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Abstract: The vibration signal of a pump is often used for analysis in the study of hydraulic-pump
fault diagnosis methods. In this study, for the analysis, sound signals were used, which can be
used to acquire data in a non-contact manner to expand the use scenarios of hydraulic-pump fault-
diagnosis methods. First, the original data are denoised using complete ensemble empirical mode
decomposition with adaptive noise and the minimum redundancy maximum relevance algorithm.
Second, the noise-reduced data are plotted as mean spectrogram bar graphs, and the datasets are
divided. Third, the training set graphs are input into the ResNet-50 network to train the base model
for fault diagnosis. Fourth, all the layers of the base model are frozen, except for the fully connected
and softmax layers, and the support set graphs are used to train the base model through transfer
learning. Finally, a fault diagnosis model is obtained. The model is tested using data from two test
pumps, resulting in accuracies of 86.1% and 90.8% and providing evidence for the effectiveness of the
proposed method for diagnosing faults in hydraulic plunger pumps.

Keywords: complete ensemble empirical mode decomposition with adaptive noise; voiceprint
information; ResNet-50; transfer learning; fault diagnosis; hydraulic plunger pump

1. Introduction

The hydraulic pump is the power component of the hydraulic system, and the plunger
pump has advantages such as a high rated pressure, compact structure, and high volumetric
efficiency compared to other types of pumps. Therefore, they are widely used in heavy
machinery, national defense equipment, and other fields. Plunger pumps typically operate
under high-speed and heavy-load conditions, resulting in a shorter service life than other
types of pumps. To prevent the occurrence of serious safety incidents, reduce hydraulic
system maintenance costs, and shorten the maintenance duration, it is necessary to conduct
research on fault diagnosis methods for plunger pumps.

Currently, vibration signals are commonly used for the fault diagnosis of rotating me-
chanical components such as bearings, gearboxes, and plunger pumps, and good research
results have been obtained [1–4]. However, the collection of vibration signals is contact-
based, which is inconvenient or impossible to achieve in some practical applications. In
contrast, sound signals, which are generated by vibrations, not only contain rich equipment
status information but can also be acquired in a non-contact-based manner, with less influ-
ence from spatial restrictions. The use of sound signals for fault diagnosis will significantly
expand the application scope of fault diagnosis technologies. In addition, the use of a
single sound-level meter to sample sound signals can aid in diagnosing faults in multiple
components of equipment, while the collection of vibration signals often requires multiple
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sensors. Therefore, in this study, sound signals were analyzed, and a fault diagnosis was
conducted for a constant-pressure variable-displacement axial plunger pump.

Traditional fault diagnosis techniques usually require complex signal processing tasks,
such as noise reduction, filtering, and feature extraction, which require technical expertise
and knowledge for implementation. However, with the development of deep-learning
technology and the advent of the big data era, feature-based approaches that rely on
manual selection will gradually be replaced by deep-learning algorithms. Deep-learning-
based methods can adaptively extract features from equipment status data. These features
not only contain well-known equipment information but also potential information that
can help in identifying and locating faults [5]. Consequently, an increasing number of
researchers have been interested in applying deep-learning methods in the field of fault
diagnosis. In 2017, Qi Y.M. et al. proposed a fault diagnosis method based on a stacked
sparse autoencoder and applied it to the diagnosis of rotating machinery faults [6]. In
the same year, Verstraete D. et al. generated images from the time–frequency information
of the raw data and inputted them into a deep convolutional neural network (CNN)
for fault diagnosis. This method was tested using a publicly available rolling–bearing
dataset [7]. In 2019, Mao W.T. et al. proposed a fault diagnosis method based on a generative
adversarial network (GAN), considering the data imbalance problem in fault diagnosis. The
proposed method was demonstrated to address the data-imbalance fault-diagnosis problem
in bearing datasets [8]. In the same year, Peng D.D. et al. proposed a one-dimensional
deep CNN based on a new residual block and tested it on a rolling–bearing dataset, thus
achieving a good diagnostic performance [9]. In 2020, Li X.Q. et al. proposed an enhanced
selective ensemble deep learning method and used a beetle antennae search algorithm to
improve the performance of a rolling–bearing fault diagnosis algorithm. The experimental
results showed that this method is more accurate and robust than baseline models and
other ensemble learning methods [10]. In 2021, Li T.F. et al. proposed an effective intelligent
fault diagnosis method based on a multireceptive field-graph convolutional network. This
method has the advantages of strong data relationship mining and feature representation
effects. By converting data samples into weighted graphs and extracting and fusing
features from multiple receptive fields, this method solves the limitations of existing graph
convolutional networks in terms of weights and receptive fields [11]. In 2022, Tang S.N.
et al. used a Bayesian optimization algorithm to automatically select the hyperparameters
of CNN models for the intelligent fault diagnosis of hydraulic axial plunger pumps. The
results indicated that the proposed method provides excellent performance [12].

ResNet-50, which is used in this study, is a deep learning structure proposed by He
K.M. et al., and along with it are other models with different network depths, such as
ResNet-18, ResNet-34, ResNet-101, and ResNet-152 [13]. These models are composed of
residual blocks and are therefore also known as deep residual networks (DRNs). Nor-
malized initialization and intermediate normalization can largely solve the problems of
vanishing gradients and exploding gradients caused by the increasing network depth.
The DRN is designed to solve this degradation problem. The degradation problem is not
overfitting, which refers to the phenomenon in which, as the network depth increases, the
training accuracy quickly decreases after reaching saturation; in contrast, overfitting results
in extremely high accuracy in the training set but low accuracy in the testing set.

However, deep learning has significant limitations, which can be summarized as
follows. Firstly, the effectiveness of deep learning largely depends on large-scale samples,
and the lack of prior knowledge may lead to results that deviate from human senses
or expert knowledge. Secondly, deep learning is essentially mapping—i.e., a feature
relationship between the input and output—and it lacks causal reasoning. Thirdly, deep
learning lacks interpretability, as it is an end-to-end model that contains numerous neurons
and parameters, and people cannot explain the meaning of each parameter clearly, which
is also one of the greatest shortcomings of deep learning [14].

With the development of deep learning, the serious problem of dependence on large
sample sizes has become apparent. Researchers have attempted to use models trained
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for a specific problem to solve a different but related problem. This learning method is
known as transfer learning. Compared with training a separate model for the second
problem, this approach can reduce the data and time of the required training. In 1993, Pratt
L. proposed a discriminability-based transfer algorithm that can achieve transfer between
neural networks and described in detail how to use transfer learning to leverage existing
neural networks [15]. In 2020, Chen Z.Y. et al. proposed a transferable CNN to improve
target tasks and applied this network to the fault diagnosis of rotating machinery [16].
In 2021, Deng Y.F. et al. proposed a method based on a double-layer attention-based
GAN (DA-GAN) to address the problem of local transfer in the field of mechanical fault
diagnosis. The DA-GAN method constructs two attention matrices that guide the model
to focus on or ignore certain data components before domain adaptation [17]. In 2022,
Wang Z.J. et al. proposed a fault diagnosis model called the subdomain adaptation transfer
learning network, which not only extracts transferable features but also constructs target
subdomains for each category using pseudo-label learning. It also reduces the bias of
marginal and conditional distributions and adaptively adjusts the contribution of each
network layer using dynamic weight terms [18].

The aim of this study is to investigate the constant-pressure variable-displacement axial
plunger pump, and the noise reduction of the pump’s sound signals is achieved through
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and
maximum relevance minimum redundancy (mRMR) algorithms. The denoised signals are
then plotted as mean spectrogram bar graphs. Subsequently, the ResNet-50 model is used
to extract features and classify the graphs generated in the previous step, thus completing
the training of the source domain model for the fault diagnosis of a single pump. Finally,
through transfer learning, the final diagnostic model is generalized and is able to diagnose
faults in multiple pumps with minimal training.

The first part of this article is the introduction, which introduces the research content,
research background, and research purpose. The second part is the theoretical background,
which details the relevant information and mathematical derivation of the proposed algo-
rithm, including CEEMDAN, the generation of the mean spectrogram bar graph, and the
transfer learning algorithm based on the ResNet-50 model. The third part comprises the
test and processes, wherein the pump fault simulation test and the dataset generated from
it are introduced. The data are then input into the diagnostic algorithm, and the results of
each step are presented and analyzed. The fourth part comprises the conclusions, which
summarize this article and highlight the advantages of the proposed method. Finally, an
outlook for future research on this topic is presented.

2. Theoretical Background
2.1. CEEMDAN

In 1998, Huang N.E. et al. proposed an empirical mode decomposition (EMD) algo-
rithm, which can adaptively decompose signals into a finite number of intrinsic mode
functions (IMFs) and is suitable for analyzing non-linear and non-stationary signals [19]. In
2009, Wu Z. et al. proposed an ensemble empirical mode decomposition (EEMD) algorithm
to solve the endpoint effect and mode mixing problems in EMD by adding auxiliary white
noise [20]. In 2011, Torres M.E. et al. proposed the CEEMDAN algorithm based on EEMD,
which eliminates the noise residue caused by adding auxiliary white noise [21]. The EMD
serves as the foundation for the EEMDAN algorithm; therefore, it is necessary to introduce
the EMD before discussing the CEEMDAN.

2.1.1. EMD

The basic concept of the EMD algorithm is to decompose a signal sequence until the
decomposition-stopping conditions are satisfied. The conditions are as follows: (1) The
number of extreme points in the current component is less than two and (2) the remainder
of the current component cannot be decomposed further. A flowchart of the EMD algorithm
is presented in Figure 1.
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The specific calculation steps of the EMD algorithm are as follows:
Step 1: All the local maximum and minimum points of the original signal sequence

x(t) are found, and spline functions are used to fit the upper envelope l̃1(t) and lower
envelope l

˜1
(t). The average line l1(t) of the upper and lower envelopes are then calculated:

l1(t) =
l̃1(t) + l

˜1
(t)

2
. (1)
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Step 2: The average line l1(t) is subtracted from the original signal sequence x(t) to
obtain the new sequence h1(t):

h1(t) = x(t)− l1(t). (2)

Typically, h1(t) is not considered the first IMF component. Therefore, it is necessary to
repeat the above steps k times until the average line l1k(t) tends to zero and obtain the first
IMF component c1(t):

c1(t) = h1(k−1)(t)− l1k(t). (3)

Step 3: c1(t) is subtracted from the original sequence x(t), which results in the residual
sequence r1(t):

r1(t) = x1(t)− c1(t), (4)

The second IMF component c2(t) is obtained by repeating the first and second steps
for r1(t). This process is repeated until the n-th residual sequence rn(t), which cannot be
decomposed, is obtained as:

rn(t) = rn−1(t)− cn(t). (5)

At this point, the EMD decomposition process is completed, and rn(t) is called the
residue. The original signal x(t) can be reconstructed by the various IMF components and
residue:

x(t) =
n

∑
i=1

ci(t) + rn(t). (6)

Since the emergence of the EMD algorithm, it has been widely applied in several
nonlinear fields. However, it also suffers from the problems of endpoint effects and mode
mixing. Methods such as the mirror method [22], the extrema extension method [23],
the parallel extension method [24], and the boundary local characteristic scale extension
method [25] have been developed to address the endpoint effects. To address the problem
of mode mixing, Wu Z. et al. proposed the EEMD based on EMD, which solves the afore-
mentioned problem by introducing Gaussian white noise, thus making the decomposition
results more stable and reliable. However, because of the repeated addition of Gaussian
white noise, the reconstructed signal contains more residual noise, which increases the
number of IMF components in the decomposition results. To address this problem, Torres
M.E. improved the EEMD method and proposed the CEEMDAN algorithm.

2.1.2. CEEMDAN

As in the case of the EEMD, the CEEMDAN adds white noise to the original signal
x(t). However, in contrast to EEMD, after the first addition of the complete Gaussian white
noise, CEEMDAN adds the IMF components of the white noise obtained using EMD. A
flowchart of the CEEMDAN algorithm is presented in Figure 2.

The specific steps of the CEEMDAN algorithm are as follows:
Step 1: The calculation parameters are initialized, including the noise standard devia-

tion εi the and number of EMD executions l.
Step 2: Different Gaussian white noises ni(t) are added to the original signal x(t) to

obtain a new signal xi(t):
xi(t) = x(t) + ni(t), (7)

where i = 1, 2, . . . , l.
Step 3: The EMD is executed l times on xi(t), the average of l IMF components is

calculated, and the first IMF component of the CEEMDAN c̃1(t) is obtained:

c̃1(t) =
1
l

l

∑
i=1

ci1(t). (8)
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c̃1(t) is subtracted from the original signal x(t) to obtain the first residue r̃1(t):

r̃1(t) = x(t)− c̃1(t), (9)
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Step 4: EMD is executed on l Gaussian white noises ni(t). The first IMF components
are added to r̃1(t), and the l resulting sequences are subjected to EMD. The average of the
first components is the second IMF component c̃2(t):

c̃2(t) =
1
l

l

∑
i=1

E1(r̃1 + ε1E1(ni(t))), (10)

where E1(·) denotes the first IMF component of the sequence in parentheses. Subtracting
c̃2(t) from r̃1(t) results in the second residue r̃2(t):

r̃2(t) = r̃1(t)− c̃2(t). (11)

Step 5: Step 4 is repeated to calculate the remaining IMF components c̃k(t) and residue
r̃k(t):  c̃k(t) = 1

l

l
∑

i=1
E1(r̃k−1 + εk−1Ek−1(ni(t)))

r̃k(t) = r̃k−1(t)− c̃k(t)
, (12)

where k = 3, 4, . . . , K. The K-th residue cannot be further decomposed. The original signal
x(t) is reconstructed from the obtained IMF components and residues:

x(t) =
K

∑
j=1

c̃j(t) + r̃K(t). (13)

The two important parameters in the CEEMDAN algorithm are the number of itera-
tions l and the noise standard deviation εi. The number of executions l is generally set to a
large value. Torres M.E. et al. set l as 500 in their study [21]. The standard deviation of the
added noise εi can be used to select the signal-to-noise ratio (SNR) at each step. Wu Z. et al.
suggested that adding small-amplitude noise signals during the decomposition process is
beneficial [20]. As a result, εi is usually set to a small value, such as 0.02 [21]. In this study,
all εi are set as the same value.

2.2. Spectrogram and Mean Spectrogram Bar Graph

The spectrogram was invented by researchers at Bell Laboratories in 1941. This is
an image that displays sounds in three dimensions. A spectrogram typically presents
the intensity of sound using colors, with time along the horizontal axis and frequency
along the vertical axis. The spectrogram provides a visual representation of how the
different frequency components of a sound signal change over time, thus making it easy to
observe the frequency content of the signal at different moments. In 1945, Kesta L.G. et al.
completed spectrogram matching using visual observation and first proposed the concept
of a voiceprint. Spectrograms can be classified into two types: Wideband and narrowband
spectrograms.

The wideband spectrogram is based on the windowed Fourier Transform technique.
It divides a long signal into several time segments of equal length, performs a short-time
Fourier transform (STFT) on each segment, and then concatenates the multiple frames of
the spectra obtained by the STFT in the time dimension with overlap to form an image.
Typically, the wideband spectrogram uses a wider frequency range and shorter time
windows with shorter intervals between adjacent windows. Therefore, it allows for the
observation of the transient properties of the signal in the time domain, thus presenting
a more distinct visualization of high-frequency components and transient signals and
providing a high temporal resolution.

Narrowband spectrograms are similar to wideband spectrograms, but usually select
a relatively narrow frequency band with a high-frequency resolution, thus making them
more suitable for analyzing the frequency domain details of audio signals. Considering that



J. Mar. Sci. Eng. 2023, 11, 1678 8 of 31

the state information of the equipment is more clearly reflected in the frequency domain, in
this study, narrowband spectrograms are used for the analysis.

2.2.1. Generating Spectrogram

Generating a spectrogram involves several steps:
Step 1: Pre-emphasis is applied to the input audio signals. As the main analysis object

of a spectrogram is human speech, a first-order high-pass filter is typically used to improve
the SNR of the high-frequency part of the signal. This is related to the characteristics
of speech itself and the weighting method used in the sound sampling process. In the
fault diagnosis process, this step can be omitted to reflect the real-state information of the
equipment.

Step 2: The pre-emphasized signals are divided into a series of overlapping frames
and windowing is applied to each data frame. The frame length affects the temporal
resolution of the spectrogram. Frame overlap can smooth the transition between frames
and avoid signal leakage caused by window boundaries; it is usually half the frame length.
Windowing can reduce the Gibbs phenomenon caused by frame division and is beneficial
for accurately extracting the frequency characteristics of the signals in the subsequent
Fourier transform. Commonly used window functions include the rectangular, Hamming,
and Hann windows. In this study, the Hann window is used, and the window function is
represented as follows:

w(i) =
{

0.5(1− cos 2πi
N−1 ) (0 ≤ i ≤ N − 1)

0 (i < 0 or i > N)
, (14)

where i is the index of the data points within the frame and N is the length of the frame.
Step 3: The STFT is performed on each segment to observe the frequency domain

of the signals. The frequency-domain information X(m, k) of the m-th time window at
frequency band k is expressed as follows:

X(m, k) =
N−1

∑
n=0

x(n)w(n−m)e−j2πkn/N , (15)

where x(n) is the original signal, 0 ≤ m ≤ M − 1, M is the number of frames, and
0 ≤ k ≤ N

2 − 1.
Step 4: The square of the amplitude of the STFT value is obtained and logarithmically

processed. The purpose of logarithmic processing is to amplify low-amplitude components
to observe signals masked by low-amplitude noise, the unit of which is dB. The processed
signal Y(m, k) is expressed as follows:

Y(m, k) = 10 log10|X(m, k)|2. (16)

Step 5: The processed signal Y(m, k) of each frame is concatenated to obtain the N
2 ×M

spectrogram matrix SP:

SP =


Y(0, N

2 − 1) Y(1, N
2 − 1) · · · Y(M− 1, N

2 − 1)
...

... . . .

...

Y(0, 1) Y(1, 1) · · · Y(M− 1, 1)
Y(0, 0) Y(1, 0) · · · Y(M− 1, 0)

. (17)

The matrix is plotted as an image, which can be presented in grayscale or pseudocolor
to indicate the magnitude of the power. In this article, grayscale images are used. The
elements in the matrix SP are mapped to the range of 0–255, and a grayscale image is
drawn, where 0 represents black and 255 represents white.
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A traditional spectrogram is designed for human speech signals and used for speaker
recognition and speech recognition. As the object of this study is mechanical equipment,
it is necessary to improve the traditional spectrogram to satisfy the requirements of fault
diagnosis.

2.2.2. Mean Spectrogram Bar Graph

Human voice signals have a higher energy in the low-frequency region; therefore,
A-weighting is typically used to enhance the high-frequency region during the sampling
process. The diagnostic object of this study is a hydraulic plunger pump that rotates
periodically during operation. To obtain more realistic sound signals, a sound-level meter
with Z-weighting is selected for the test process, which ensures that the sampled signals
decay as little as possible over a wide frequency range. Therefore, when generating
spectrograms for equipment fault diagnosis, the pre-emphasis processing of the sound
signals can be omitted.

Steps 2–5 of the traditional spectrogram generation are retained to generate the SP
matrix, which can be used to draw a mean spectrogram bar graph. To comprehensively
monitor the health status of the plunger pump, the sample used to draw a spectrogram
should contain at least one rotation period, and the sample length ls should satisfy the
following requirements:

ls ≥
fs

n
, (18)

where fs is the sampling frequency and n is the rotational frequency.
Based on the analysis of the sound signals of the plunger pump, its changes in the

time domain are relatively small, while the frequency domain can better reflect the fault
information. Therefore, after obtaining the matrix SP, the mean value of each row element
in the matrix is calculated to obtain the F order vector SSP:

SSP =



1
M

M
∑

m=1
Y(m, F− 1)

...
1
M

M
∑

m=1
Y(m, 1)

1
M

M
∑

m=1
Y(m, 0)


. (19)

The elements in the matrix SSP are mapped to a range of 0–255, and a grayscale
image is drawn. This processing not only reduces the amount of data input into the
deep learning model and speeds up the model calculation but also helps to eliminate
occasional interference when ls is long. Figure 3 presents the grayscale spectrogram and
mean spectrogram bar graphs drawn using the sound data of the plunger pump. The mean
spectrogram bar graph is stretched horizontally for better observation.

As shown in Figure 3, owing to the second mapping, the improved spectrogram has a
stronger contrast, which can effectively improve the recognizability of the fault characteris-
tics, reduce the learning difficulty, and improve the accuracy of the fault diagnosis.

2.3. Deep Transfer Learning Algorithm Based on ResNet-50

Deep learning, which originates from artificial neural networks, is a machine learning
technique that uses a multilayer perceptron with multiple hidden layers to automatically
extract abstract features from massive amounts of data, thereby establishing direct rela-
tionships between these features and the target outputs. However, deep learning often
requires a large number of samples to achieve optimal results. In contrast, transfer learning
allows the use of models trained for specific tasks for solving related but different problems.
This article proposes a deep transfer learning method that combines deep learning with
model-based transfer learning. By integrating these two methods, deep transfer can achieve
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stronger feature extraction capabilities and end-to-end diagnostic functions with better
universality. Moreover, deep transfer learning can be used to efficiently extract features
from the data, thereby addressing the problem of insufficient data for fault diagnosis.
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processing.

2.3.1. ResNet-50 Deep Learning Model

ResNet-50 achieves interlayer connections through shortcuts, by adding the input to
the output after convolution across layers, which fully trains the deeper-level network and
improves the accuracy significantly with increasing depth, thus solving the model degra-
dation problem. This structure is called a residual block. In this study, the convolutional
residual block (CRB) and identity residual block (IRB) are used, as shown in Figure 4.
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The ResNet-50 model used in this study contains 49 convolution layers and 1 fully
connected layer, and the activation function used is the rectified linear unit (ReLU). The
model structure is presented in Figure 5.
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Let the input sample be x, and by computing the convolution of the convolution kernel
kinp and x, the feature vector finp can be obtained:

finp = σr(x ∗ kinp + binp), (20)

where σr represents the ReLU activation function and kinp and binp are trainable parameters.
Batch normalization is performed on finp to improve the model training speed. Let

finp be an m× l matrix and fij be the element in the i-th row and j-th column. The element

ninp
ij in the normalized result ninp is represented as follows:



µ f =
1

m×l

m
∑

i=1

l
∑

j=1
fij

σf =
1

m×l

m
∑

i=1

l
∑

j=1
( fij − µ f )

2

f̂ij =
fij−µ f√

σf
2+e

ninp
ij = γ f̂ij + β

, (21)

where e is a small number added to prevent the mean squared error from becoming equal
to zero. ninp

ij is the element in the i-th row and j-th column. γ and β are trainable parameters.

At this point, the distribution of finp is adjusted to a standard normal distribution, which
allows the input data to fall into the sensitive region of the activation function and prevents
the occurrence of the vanishing gradients problem. However, this can result in a decrease
in the expressive power of the network, and the depth of the network loses its meaning.
Therefore, it is necessary to perform an inverse operation on the transformed ninp to enable
the model to learn the optimal values of γ and β.

The normalized result is split into several non-overlapping one-dimensional segments,
the maximum value of each segment element is returned, and maximum pooling is per-
formed. This can reduce the feature dimensions and number of trainable parameters. The
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output of the max pooling layer is denoted as Pinp, which is a q× l matrix, where pinp
k,j is

the element in the k-th row and j-th column of Pinp:

pinp
k,j = max

{
ninp

i,j

∣∣∣s(k− 1) + 1 ≤ i ≤ sk
}

, (22)

where s represents the length of the non-overlapping segments.
Subsequently, the abstract features of Pinp are extracted using multiple residual units.

The residual unit calculates the sum of the residual function and input feature, where the
residual function is a non-linear mapping Fr(X) consisting of three convolution layers:

Fr(Xt−1; θt) =
{

σr[σr(Xt−1 ∗Kt
1 + Bt

1) ∗Kt
2 + Bt

2] ∗Kt
3 + Bt

3

}
, (23)

where θt =
{

Kt
1, Bt

1, Kt
2, Bt

2, Kt
3, Bt

3
}

denotes the trainable parameter set for the t-th residual
unit. In this study, the number of residual units is 16 when t = 1 and x0 = Pinp.

In IRB, the shortcut connection performs element-wise addition between two features
of equal dimensions, which is an identity mapping. The output Yt of the t-th residual unit
can be expressed as follows:

Yt = σr[Fr(Xt−1; θt) + Xt−1], (24)

where Yt denotes a multidimensional matrix. The IRB does not introduce additional
parameters or computational complexity into the model, which has significant advantages
in practical applications.

In the CRB, as the output channels of the convolution layers are modified, the dimen-
sions of the features are not equal when they are added; therefore, dimension matching is
required to be performed in the shortcut connection (implemented through a 1× 1 convo-
lution). This increases the network parameters and improves its performance. This process
can be represented as follows:

Yt = σr[Fr(Xt−1; θt) + (Xt−1 ∗Kt
4 + Bt

4)], (25)

where Kt
4 and Bt

4 are parameters to be trained.
After extracting the device fault feature matrix Y16 through a 16-layer residual network,

Global Average Pooling (GAP) [26] is performed, followed by a fully connected layer. The
GAP calculates the average value of each element in the feature matrix of every dimension
of Y16, thus obtaining a feature vector gout with a length equal to the dimension of Y16.
Compared with directly connecting to a fully connected layer, this approach reduces the
network parameters and prevents overfitting.

Then, a fully connected layer is connected after the GAP layer, the features are mapped
to the label space of the samples, and fcout is output as follows:

fcout = Ffc(g
out; θfc) = σr(wfc · gout + bfc), (26)

where θfc= {wfc, bfc
}

denotes the parameter set of the fully connected layer to be trained.

Finally, the softmax function is used to calculate the probability distribution of fcout in
the label space, and the probability of belonging to the s-th fault type is given as:

P(ytype = s|fcout; θsoft) =
exp(w

soft
s · fcout + b

soft
s )

S
∑

s=1
exp(wsoft

s · fcout + b
soft
s )

, (27)

where θsoft= {wsoft, bsoft
}

denotes the set of parameters to be trained for the softmax layer.
In this study, the total number of types S = 8. Thus, the device fault diagnosis task based
on deep learning is completed.
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2.3.2. Model Transfer Learning Based on ResNet-50

There are two basic concepts in transfer learning: Domains and tasks. The exist-
ing knowledge is called the source domain, which includes data knowledge and model
knowledge. The source domain generates training samples containing rich annotation
information. The new knowledge expected to be obtained is called the target domain,
which generates test samples, usually without annotations or with only a small amount of
annotation information. A task refers to a specific problem that is required to be solved,
and a model is required to learn from a large amount of data. Transfer learning can transfer
the annotated data and knowledge structure of the source domain to the target domain
to complete the task of the target domain. Typically, the tasks of the source and target
domains are identical; however, the data distributions are different. Pan et al. referred to
this type of transfer learning as transductive transfer learning [27].

In model-based transfer learning, it is assumed that the source domain has a large
amount of labeled data Ds =

{
xs

i , ys
i
}ns

i=1, where xs
i represents the i-th sample in the source

domain, and ys
i is its label. ns is the number of samples in the source domain. It is also

assumed that the target domain has a small amount of labeled data Dt =
{

xt
j, yt

j

}nt

j=1
wherein xt

j represents the j-th sample in the target domain, yt
j is its label, and nt is the

number of samples in the target domain, where nt � ns. In model transfer, an attempt
is made to transfer the abundant structural knowledge learned from the source domain
data to the target domain and obtain a more accurate prediction model using only a small
amount of labeled data from the target domain.

When transferring the model in this study, all the layer parameters, except for the fully
connected layer, and softmax are frozen, which retains the knowledge of deep learning for
the feature extraction of the device states. Transfer learning training is performed using
the labeled data in the target domain. Parameter training comprises the use of a stochastic
gradient descent with a momentum optimizer, which adds momentum to the stochastic
gradient descent, and its iterative update formula for the parameters is as follows:{

mt = βmt−1 + (1− β)gt
θt = θt−1 − αmt

, (28)

where mt represents the momentum, β is the decay coefficient, typically, β = 0.9 [28], gt
is the gradient of the objective function with respect to the current parameters, θt is the
optimized parameter, and α is the initial learning rate, which is obtained from optimization
algorithms.

The cost function JMSE uses the mean squared error, which is expressed as:

JMSE =
1
nt

nt

∑
j=1

(yt
j − ỹt

j)
2, (29)

where ỹt
j is the predicted label for sample xt

j in the j-th sample of the target domain. L2
regularization is applied to the cost function to prevent overfitting.

3. Test and Calculation
3.1. Fault Simulation Test of the Hydraulic Plunger Pump

In the hydraulic plunger pump fault simulation test, the normal components of the
pump are replaced with artificial faulty components to simulate seven types of faults: Shoe
wear, port plate wear, loose shoe, plunger wear, and support bearing faults (outer ring,
inner ring, and rolling element faults). The test also distinguishes the degree of some faults,
which is, however, not introduced in this study. The faulty components used in the tests
are presented in Figure 6.
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Figure 6. Photographs of various faulty components of plunger pumps used for the testing. (a) Wear
of shoe; (b) loose shoe; (c) wear of plunger; (d) wear of port plate; (e) fault of outer ring; (f) fault of
inner ring; (g) fault of rolling element.

To produce worn shoe, plunger, and port plate components, we used 80-grit sandpaper
to polish the surface of the components, and the weight of the former two decreased by
0.4 g while the latter decreased by 1 g. To manufacture the loose-shoe component, we
employed a tool to stretch the shoe and plunger, resulting in a 0.3 mm increase in the
distance between the two. The three types of fault-bearing components are obtained using
electrical discharge machining. For the faulty inner and outer rings of the bearings, a
through groove with a width of 1 mm and a depth of 1 mm is machined on the rolling track.
For the faulty rolling elements of the bearings, a small pit with a diameter of 1 mm and a
depth of 1 mm is machined on a rolling element.

The fault simulation test bench of the hydraulic plunger pump is designed based on a
constant-pressure variable-displacement axial plunger pump (see (2) in Figure 7), which
uses a proportional relief valve (see (2) in Figure 4) to control the pressure of the test system
and adjusts the opening size of the throttle valve (see (2) in Figure 7) to change the load
pressure and flow rate. A hydraulic schematic of the test bench is presented in Figure 7.

During the test, various types of fault signals are generated by replacing normal
components with faulty components to simulate faulty pumps. In addition to the flow,
pressure, and temperature sensors indicated in Figure 7, a sound level meter is also placed
0.5 m directly above the pump to collect sound signals during the pump operation. In the
test, the vibration signals from the pump are also sampled; however, this is not discussed
in detail in this article. A photograph of the test bench is presented in Figure 8, and the
main components and their performance indicators are listed in Table 1.
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Figure 7. Schematic of Hydraulic system of the hydraulic-plunger-pump fault-simulation test bench.
The numbered identifiers in the figure correspond to different members of the system. 1: Oil
absorption filter; 2: Constant-pressure variable-displacement axial plunger pump; 3: Electric motor;
4: Proportional relief valve; 5: Flowmeter; 6: Check valve; 7: Pressure sensor; 8: Pressure gauge; 9, 14:
Temperature sensor; 10: Throttle valve; 11: Air-cooled unit; 12: Liquid level gauge; 13: Air filter; 15:
Oil tank.
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Table 1. Main components of test bench and their performance indicators.

Name Model Performance Parameters

Hydraulic plunger pump
(KOMPASS Mechanical and Electrical Co.,

Ltd., Shanghai, China)
PVS08-B3-F-R

Theoretical displacement: 8 mL/min, pressure
regulation range: 3–21 MPa, speed range:
500–2000 r/min, number of plungers: 7,

Electric motor
(Chyun Tseh Motor Industrial Co., Ltd.,

Taiwan, China)
C07-43BO Rated power: 5.5 kW, rated speed: 1440 r/min

Flowmeter
(Katu Electronics Co. Ltd., Suzhou, China) FM120-010DCA3KQ Measuring range: 0.2–1.2 m3/h

Temperature sensor
(Katu Electronics Co. Ltd., Suzhou, China) TS300-A3R14MM005D6P Measuring range: 0–150 ◦C

Pressure sensor
(Katu Electronics Co. Ltd., Suzhou, China) PS300-B250G1/2MA3P Measuring range: 0–250 bar

Sound level meter
(Aihua Instruments Co. Ltd.,

Zhejiang, China)
AWA5661 Measuring range: 35–130 dB, sensitivity:

40 mV/Pa, frequency range: 10 Hz–16 kHz

Analog signal acquisition card
(National Instruments Corp. Ltd.,

Austin, TX, USA)
NI PXIe-6363 Sampling rate: 2 MS/s, number of channels: 16,

resolution: 16 bit

Data Acquisition Controller
(National Instruments Corp. Ltd.,

Austin, TX, USA)
NI PXIe-8135 Processor: 2.3 GHz Quad Core Intel Core

i7-3610QE, Memory: 4 GB

The signals obtained using the various sensors are transmitted to the data acquisition
card, and the data are displayed and stored in real time using the developed LabVIEW
program. The front panel of the LabVIEW program is presented in Figure 9.
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During the test, the oil temperature is maintained at 35–40 ◦C by controlling the
air-cooled unit to reduce the influence of changes in oil viscosity on the test. The tests are
conducted at different pressures (5, 10, and 15 MPa) and flow rates (3, 6, and 9 L/min).
Three different sampling frequencies (20, 30, and 40 kHz) are used to continuously sample
the pump 10 times under each state, with each sampling duration being 5 s. Six pumps
with the same model are individually installed on the bench, and seven faulty components
are replaced to collect eight types of state data for the six pumps.

3.2. Test Dataset

The data-collection conditions for the sound signal dataset used in this study are as
follows: A sampling frequency of 40 kHz, system pressure of 10 MPa, and flow rate of
9 L/min. The dataset includes data from six pumps, each with eight state signals (normal
N, wear of shoe WS, wear of port plate WPP, loose shoe LS, wear of plunger WP, fault of
bearing outer ring FOR, fault of bearing inner ring FIR, and fault of bearing rolling element
FRE). Figure 10 presents the corresponding time-domain and frequency-domain graphs of
the pump under these eight states.
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Figure 10. The sound signals of a plunger pump in normal and seven faulty states. (a) Time domain;
(b) frequency domain. Due to the limitations of the sound level meter, the effective frequency range
is 0 Hz–16 kHz.

The bearings in the hydraulic pump are deep groove ball bearings, with model number
6205. The pitch diameter is 39.04 mm, and there are 9 rolling elements with a diameter of
7.94 mm. The rated speed of the driving motor is 1440 r/min, and the actual measured
speed is 1488 r/min, which is equivalent to 24.8 Hz. The characteristic frequency coefficients
for the three types of bearing faults are 5.4152 (FIR), 3.5848 (FOR), and 2.3567 (FRE). The
corresponding characteristic frequencies are 134.3 Hz, 88.9 Hz, and 58.4 Hz. The hydraulic
pump has a total of seven plungers, which results in a pressure shock at 173.6 Hz. We
enlarged the frequency domain plot to display the range of 0–700 Hz, as shown in Figure 11.
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Figure 11. Amplified plot of the frequency domain signal.

In Figure 11, peak values at the reference frequency of the pressure shock and its
harmonics can be clearly observed. The fifth harmonic of the fault frequency of three types
of bearing faults can be observed.

The most commonly used method for measuring sound signals is the sound pressure
level (dB). The measurement for the signals obtained in this test is that of sound pressure
in Pa. The conversion formula between the two is:

SPL = 20lg(
P

Pref
), (30)

where SPL represents the sound pressure level, P is the sound pressure, and Pre f is the
reference sound pressure. As the minimum sound pressure perceived by the human ear is
20 µPa, the reference sound pressure in air is generally considered 20 µPa. As shown in
Figure 10, the sound pressure amplitude of the time domain in the normal state is less than
that in the other states, and there are slight differences in the frequency domain graphs
corresponding to different states; however, it is difficult to recognize their corresponding
state categories.

In transfer learning, the dataset is divided into four parts: Training, validation, support,
and query sets. The training and validation sets are obtained from the source domain,
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and the samples are labeled; the support set comprises the training samples in the target
domain, and the samples are labeled; and the query set comprises the test samples in the
target domain, and the samples are unlabeled. Each data file collected through the test
contains 5 s of sound signals, with 200 k data points, and each file is divided into 47 samples
through overlapping partitioning. The dataset divisions used in this study are listed in
Table 2.

Table 2. Dataset Partitioning.

Data Set Data Details Files Samples

Training set

Pump_1, normal + 7 types of faults 80 3760
Pump_2, normal + 7 types of faults 80 3760
Pump_3, normal + 7 types of faults 80 3760

Pump_4 normal 10 470

Verification set Pump_4, 7 types of faults 70 3290

Support set Pump_5, normal 10 470
Pump_6, normal 10 470

Query set Pump_5, 7 types of faults 70 3290
Pump_6, 7 types of faults 70 3290

The data obtained from Pump_1–Pump_4 are used as the source domain data, while
the data obtained from Pump_5 and Pump_6 are used as the target domain data. Consid-
ering that in practical engineering applications, normal data are usually abundant while
failure data are scarce, all the normal samples in the target domain are selected as the
support set.

3.3. Fault Diagnosis Calculation Process
3.3.1. CEEMDAN Noise Reduction

Before denoising, the original data are zero-centered. CEEMDAN is then used to
decompose the sound signal into multiple modal components and selected components for
reconstruction using the mRMR algorithm to complete the denoising process. For example,
we demonstrated the denoising process of a sound signal in the normal state of Pump_1.
The other signals are processed similarly. Figure 12 presents a comparison of the modal
components after the EEMD and CEEMDAN are performed.

The EEMD produced 17 IMF components and 1 residual, while the CEEMDAN
produced 13 IMF components and 1 residual. Compared with EEMD, there are fewer signal
components after the CEEMDAN, which indicates that CEEMDAN can effectively avoid
the interference of white noise that is added multiple times by the EEMD to the original
signal.

In the mRMR algorithm, the mutual information I(c̃j; x) between each component
c̃j(s) and the original signal x(t) is first calculated:

I(c̃j; x) =
T−1

∑
t=0

S−1

∑
s=0

p[c̃j(s), x(t)]log2
p[c̃j(s), x(t)]

p[c̃j(s)]p[x(t)]
, (31)

where p[c̃j(s), x(t)] represents the probability of their joint occurrence; p[c̃j(s)] and p[x(t)]
represent their individual occurrence probabilities; and S and T are equal, both of which
are the number of signal points.

The higher the mutual information, the higher the degree of dependence between the
two random variables. The features are then sorted according to their mutual information
values. Next, the first feature is selected as the most relevant feature from a sorted list of
features. Subsequently, the mutual information of the remaining features with the selected
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feature is calculated, and their correlation with the selected feature is computed. The scores
are then totaled to obtain a comprehensive score mRMRj:

mRMRj = I(c̃j; x)− 1
k

k

∑
i=1

I(c̃j; c̃i), (32)

where k denotes the number of selected features. Based on this, the features are sorted and
the feature with the highest score is selected as the next feature. This process is repeated
until sufficient features are selected or all the features are selected [29]. After sorting all
the IMFs using the mRMR algorithm, the correlation coefficients between the signals are
reconstructed with different numbers of selected IMFs and the original signal. In this study,
the Pearson correlation coefficient is used and is calculated as follows:

CC(x, y) =
cov(x, y)√

var(x)var(y)
, (33)

where cov(x, y) represents the covariance of x and y, and var(x) represents the variance
of x.

Subsequently, the calculated correlation coefficient is used to plot the curve, as shown
in Figure 13.
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Figure 12. Normal sound signal of Pump_1 decomposed via EEMD (a) and CEEMDAN (b).
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Figure 13. Correlation coefficients between the reconstructed signal with added IMFs and the original
signal. The signal comes from the normal state of Pump_1.

In Figure 13, the horizontal axis represents the ordering number of the IMFs obtained
using the mRMR algorithm. The closer to the left end, the higher the mRMR comprehensive
score of the component, with 14 indicating a residual. To elaborate, the score of IMF7 is the
highest, with a correlation coefficient of 0.74 with the original signal; the score of IMF2 ranks
second, and the signal reconstructed using IMF2 and IMF7 has a correlation coefficient
of 0.78 with the original signal. Thus, the signal reconstructed using all the components
and residual has a correlation coefficient of 1 with the original signal. The slope of the
curve is relatively steep in the first half of the curve, and the curve growth slows after
the addition of IMF1, at the location of the red dot marker. Therefore, the first eight IMFs
(7/2/8/6/4/5/9/1) are selected to reconstruct the signal. The frequency-domain graphs of
the reconstructed and original signals are presented in Figure 14.
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Figure 14. Frequency-domain diagram of original and reconstructed signals. The signal comes from
the normal state of Pump_1.

From Figure 14, it can be observed that, compared with the original signal, the recon-
structed signal retains the data in the 0–2000 Hz frequency band, and the two frequency
bands with high amplitudes of 5000–9000 Hz have some attenuation, but their peaks are
preserved. The other frequency bands are suppressed to lower levels.

3.3.2. Mean Spectrogram Bar Graphs Generation

The reconstructed signal is linearly normalized, and the data are mapped to [0, 1],
which is expressed as:

x′ =
x− xmin

xmax − xmin
, (34)

where xmax and xmin are the maximum and minimum values of all the data, respectively.
The normalized data are plotted as a spectrogram. It is worth noting that converting a

spectrogram generated by a false color to a black-and-white image will result in the loss
of a considerable amount of information and produce the same file size as a grayscale
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spectrogram. In this study, grayscale images are directly generated using raw data, which
can compress the file size, reduce the network computing power, and fully record the
device state information. For example, a comparison of the three visualizations using the
normal signal of Pump_1 is presented in Figure 15.
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Figure 15. Three spectrograms drawn using normal state data of Pump_1. (a) Pseudocolor spectro-
gram; (b) pseudocolor converted to black and white; (c) grayscale spectrogram.

In the field of deep learning, color images can provide more feature information
than grayscale images and are therefore widely used. However, this requires a premise:
The RGB three-color channels of a color image contain different feature information. The
spectrogram drawn using pseudocolors uses a three-dimensional tensor to express a two-
dimensional matrix, which means that the feature information contained in the pseudocolor
and grayscale spectrograms is identical. Using color images as the input to the network
will inevitably result in a multiplication of the computational load owing to the increase
in the number of channels. Therefore, in this study, grayscale images are used instead of
pseudocolor images as network inputs. Figure 16 presents the grayscale spectrograms
corresponding to the data of Pump_1 in the eight different states considered.
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From Figure 16, it can be observed that the grayscale spectrogram has more obvious
horizontal stripes. This indicates that the frequency domain has a better feature representa-
tion ability for the pump-state data. Therefore, in this study, grayscale spectrograms are
compressed into mean frequency spectrum bar graphs as inputs to the network. Figure 17
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presents the mean spectrogram bar graphs corresponding to the eight states of Pump_1. To
better observe the compressed images, they are stretched horizontally.
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From Figure 17, it can be observed that the mean spectrogram bar graphs correspond-
ing to each state are significantly different from those of the other states. The mean spectrum
bar graphs of the three types of bearing faults are relatively similar; however, some dif-
ferences can still be observed. Compared with the grayscale spectrogram, in addition to
compressing the file size, the mean spectrogram bar graph has a higher contrast and more
obvious differences between the images of each state. These significant differences can
reduce the difficulty in learning the feature information and improve the accuracy of the
diagnostic model.

3.3.3. Use of Deep Transfer Learning for Fault Location

Previously, the dataset used in many studies on fault-diagnosis equipment, such as
bearings and hydraulic plunger pumps, is obtained using a single device. Therefore, the
similarity between the datasets was extremely high and the diagnostic accuracy was often
close to 100%. This study demonstrates this in the same manner by dividing the Pump _1
data into training, validation, and test sets in a 5:2:3 ratio; the corresponding sample sizes
are divided in the ratio of 1880:752:1128. Via overlapping segmentation of the original data,
47 mean spectrogram bar graphs are generated for each data file. The mean spectrogram
bar graphs generated from the training and validation sets are imported into the ResNet-50
model for training. The training process parameters are listed in Table 3.

Table 3. ResNet-50 Model Training Parameters.

Parameter Parameter Value

Initial learn rate 0.001
Validation frequency 5

Max epochs 5
Mini batch size 32

L2 regularization 0.0001
Learn rate drop factor 0.1
Learn rate drop period 10

The relationship between the number of training epochs nepochs and batch size sbatch
is as follows:

nepochs =
titeration · sbatch

nsamples
, (35)

where titeration represents the number of training iterations, and nsamples represents the total
number of training samples. Therefore, according to the parameter settings, 32 samples
are involved in the training per iteration; after 58 iterations, all the samples (1880) partici-
pated in one round of model training, and after 290 iterations, five rounds of training are
completed. The training process curve is presented in Figure 18.
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Figure 18. Process curves for training the ResNet-50 model using Pump_1 data. (a) Accuracy curves;
(b) Loss curves.

The curves show that the ResNet-50 model requires only one round of training, and
the validation accuracy can reach 100% after 60 iterations, at the location of the red dot
marker. The validation accuracy remains stable at 100% after 70 iterations. The validation
loss is 0.032 after 60 iterations and decreases to 0.0026 after 290 iterations. The test set data
are input into the trained model for testing, and the confusion matrix is plotted in Figure 19.
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Figure 19. Confusion matrix of diagnostic results of ResNet-50 model when both training and test
sets are from Pump_1 data.

The numbers in the confusion matrix represent the number of samples, with the last
row indicating the recall rate for each true class and the last column indicating the precision
rate for each predicted class. The bottom-right corner presents the testing accuracy of
the proposed model. It can be observed that the diagnostic model’s accuracy reached
100% when tested with samples obtained from Pump_1, but the accuracy decreased to
an unacceptable level when tested with other pump samples. The testing accuracy of the
model for the samples obtained from Pump_2–Pump_6 is 22.7%, 13.4%, 12.8%, 12.3% and
13.1%, respectively. The confusion matrices shown in Figure 20 illustrate the performance
of the model when tested using samples from different pumps.
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Figure 20. Confusion matrix of diagnostic results of ResNet-50 model when the training set is from
Pump_1 data and the test set is from the data of the other five pumps. (a) Pump_2; (b) Pump_3;
(c) Pump_4; (d). Pump_5; (e) Pump_6.

For practical applications, a well-trained diagnostic model should be able to diagnose
the majority of pumps in the same model and have a satisfactory diagnostic effect. There-
fore, it is necessary to conduct research on transfer learning to increase the generalization
of the diagnostic model.

The ResNet-50 diagnostic model is trained on a dataset that is divided as shown in
Table 2. The parameters used in the first training process are the same as those in Table 3,
but the maximum number of epochs is adjusted to 40 to increase the training time of the
model. The model training process curves are presented in Figure 21.

Although the training accuracy quickly reached 100%, it can be observed that the
validation accuracy can only reach a maximum of 65.1%, at the location of the red dot
marker and the minimum validation loss is 1.32, at the location of the red dot marker.
Because the selected dataset for the validation set comprises data on the seven types of
faults of Pump_4, which is quite different from the data of Pump_1–Pump_3 used for
training. Therefore, Bayesian optimization is used to optimize the initial learning rate of
the model between [0.00001, 0.1], a logarithmic scale is used for the horizontal axis, and
30 attempts are made. The loss and accuracy corresponding to different initial learning
rates during the optimization process are presented in Figure 22.
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Figure 21. Process curve of ResNet-50 model training with samples obtained from Pump_1–Pump_3.
(a) Accuracy curves; (b) loss curves.
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As shown in Figure 22, in the 30 attempts, the validation accuracy realized is the
highest at 95.2%, at the location of the red dot marker and the validation loss is 0.13, at
the location of the red dot marker when the initial learning rate is set as 0.023. The model
trained at this learning rate, which had the minimum validation loss, is exported as the base
model for the transfer learning. The confusion matrices of the diagnostic results obtained
for the data of Pump _5 and Pump _6 using the base model are presented in Figure 23.

As can be observed from Figure 23, owing to the increase in the training data and
parameter optimization, the accuracy of the base diagnostic model reached 48.1% and 54%
for the Pump_5 and Pump_6 samples, respectively. The accuracy increased by 35.8% and
40.9%, respectively, compared to the model trained with the Pump _1 data. This indicates
that expanding the training data can improve the generalization ability of the diagnostic
model.

Subsequently, a model-based transfer learning model training was performed. With
the exception of the fully connected and softmax layers, the parameters of the remaining
layers of the base model are frozen, and the frozen model is trained using the support set.
In this study, the frozen model is referred to as the baseline model. The initial learning rate
is consistent with the parameters obtained from the optimization of the base model. The
last 30% of the support set is divided into the validation sets for the training process. The
training process is illustrated in Figure 24.

During the training process, the highest validation accuracy is 99.5%, at the location
of the red dot marker and the minimum validation loss is 0.28, at the location of the red
dot marker. The model with the minimum validation loss is selected as the final diagnostic
model and is used to diagnose the Pump_5 and Pump_6 data. The confusion matrices for
the diagnostic results are presented in Figure 25.
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It can be observed that the transferred model can also provide better diagnosis results
for the new data. The diagnostic accuracies of Pump_5 and Pump_6 are 86.5% and 90.8%,
respectively. The diagnostic results are 38.4% and 36.8% higher than those of the baseline
model, respectively. The diagnostic accuracies of the different models used in this study
are listed in Table 4.

Table 4. Diagnostic accuracy of the model at different stages.

Diagnostic Object Diagnostic Accuracy of Pump_1
Data Training Model

Baseline Model Diagnostic
Accuracy

Transferred Model
Diagnostic Accuracy

Pump_5 12.3% 48.1% 86.1%
Pump_6 13.1% 58% 90.8%
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In this paper, a transfer learning study based on SqueezeNet and GoogleLeNet is
also conducted. Using the same dataset mentioned previously, the accuracy of the fault
diagnosis with different transfer models is presented in Table 5.

Table 5. Diagnostic accuracy of different transfer models.

Diagnostic Object SqueezeNet GoogleLeNet ResNet-50

Pump_5 67.7% 77.5% 86.1%
Pump_6 68.4% 84.1% 90.8%

From Table 5, it can be observed that the hydraulic-pump fault-diagnosis model based
on the transfer of ResNet-50 has higher diagnostic accuracy than the other two models.

In addition, to observe whether the model in this study exhibits the overfitting phe-
nomenon, models trained with different numbers of epochs are used to diagnose the data
obtained from Pump_6, and the result is presented in Figure 26.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 31 of 33 
 

 

 
Figure 26. Impact of various training epochs on diagnostic accuracy. 

From Figure 26, it can be observed that, with an increase in the number of model 
epochs, the test accuracy realized using data obtained from Pump_6 increases 
significantly when the number of training epochs is increased from one to five. 
Subsequently, the growth becomes slower, and two plateau periods are observed: [4,7] 
and [9,26]. Finally, when the number of training epochs reaches 39, the test accuracy 
exceeds 90%, at the location of the red dot marker and remains unchanged thereafter. It 
can be considered that the model did not exhibit overfiĴing owing to the increase in the 
number of training epochs. 

In addition, there is one point that needs to be recognized. The sampled signals 
contain environmental noise, the sound generated by various components of the 
hydraulic system, and specific frequency sounds caused by faults. Environmental noise 
can be effectively suppressed through CEEMDAN and mRMR. However, the sound 
generated by the operation of the hydraulic system cannot be eliminated by noise-
reduction algorithms, and the sound signals will also change when the working pressure 
or spatial arrangement changes. It can be expected that this will have an adverse effect on 
the accuracy of fault diagnosis. Fortunately, this problem can be solved. By using re-
sampled sound signals to conduct transfer learning, the fault diagnosis algorithm can be 
adapted to the changed hydraulic system. 

4. Conclusions 
This article first elaborates on the CEEMDAN and mRMR denoising algorithms, the 

method of drawing mean spectrogram bar graphs based on sound signals, and the trans-
fer learning algorithm based on the ResNet-50 model used in the research process. The 
test seĴings and sampled data are then described, and the data calculation process and 
diagnostic results are displayed. The following conclusions are thus drawn: 
1. Compared with the IMF components obtained via EEMD, the CEEMDAN can pro-

vide fewer IMF components and can effectively denoise the signal by combining it 
with the mRMR algorithm. 

2. The mean spectrogram bar graph significantly compresses the input diagnostic 
model images while ensuring the diagnostic accuracy of the diagnostic model. 

3. A diagnostic model trained using samples from a single pump cannot be used to 
diagnose the faults in other pumps. In this study, the diagnostic accuracy of the di-
agnostic model trained using data from Pump_1 for diagnosing other pumps is 
found to be less than 22.7%. 

4. The baseline diagnostic model trained directly with samples from multiple pumps 
has a higher diagnostic accuracy when applied with other pumps than the diagnostic 
model trained with samples obtained from a single pump. In this study, the baseline 
diagnostic model trained using samples from Pump_1–Pump_3 achieved diagnostic 
accuracies of 48.1% and 58% for Pump_5 and Pump_6, respectively, which reflect 
increases of 35.8% and 44.9%, respectively, compared with the diagnostic accuracy of 
the model trained with samples obtained from a single pump. 

0 10 20 30 40 50
0

20

40

60

80

100

 Test

A
cc

ur
ac

y 
(%

)

Epoch

Figure 26. Impact of various training epochs on diagnostic accuracy.

From Figure 26, it can be observed that, with an increase in the number of model
epochs, the test accuracy realized using data obtained from Pump_6 increases significantly
when the number of training epochs is increased from one to five. Subsequently, the growth
becomes slower, and two plateau periods are observed: [4,7] and [9,26]. Finally, when the
number of training epochs reaches 39, the test accuracy exceeds 90%, at the location of the
red dot marker and remains unchanged thereafter. It can be considered that the model did
not exhibit overfitting owing to the increase in the number of training epochs.
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In addition, there is one point that needs to be recognized. The sampled signals
contain environmental noise, the sound generated by various components of the hydraulic
system, and specific frequency sounds caused by faults. Environmental noise can be
effectively suppressed through CEEMDAN and mRMR. However, the sound generated by
the operation of the hydraulic system cannot be eliminated by noise-reduction algorithms,
and the sound signals will also change when the working pressure or spatial arrangement
changes. It can be expected that this will have an adverse effect on the accuracy of fault
diagnosis. Fortunately, this problem can be solved. By using re-sampled sound signals
to conduct transfer learning, the fault diagnosis algorithm can be adapted to the changed
hydraulic system.

4. Conclusions

This article first elaborates on the CEEMDAN and mRMR denoising algorithms,
the method of drawing mean spectrogram bar graphs based on sound signals, and the
transfer learning algorithm based on the ResNet-50 model used in the research process.
The test settings and sampled data are then described, and the data calculation process and
diagnostic results are displayed. The following conclusions are thus drawn:

1. Compared with the IMF components obtained via EEMD, the CEEMDAN can provide
fewer IMF components and can effectively denoise the signal by combining it with
the mRMR algorithm.

2. The mean spectrogram bar graph significantly compresses the input diagnostic model
images while ensuring the diagnostic accuracy of the diagnostic model.

3. A diagnostic model trained using samples from a single pump cannot be used to
diagnose the faults in other pumps. In this study, the diagnostic accuracy of the
diagnostic model trained using data from Pump_1 for diagnosing other pumps is
found to be less than 22.7%.

4. The baseline diagnostic model trained directly with samples from multiple pumps
has a higher diagnostic accuracy when applied with other pumps than the diagnostic
model trained with samples obtained from a single pump. In this study, the baseline
diagnostic model trained using samples from Pump_1–Pump_3 achieved diagnostic
accuracies of 48.1% and 58% for Pump_5 and Pump_6, respectively, which reflect
increases of 35.8% and 44.9%, respectively, compared with the diagnostic accuracy of
the model trained with samples obtained from a single pump.

5. After the transfer learning, the diagnostic model has a higher diagnostic accuracy
than the baseline diagnostic model trained using samples from multiple pumps. The
former model can achieve a diagnostic accuracy of 86.1% and 90.8% for Pump_5 and
Pump_6, respectively, which is an increase of 38.4% and 36.8%, respectively, compared
with the diagnostic accuracy of the latter model.

6. Compared with SqueezeNet and GoogleLeNet, the hydraulic-pump fault-diagnosis
model based on the transfer of ResNet-50 has higher diagnostic accuracy. The diag-
nostic accuracies obtained for the Pump_5 validation data are 67.7%, 77.5%, and 86.1%
for the three models, respectively. The accuracies obtained for the Pump_6 data are
68.4%, 84.1%, and 90.8%, respectively.

Research on fault diagnosis based on sound signals has expanded the applications of
fault diagnosis methods. In the future, signals such as sound, vibration, and pressure can
be fused and used for the fault diagnosis of hydraulic equipment. As inputs to the model,
the three channels of the image can be used separately to store different input information.
The mean spectrogram bar graph presented in this study can significantly compress the
input image file size required for fault diagnosis and can be promoted in appropriate fields.
Transfer learning can be used to effectively solve the problem of insufficient data in fault
diagnosis and other research fields and has great research value. Ensemble learning, which
combines multiple deep-learning models, has been proven to have better generality than a
single model [30]. Each model can be specialized for processing specific data subsets during
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the training phase [31], which can aid in fully leveraging the performances of different
models. Therefore, future research should be focused on this direction.
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