the purpose of end-to-end learning of lane detection
and path prediction in autonomous driving [18]. The experimental results demonstrate that
DSUNet proves to be efficient and effective in accurately detecting lanes and predicting
paths in autonomous driving scenarios.

In general, there is limited research specifically targeting ice area channels, and the
recognition of broken ice poses a more complex and intricate task. Therefore, the recognition
of ice area channels in this study holds significant importance. Lane line detection, on
the other hand, has matured in its development, and its related algorithms can serve as
valuable references for the algorithms presented in this paper.

3. Dataset

Due to the method used being supervised deep learning, it is necessary to collect
a large number of ice channel images captured from the perspective of the ship’s first-
perspective view and annotate them to form an ice channel dataset, enabling the completion
of training for this method. Datasets or images are crucial for supervised learning. They
provide training samples and labels, which are used to build models and make predictions.
By observing a large number of samples, models can learn the underlying patterns between
input features and output labels. Additionally, datasets contain valuable information that
can be used to extract meaningful features, enhancing the model’s understanding and
accuracy. Moreover, datasets are used to evaluate the performance of models and select the
best one. By splitting the dataset into training and testing sets, we can assess how well the
model generalizes to unseen data and make improvements accordingly. Furthermore, data
augmentation techniques can generate new samples by applying transformations such as
rotation, scaling, etc., thereby increasing sample quantity and diversity and improving the
model’s robustness and generalization capabilities.

The ice channel dataset consists of three parts, as shown in Figure 1. The first part
consists of real channel images, which are authentic photographs of ice channels. This part
is collected from various sources and comprises a small quantity of 33 images, accounting
for 6.5% of the dataset. The second part also consists of real ice channel images, but these
images are obtained from the “Brash Ice Tests for a Panmax Bulker” experiment conducted
by HSVA [19]. This part contains a smaller quantity of 23 images, representing 4.6% of
the dataset. In order to supplement the quantity of the dataset and facilitate the smooth
training and testing of methods, an ice channel scene was constructed based on the UE4
engine, and synthetic ice channel images were generated. This part includes 448 images,
accounting for 88.9% of the dataset.



J. Mar. Sci. Eng. 2023, 11, 1652 4 of 23J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 24 
 

 

 
Figure 1. Ice channel dataset image distribution. 

 
Figure 2. Sample images of the real ice channel dataset (authentic images). 

 
Figure 3. Sample images of the real ice channel dataset (images taken from the experiment). 

Figure 1. Ice channel dataset image distribution.

The sample images of the real ice channel dataset are shown in Figures 2 and 3. These
images all adhere to the principle of being captured from the first-person perspective of a ship.
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Figure 2. Sample images of the real ice channel dataset (authentic images).

The quantity of the real ice channel dataset is still not sufficient for the training and fitting
of the method proposed in this article. In order to facilitate the appropriate development and
testing of the ice channel recognition method, it is necessary to address the scarcity of ship
images captured within ice channels. A viable solution involves constructing a synthetic ice
channel dataset using platforms such as Unity3D and Unreal Engine 4. A notable example in
the field of ship detection is the work of Chris M. Ward et al., which successfully generated a
substantial synthetic ship image dataset using the Unity3D engine to overcome the lack of an
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existing dataset [20]. The experimental results clearly indicate a significant improvement in
ship classification performance when synthetic data are utilized.
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To model the ice channel scenario, we employ the 3D modeling software 3ds Max
2016. The process involves several steps. Initially, we construct a vast, level ice field and
draw a curved channel on it, depicted in Figure 4a. Subsequently, we fragment the flat
ice field to create a shattered ice field. To achieve this, we utilize the Voronoi diagram,
which closely resembles an ice field with large broken ice pieces. The Voronoi diagram
comprises a collection of connected polygons formed by the perpendicular bisectors of lines
connecting adjacent points. We employ the RayFire [21] plug-in of 3ds Max to fragment the
flat ice field, using the Voronoi fragmentation policy, as illustrated in Figure 4b. Finally, we
reduce the size of the shattered ice field to 95% so that gaps between ice blocks are widened,
resulting in the result shown in Figure 4c.
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The next step involves importing the broken ice field model into the ice area scenario
created with Unreal Engine, as shown in Figure 5. To enhance the similarity between the
synthetic dataset and real ice scenarios, the ice field is initially assigned a snow material
to simulate a snow-covered surface. Additionally, numerous small ice floats are inserted
into the channel. To generate the synthetic dataset, a camera is placed within the scenario,
which moves along the channel at a constant speed. Simultaneously, it captures images and
saves them to the hard disk. The camera captures and stores 15 images per second with a
resolution of 1280*720 in the PNG format, as depicted in Figure 6.
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Figure 5. Arctic scenario in ue4.

To annotate the acquired images, we employ Labelme image annotation software 4.6.0.
For the image segmentation method training, closed polygons are used to label the channel
region. In the training of the corner point regression network, four points of a closed
quadrilateral are utilized to label the four corner points of the channel. For evaluating
the algorithm’s accuracy, a ground-truth image with a line strip is employed to label the
channel lines on both sides. In total, 448 images were sampled and labeled. Figure 7 shows
a partial sample of the synthetic dataset.
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Figure 7. Sample images of the synthetic ice channel dataset.

4. Materials and Methods

The ice channel recognition task can be decomposed into the following steps. First, we
captured images of the ice channel from the first-person perspective of the ship’s navigation,
as shown in Figure 8a. Next, we utilized the row-based ice channel recognition method
employed in this paper to identify the channel lines on both sides, as shown in Figure 8b.
Finally, since the captured images of the ice channel are in a 3D perspective with a sense of
depth, it is necessary to convert the channel lines from the three-dimensional perspective to
a 2D top-down view for the convenience of developing algorithms for channel maintenance
or obstacle avoidance within the ice channel in later stages, as shown in Figure 8c.
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Figure 8. Definition of ice channel recognition task. (a) raw image; (b) channel lines; (c) perspec-
tive correction.

Traditional approaches to solving the recognition problem utilize image segmentation
methods, which initially determine whether each pixel in the image belongs to the ice
channel or not, and then employ clustering algorithms to distinguish the left and right
channel lines. However, these methods tend to have high computational complexity. More-
over, image segmentation is more suitable for segmenting regions with clear boundaries,
whereas channel lines lack distinct boundary areas. Hence, segmentation methods are not
well-suited for addressing the challenge of channel recognition in this context.

We employed a row-based selection method to address the ice channel recognition
problem. As shown in Figure 9, this method involves dividing the ice channel image
into multiple rows, and each row is further divided into several cells. The recognition is
accomplished by determining whether each cell contains the ice area channel line. If a cell
contains the channel line, the center coordinates of that cell are marked as the coordinates
of the channel line point. The ice area channel line is obtained by connecting the recognized
channel line points from each row. This approach transforms the problem into a multi-cell
image classification task, where each cell is classified as either containing or not containing
the ice area channel line. The detailed description of this method is as follows.
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4.1. Ice Channel Recognition

To address the ice channel recognition problem, a row-based selection method called
UFAST [22] is employed. This method utilizes global image features to choose cells of the ice
channel along predefined rows. The overall architecture of the method is shown in Figure 10.
The lower part displays the auxiliary branch, which is active only during training. The image
is first processed through Res blocks for feature extraction, then enters Group classification to
classify cells containing channel lines, and finally extracts channel lines. Group classification
is performed on each row anchor. Res blocks are the backbone network of this network,
which uses the famous Resnet-18 to extract features from input images. During prediction, the
extracted features will be fed into group classification, which is actually a fully connected layer
used to obtain the probability matrix of channel lines. In group classification, the features are
first linearized and then transformed into a two-dimensional probability map, where each
cell contains the probability of having a channel line for that cell. By iterating through each
row and finding the cell with the highest probability, the position of the lane line in that row
can be determined. During training, the features are also fed into auxiliary segmentation. In
auxiliary segmentation, 2D convolution is performed, followed by data normalization using
BatchNorm2d. This ensures that the data do not cause instability in network performance
due to large values before undergoing ReLU activation, ultimately obtaining segmentation
instances for each lane line.
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Ice channel images are divided horizontally into multiple rows, with predefined
widths for each row, referred to as row anchors. The location within each row anchor
is further subdivided into consistent-width cells. Identifying the ice channel involves
selecting the appropriate cells that belong to the ice channel class across the predefined
row anchors. Each ice channel is characterized by two boundary lines. The global image
feature is denoted as X. Here, h represents the number of row anchors and w represents
the number of gridding cells. The location of the i-th channel line in the j-th row anchor is
determined by utilizing the classifier f ij. The prediction for each ice channel’s boundary
lines can be expressed as follows:

Pi,j = f ij(X), i ∈ [1, 2], j ∈ [1, h] (1)

In the equation above, Pi,j is a vector with w + 1 dimensions and Pi,j represents the
probability of selecting gridding cells for the i-th ice channel line in the j-th row anchor.
For a typical ice channel, it always consists of two lines, left and right, so i is set to the
range from 1 to 2. Therefore, the problem is simplified, and the number of navigation
lanes is predefined as 2. Ti,j denotes the correct label for the right locations. Therefore, the
optimization of this formulation can be expressed as follows:

Lcls = ∑2
i=1 ∑h

j=1 LCE
(

Pi,j, Ti,j
)

(2)

In the above equation, LCE represents the cross-entropy loss function and Lcls rep-
resents the classification loss. To indicate the presence of boundary lines, an additional
dimension is introduced, resulting in w + 1 dimensions instead of w dimensions. It is
evident that this method is simpler and faster compared to segmentation methods. For
instance, if an image frame contains H×W pixels, the segmentation method would require
H ×W classification problems. However, the number of predefined row anchors and cells
is significantly smaller than the image size, with h � H and w � W. In contrast, this
method only needs to handle 2× h classification problems, as there are only 2 boundary
lines in an image. As a result, the computational cost of this method is significantly lower
than that of segmentation methods.

The loss function of the method comprises both the classification loss and the similarity
loss. The location of the lane is represented using a classification vector. The similarity loss
function can be defined as follows:

Lsim = ∑2
i=1 ∑h−1

j=1 ‖Pi,j − Pi,j+1‖1 (3)

In the equation above, L1 represents the norm and Pi,j corresponds to the prediction for
the j-th row anchor. The latter is associated with the shape of the boundary lines. Typically,
the majority of boundary lines are straight, and even curved boundary lines tend to appear
straight due to the perspective effect. To constrain the shape of the ice channel boundary
lines, a second-order differential equation is employed. For any given line index i and row
anchor index j, the location can be expressed as:

Loci,j = argmaxkPi,j,k, k ∈ [1, w] (4)

In the equation above, k represents the location index. The range of the location index
is from 1 to w, instead of w + 1. Pi,j,k represents the probability of the ice channel line
in the k-th cell of the j-th row of the i-th line. Performing an argmax operation on Pi,j,k
corresponds to obtaining the index of the maximum value in Pi,j,k, which indicates the index
of the cell where the channel line appears in that row, i.e., the location. The expectation
of predictions is utilized as an approximation of the location. To obtain the probability of
different locations, the softmax function is applied:

Probi,j = so f tmax
(

Pi,j,1:w
)

(5)
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The equation above is a vector with dimensions. The probability at each location is
denoted as Pi,j,1:w. The expectation of locations can be expressed as:

Loci,j = ∑w
k=1 k·Probi,j,k (6)

The probability of the i-th ice channel line, the j-th row anchor, and the k-th location
is represented as Probi,j,k. The second-order difference constraint function can be defined
as follows:

Lshp = ∑2
i=1 ∑h−2

j=1 ‖
(

Loci,j − Loci,j+1
)
−
(

Loci,j+1 − Loci,j+2
)
‖1 (7)

The equation above represents the location on the i-th ice channel line and the j-th row
anchor. To learn the distribution of the first-order difference of line location, the method
requires additional parameters. The overall structural loss can be expressed as:

Lstr = Lsim + λLshp (8)

In the equation above, λ represents the loss coefficient. The method incorporates an
auxiliary feature aggregation that operates on both global and local image features. The
overall architecture of the method is depicted in Figure 10. Cross-entropy is employed as
the auxiliary segmentation loss. The overall loss of the method can be formulated as:

Ltotal = Lcls + αLstr + βLseg (9)

In the equation above, Lseg represents the segmentation loss, whereas α and β denote
the corresponding loss coefficients.

4.2. Perspective Correction

The pixel coordinates on the ice channel line are (x, y), and (u, v) represents the
corresponding pixel coordinates of (x, y) in the camera perspective, as shown in Figure 11.
Based on the following equation, the camera perspective coordinates (u, v) of the ice channel
point (x, y) can be obtained from its 3D perspective coordinates

x =
1

(d + n)
[c·(n− y) + u·(d + y)] (10)

y =
v f 2

f H − vd
(11)

In the equation, H represents the height of the camera, f represents the focal length of
the camera, c represents the horizontal coordinate of the camera in the camera perspective,
d = 2 f , f =

√
H2 + d2, and n represents the difference between the coordinate mapping point

of (u, v) and d. By using Equations (1) and (2), the coordinate values of (u, v) can be calculated.

u =
c× (y− n) + x× (n + d)

d + y
(12)

v =
f × H × y
f 2 + d× y

(13)

By using the coordinates of the “vanishing point” formed by the two boundary lines in
the 3D perspective, the horizontal coordinate of the camera at that moment can be deduced.
From the two boundary lines, we obtain four points (u1, y1), (u2, y2), (u3, y1), (u4, y2). From
the previous equation, we can derive the following equation:

x[(u3 − u4) + (u1 − u2)] = u2(u3 − u4)− u3(u2 − u1) (14)
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The result of the equation is x = c, which means that the horizontal coordinate of
the “vanishing point” is equal to the horizontal coordinate of the camera. Based on the
following system of equations: { y1−v1

v1
= x−u4

u4−c
y2−v2

v2
= x−u3

u3−c
(15)

The calculated value of the camera’s horizontal coordinate c is:

c =
v1y2u3 − v2y1u4

y2y1 − y1y2
(16)

4.3. Evaluation Criteria

The evaluation of the method is conducted in terms of recognition speed and recogni-
tion accuracy. In terms of recognition speed, the method needs to meet real-time require-
ments, with a minimum of 15 frames per second. Regarding recognition accuracy, the
recognition accuracy of the ice channel is calculated using the following equation:

accuracy =
∑clip Cclip

∑clip Sclip
(17)

In the equation above, Cclip represents the number of predicted ice channel boundary
line points that meet the accuracy requirement, and Sclip denotes the total number of
ice channel ground-truth instances (obtained from manually labeled images and labeled
information) in each clip. Regarding how to determine Cclip, the distance d between the
predicted ice channel points and the ground-truth ice channel points is calculated for each
row, as shown in Figure 12. An error tolerance value δ is set. When d ≤ δ, it is considered
that the point meets the accuracy requirement. Cclip represents the number of ice area
channel points that satisfy the accuracy requirement, considering all the points that meet
the accuracy requirement.
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5. Results
5.1. Training

For the dataset, we defined row anchors ranging from 160 to 710, with a step correspond-
ing to the image height of 720 pixels. Initially, we set the number of gridding cells to 100.
In the optimization process, the images are resized to a specific size. During training, we
employed the Adam optimizer with an initial learning rate. The loss coefficients λ, α, and
β were all set to 1 by default. The batch size was set to 4. The training epoch was set to
500 iterations. The hardware platform used in this experiment consisted of an AMD R7 3700X
CPU @ 3.6 GHz processor, 16 GiB of memory, and a GeForce GTX 1080 graphics card with
8 GiB of video memory. The system software environment included Ubuntu 20.04, Python 3.7,
and PyTorch 1.6. We utilized 60% of the images in the dataset as the training set. The training
loss plot can be seen in Figure 13. It can be observed that the loss value rapidly decreases
during the first 100 epochs of training, and then gradually approaches zero. This indicates
that the model is being trained and fitted well, and the training stops at the 500th iteration.

5.2. Recognition Results

The method was tested separately on multiple parts of the dataset, and the test results
are shown in Table 1. Firstly, the channel recognition speed met the real-time requirements
in all parts of the dataset, with an average recognition speed of 138.3 frames per second.
This reflects the advanced computational efficiency of the method proposed in this paper.

Table 1. Overall test results.

Dataset Accuracy (%) FP (%) FN (%) Speed
(frames/s)

real ice channel
Authentic images 79.8 5.84 4.04 137

experiment images 85.4 6.11 3.92 138

synthetic ice channel 87.1 6.84 3.69 140

average 84.1 6.26 3.88 138.3
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The average channel recognition accuracy reached 84.1%, but there were some accuracy
degradation phenomena observed in the real channel dataset. This is because real channel
images have higher scene complexity compared to synthetic channel images, including
cases where many channel lines are occluded or not clearly visible. Figure 14 shows the
recognition results on real channels, while Figure 15 displays the recognition results of
images obtained from experiments on real channels. Figure 16 demonstrates the recognition
results of synthetic channels. From Figure 14, it can also be seen that in the case where the
channel line is obstructed, the method is able to identify the unobstructed navigation line
and predict the extension of the obstructed invisible portion. It is precisely this characteristic
of predicting the occluded portions of channel lines that leads to a decrease in recognition
accuracy. It can be observed from Figure 14 to Figure 16 that the fitting performance is
better for nearby ice channel lines, but there are more recognition deviations when the lane
lines are curved in the distance. Additionally, it can be seen that channel lines in the farthest
distance are not recognized. This is because, in the design of this method, only the lower
70% of the lane lines in the image are recognized. The recognition and significance of the
upper 30% of the lane lines are limited due to their distance, so they have been optimized
and omitted to improve the efficiency of the method.

The average false positive (FP) rate reached 6.26%, and the false negative (FN) rate
reached 3.88%, where FP represents the number of false positives, which refers to predicted
samples classified as channel points but are actually negative samples (incorrectly labeled as
channel points), and FN represents the number of false negatives, which refers to predicted
samples classified as non-channel points but are actually positive samples (missed detection
of channel points).

Figure 17 illustrates the classification probability map of ice channels, which is the
feature map, during the process of ice channel recognition. The cells with darker blue colors
in the image represent a higher probability of containing navigation routes. In contrast,
the other cells are manifested as light gray because they represent probabilities of having
ice channel lines that are extremely small, in the order of 10−4. By traversing through
each row and obtaining the cell with the highest probability, we can determine the left
and right ice channels. It can be observed that some lighter blue cells appear near the
deeper blue cells. This indicates that in the vicinity of cells with higher probabilities of
containing ice channel lines, there are some cells with lower probabilities of containing ice
channel lines. This is because ice channel lines have a certain width, and cells near the areas
with a significant contrast to seawater have higher probabilities, appearing as a deeper
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blue. On the other hand, cells along other ice channel lines with lower contrast have lower
probabilities, appearing as a lighter blue.
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Regarding perspective correction, since the camera parameters (including focal length,
camera center distance, camera height, and camera pitch angle) of the images in the real ice
area dataset are unknown, no perspective correction is applied to the recognition results of
the real ice area dataset. As for the synthetic ice area dataset, when constructing the dataset,
the camera parameters set in UE4 were as follows: Camera height of 10 m, focal length of
28 mm, and pitch angle of 15.5 degrees. The perspective correction results are shown in
Figure 18. It can be observed that the recognition results of the ice area channels, which
originally had a perspective effect in the 3D view, have been successfully corrected to a
top-down 2D view perspective.
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5.3. Compared with Traditional Segmentation Method OTSU

The method used in this paper is based on line selection to achieve the recognition of
ice channel lines, which is fundamentally different from segmentation-based methods. The
segmentation-based method predicts whether each pixel in the image is a channel line or
segments the channel area and then converts the area to obtain the channel lines on both
sides. For the segmentation of the ice channel, it is not practical to directly segment the
channel lines on both sides because there are no obvious boundaries for the navigation
lines in authentic images. If there are clear boundaries, it is difficult to directly segment
the navigation lines due to the small width of the boundaries and the limited pixels they
contain. Therefore, when using the segmentation method, it is necessary to first segment
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the channel area, obtain the closed boundary of the channel area, and then process the
boundary to obtain the channel lines on both sides.

This section uses traditional non-intelligent segmentation methods to attempt to
recognize ice channel lines. The method used is OTSU, which is a threshold segmentation
algorithm for determining image binarization. It was proposed by Japanese scholar Otsu in
1979 and is considered one of the best algorithms for traditional image segmentation [23].
This method is computationally simple and segments the image into the foreground and
background based on the grayscale characteristics of the image.

Performing OTSU segmentation on the dataset yields some sample images, as shown
in Figures 19–21. OTSU performs binary segmentation on the input images, where the
yellow region represents non-channel areas and the deep purple region represents channel
areas. From Figure 19, it can be observed that in the presence of sun reflection, the reflected
channel area is incorrectly segmented as a non-channel area. The deck of the ship is also
incorrectly segmented as a channel area. From Figure 20, it can be seen that when there
is a significant amount of fragmented ice in the channel, only the water area within the
channel can be segmented, and the channel area cannot be fully segmented. From Figure 21,
it can be seen that the OTSU method performs well on synthetic datasets with simpler
scenes. However, it also segments the cracks between ice blocks into the channel area,
which hinders obtaining the channel lines on both sides.
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In conclusion, traditional segmentation methods are unable to cleanly and perfectly
segment the channel area in complex authentic ice channel scenes. The segmentation results
cannot be used as the output for further processing. Traditional segmentation methods are
not applicable for ice channel recognition. However, the method based on row selection
used in this paper can directly output the navigational lines on both sides after training.

5.4. Compared with Intelligent Segmentation Method YOLACT

Using robust image segmentation methods can delineate the boundaries of the ice
channel area. The ice channel images taken at the ship’s bow present a trapezoidal shape.
When the ship sails steadily, the pitch angle of the camera does not change much, so
cropping the top and bottom of the channel area can obtain the left and right channel lines.

YOLACT is a real-time instance segmentation model developed by Facebook AI
Research that efficiently predicts masks and object bounds in parallel by separating mask
prediction into learned prototype masks and their predicted per-instance coefficients [24].
In this paper, the YOLACT instance segmentation algorithm is used to obtain the ice channel
area by taking the ice channel dataset as input, then the top and bottom of the channel
area are manually cropped to finally obtain the channel lines on both sides. The channel
area segmentation results and channel line recognition results are shown in Figure 22.
The channel areas segmented in the second column of pictures are covered with colored
regions. By manually setting the upper and lower clipping lines to crop the top and bottom
boundaries and after equal interval fitting processing, the channel lines shown in the second
column of Figure 22 are obtained.
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Using this method for channel line extraction, we evaluated the two aspects of recog-
nition accuracy and recognition speed using the same evaluation criteria as the method
in this paper. Each part of the dataset is evaluated separately to obtain the performance
comparison table shown in Table 2. In comparison, the method in this paper exceeds the
yolact+crop method by 9.5% in recognition accuracy and is 103.7 frames per second faster
in recognition speed. When using YOLACT to segment the ice channel area, it has good
accuracy and robustness, but in the next crop operation, on the one hand, the upper and
lower cutoff ranges need to be set manually, which makes this method difficult to apply in
practice. Second, setting the upper and lower cutoff ranges introduces more errors, because
only cutting off more of the upper and lower channel boundaries can leave clear left and
right boundaries. In addition, due to the inherent nature of assigning labels to each pixel,
the segmentation method has huge computational complexity, which is manifested as the
recognition speed of the method in this paper being more than 103.7 frames per second
faster than this method on the same hardware device. The method in this paper exceeds
this method in both recognition accuracy and recognition speed, proving that the line
selection-based method has stronger performance compared to the segmentation method.
Also, all parameters are automatically tuned through training, making the method in this
paper more suitable for practical applications.
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Table 2. Performance comparison of ice channel recognition.

Dataset
Ours yolact+crop Ours yolact+crop

Accuracy (%) Speed (frames/s)

real ice channel
authentic images 79.8 72.2 137 35

experiment images 85.4 73.7 138 34

synthetic ice channel 87.1 77.3 140 35

average 84.1 74.6 138.3 34.6

Advanced 9.5% Advanced 103.7 fps

5.5. Ablation Study

As mentioned in the methodology section, gridding and selection techniques are
utilized to establish the relationship between the structural information in ice channel
boundary lines and the classification-based formulation. Therefore, it is reasonable to
investigate the impact of different numbers of gridding cells on the method’s performance.
While the number of row anchors is predefined and fixed, the number of cells in each row
was varied. We divided the image using 25, 50, 100, and 200 cells in columns.

The accuracy of the algorithm was tested for each case, and the results are shown in
Figure 23. It can be observed that as the number of gridding cells increases, the classifi-
cation accuracy gradually decreases. This phenomenon can be attributed to the fact that
more gridding cells impose greater requirements for finer-grained and more challenging
classification. When the number of gridding cells increases, the area of each gridding cell
becomes smaller, resulting in a decrease in the amount of image information contained
within each cell. In such cases, if there is an ice channel line within a cell, the small cell area
makes it challenging to include sufficient feature information for convolutional operations
to extract. Therefore, determining whether a cell contains an ice channel line becomes
more prone to errors. Additionally, the evaluation accuracy does not exhibit a monotonic
variation. Although a smaller number of gridding cells leads to a larger localization error
and higher classification accuracy, it also results in the imprecise representation of the
exact location due to the larger size of the gridding cell. Based on this ablation study on
the number of gridding cells, we ultimately determine that 50 is the optimal number of
gridding cells in the synthetic dataset.
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6. Conclusions

This paper presents an ice channel recognition method based on the UFAST lane
detection algorithm. To address the problem of method training fitting, real ice channel
datasets were collected and constructed. Additionally, synthetic ice channel datasets
were generated using UE4. The method was trained and tested on both the real ice
channel dataset and the synthetic ice channel dataset. Furthermore, an ablation study
was conducted to explore the optimal determination of method parameters. Based on the
comprehensive analysis, the following conclusions were drawn.

(1) The method achieved a recognition accuracy of 84.1% on the ice channel dataset and
a recognition speed of 138.8 frames per second.

(2) The method in this paper exceeds the yolact+crop method by 9.5% in recognition
accuracy and is 103.7 frames per second faster in recognition speed. The method in
this paper is more suitable for practical applications.

(3) During the ablation study, it was observed that the evaluation accuracy does not
exhibit a monotonic variation. As the number of gridding cells increases, the clas-
sification accuracy gradually decreases. This is because more gridding cells require
finer-grained and more challenging classification. Ultimately, based on the ablation
experiments, we determine that 50 is the optimal number of gridding cells to achieve
the best performance.

In future work, first, more authentic ice channel images need to be collected and used
for training so that the method has greater robustness and applicability. Second, advanced
networks such as EfficientNet and Transformer can be used as the backbone network of the
method in this paper to extract features. Finally, when ice channel line recognition is more
mature, ice channel line departure warning and the line-keeping assistance algorithm can
be studied on this basis.
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