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Abstract: The popularity of modern water bikes increases due to the relatively high speed developed
with the use of a human muscle power only. For example, the maximum speed of prototypes
reaches the value 3 m/s. Similar vehicles can be used not only for recreation and fitness, but also
for transportation. To increase their speed and tonnage, we recommend improving the pontoon
shape and using electrical power. The underwater part of the pontoon shape was recommended to
be similar to the body shape of the fastest fish in order to decrease the wave resistance and total drag.
The optimal depth of the movement of corresponding shapes was calculated. The total drag and
maximum speeds of the vehicles with the human muscle and electrical power are estimated. Expected
success in improving the pontoon shape opens wide prospects for the use of these special-shaped
hulls in shipbuilding.

Keywords: green transport; electrification of maritime transport; drag reduction; environment
protection; unseparated shapes; wave resistance

1. Introduction

A modern water bike, Explorer-1 [1], can develop speeds of up to 2.7 m/s using only
human muscle power at a total weight of 240 kg. This rather high speed was achieved by
improving the shape of pontoons and using an effective propeller [1]. Similar vehicles can
be used not only for recreation and fitness, but also for transportation, especially with the
use of electrical power. To increase the speed and the commercial effectiveness (weight-
to-drag ratio) of such vehicles, special-shaped pontoons of low drag (similar to the body
shape of the best swimmers) are proposed.

The maximum speed of the fastest fish can reach around 30 m/s (e.g., sailfish, sword-
fish, black marlin, etc., [2–5]). A very sharp nasal rostrum of these animals probably allows
them to remove the boundary layer separation and avoid high pressures on the body
surface as well as reduce the wave resistance when moving near the water surface. The
corresponding axisymmetric bodies with concave noses have no pressure peaks on their
shape and have much lower values of the vertical velocity on the water surface [6]. Since
the reason for the waves on the water surface is the high pressure on the vessel bow and
stern [7–10], these special-shaped bodies could be used to reduce wave resistance. Some
other results concerning the optimization of the ship’s hull can be found in [11–16].

It was shown in [17] that axisymmetric bodies similar to the trunks of water animals
can ensure an underwater flow pattern without boundary separation. It was proposed to
use dolphin-like shapes for the underwater hulls of SWATH (Small Waterplane Area Twin
Hulls) yachts and ferries [18]. The expected values of volumetric drag coefficient CV can
be reduced more than twice in comparison with known shapes in the range of volumetric
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Reynolds numbers ReV from 1 to 10 million (see [17], Figure 1). The corresponding
volumetric coefficients can be calculated as follows:

CV =
2X

ρU2V2/3
ReV =

UV
1
3

ν

where V is the volume (displacement), U is speed, X is the total drag, and ρ and ν are
the density and kinematic viscosity of water, respectively. These values of CV (shown in
Figure 1 by the black solid line) are smaller than the drag on some special-shaped bodies of
revolution [19–21] (see markers in Figure 1).
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Figure 1. Volumetric drag coefficient versus volumetric Reynolds number for standard (dashed 
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L/D. Reproduced from [17], with permission from Igor Nesteruk, 2018. Upper dashed lines corre-
spond to the laminar flow; lower dashed lines, the turbulent one. Drag coefficients for standard 
bodies are shown in dark blue for L/D = 4.5; in blue for L/D = 5.9; in green for L/D = 12.4; and magenta 
for L/D = 33.3. Solid lines represent volumetric drag coefficients for special-shaped bodies: unsepa-
rated unclosed body UA-2 (L/D = 3.52; red line); closed bodies UA-4.5c “Albacore” (L/D = 4.5; dark 
blue line), UA-5.9c “Blue shark” (L/D = 5.9; blue line), UA-12.4c “Sailfish” (L/D = 12.4; green line), 
UA-33.3c “Largehead hairtail” (L/D = 33.3; magenta line); and unclosed body UA-23.3 (L/D = 23.3; 
brown line). Markers show the experimental data for standard (“stars”, [19]) and other special-
shaped bodies of revolution (“circles”): red—“Dolphin” body [20], blue—Goldschmied body [19], 
dark blue—Hansen and Hoyt body [21]. Typical values of volumetric Reynolds numbers are shown 
by names. 

Small disturbances of the water surface caused by the special-shaped bodies of a rev-
olution with concave noses (similar to the rostrums of the fastest fish) [6] open prospects 
of their use for floating vehicles. The volumetric Reynolds number for Explorer-1 is ap-
proximately 1.3 million. It means that larger and faster vehicles with special-shaped pon-
toons can also have a lower drag (see black solid line in Figure 1). Since such pontoons 
move near the water surface, the friction and wave drags of corresponding bodies of rev-
olution has to be evaluated. 

In this paper we will concentrate on theoretical estimations of the total drag of spe-
cial-shaped bodies of revolution moving near the water surface and will estimate the op-
timal depth of steady movement (Section 2). The vertical velocities on the water surface 
will be calculated in Section 3. We will evaluate the maximum velocity of the improved 
water bike (Section 4) and electrical vehicles with special-shaped hulls for laminar and 
turbulent flow patterns (Section 5). The range of the improved electrical vehicles will be 
estimated in Section 5. The problems concerned with the manufacturing of the proposed 
shapes will be discussed in Section 6. 

Figure 1. Volumetric drag coefficient versus volumetric Reynolds number for standard (dashed lines)
and special−shaped (solid lines) bodies of revolution with different length−to−diameter ratios L/D.
Reproduced from [17], with permission from Igor Nesteruk, 2018. Upper dashed lines correspond to
the laminar flow; lower dashed lines, the turbulent one. Drag coefficients for standard bodies are
shown in dark blue for L/D = 4.5; in blue for L/D = 5.9; in green for L/D = 12.4; and magenta for
L/D = 33.3. Solid lines represent volumetric drag coefficients for special-shaped bodies: unseparated
unclosed body UA-2 (L/D = 3.52; red line); closed bodies UA-4.5c “Albacore” (L/D = 4.5; dark
blue line), UA-5.9c “Blue shark” (L/D = 5.9; blue line), UA-12.4c “Sailfish” (L/D = 12.4; green line),
UA-33.3c “Largehead hairtail” (L/D = 33.3; magenta line); and unclosed body UA-23.3 (L/D = 23.3;
brown line). Markers show the experimental data for standard (“stars”, [19]) and other special-
shaped bodies of revolution (“circles”): red—“Dolphin” body [20], blue—Goldschmied body [19],
dark blue—Hansen and Hoyt body [21]. Typical values of volumetric Reynolds numbers are shown
by names.

Small disturbances of the water surface caused by the special-shaped bodies of a
revolution with concave noses (similar to the rostrums of the fastest fish) [6] open prospects
of their use for floating vehicles. The volumetric Reynolds number for Explorer-1 is
approximately 1.3 million. It means that larger and faster vehicles with special-shaped
pontoons can also have a lower drag (see black solid line in Figure 1). Since such pontoons
move near the water surface, the friction and wave drags of corresponding bodies of
revolution has to be evaluated.

In this paper we will concentrate on theoretical estimations of the total drag of special-
shaped bodies of revolution moving near the water surface and will estimate the optimal
depth of steady movement (Section 2). The vertical velocities on the water surface will be
calculated in Section 3. We will evaluate the maximum velocity of the improved water
bike (Section 4) and electrical vehicles with special-shaped hulls for laminar and turbulent
flow patterns (Section 5). The range of the improved electrical vehicles will be estimated in
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Section 5. The problems concerned with the manufacturing of the proposed shapes will be
discussed in Section 6.

2. Friction Drag on Floating Bodies of Revolution Similar to the Shape of the
Fastest Fish

Let us assume that the axisymmetric shape of pontoons is similar to the bodies of the
fastest fish and removes the boundary layer separation. If the distance between pontoons
is large enough, the interference and pressure drag connected with separation can be
neglected. Then, the hydrodynamic forces acting on each pontoon can be estimated as for a
single hull of volume V and length L.

The total drag X on a slender axisymmetric unseparated body can be estimated with
the use of the following formula for the volumetric drag coefficient in a laminar unbounded
flow [17]:

CV =
4.7√
ReV

(1)

The solid black line represents this relationship in Figure 1. Equation (1) shows that
the volumetric drag coefficient does not depend on the hull shape, provided it is slender
(with high values of L/D ratio) and ensures the laminar flow pattern without separation.
Formula (1) is valid only for the volumetric Reynolds ReV numbers lower than the critical
one [22]:

Re∗V =
59558πL2

V2/3
(2)

At higher Reynolds numbers, the turbulence appears in the boundary layer and in-
creases the friction drag. The corresponding values of the drag coefficient can be calculated
with the use of the flat plate concept [23] and start to deviate from the relationship (1) (see
solid lines in Figure 1). At supercritical Reynolds numbers, the shape peculiarities have to
be taken into account and the drag coefficient is much higher (see Figure 1). For example,
at high Reynolds numbers, it can be estimated as follows [17,22]:

CV ≈ 0.01, 107 < ReV < 109 (3)

for the unbounded attached turbulent flow (see Figure 1).
If a slender body of revolution moves horizontally at constant speed U at depth h

along its axis of symmetry Ox (h is the distance between the undisturbed water surface and
the body axis of symmetry; see Figure 2), its wave resistance must be taken into account.
The case h < D/2 also changes the friction drag.
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Figure 2. Slender body of revolution similar to the sailfish shape near the water surface (blue line).
Simulation with the use of sources and sinks.

Assuming that the friction drag Xf is proportional to the submerged area Sf, the
corresponding volumetric drag coefficient (based on the displacement Vf).

CV f =
2X f

ρU2V2/3

f

∼
S f

V2/3

f

(4)
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will be proportional to S f /V2/3

f (ρ is the density of water). Introducing the shape coefficients
0 ≤ fs ≤ 1 and 0 ≤ fV ≤ 1, corresponding to the part of the body wetted by water (i.e.,
S f = fS(h)S and Vf = fV(h)V), then Equations (1) and (4) yield:

CV f = f (h)CV , f (h) =
fS(h)[

fV(h)
]2/3

(5)

In particular, at h = 0, the corresponding values fs(0) = fV(0)= 0.5 and according to
Equation (2):

CV f =
CV

2
1
3

(6)

Formula (6) shows that floating bodies of revolution may have a lower friction drag
coefficient in comparison with the underwater ones. Nevertheless, the pressure drag
connected with the waves on the water surface (even without the boundary layer separation)
may yield rather high levels of total drag.

Let us calculate the values of function f (h) for the body of revolution obtained in [6]
with the use of sources and sinks located on the axis of symmetry. Their intensity is
given by:

q1(x) =
{

cx3 + dx4, 0 ≤ x ≤ x∗
a1(x− 1)2, x∗ ≤ x ≤ 1

(7)

The values of parameters c, d, a1, and x* are adjusted to remove the stagnation point
on the nose. The absence of the very small velocities near this point allows for a reduction
in the maximum pressure on the body surface and the wave drag [6]. The black solid line
in Figure 3 represents an example of such a body of revolution with a sharp concave nose,
similar to the shape of sailfish. The pressure coefficient

cp(x) =
2[p(x)− p∞]

ρU2

on its surface at infinite depth is shown by the blue solid line; p(x) is the pressure on the hull
surface and p∞ is the pressure in the ambient flow at the same depth. We see the absence of
a stagnation point at nose, since cp does not tend to 1.0 at x → 0 .
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Figure 4 presents the results of the calculations of shape coefficients fS, fV (dotted
and dashed lines, respectively) and the friction drag coefficient f (the solid line) for the
slender body of revolution similar to the sailfish shape (shown in Figure 3 by the black
solid line). The minimum value of f = 0.7782 correspond to the dimensionless depth of
steady horizontal movement h/D = −0.09 and is only 2% lower than the value given by (6)
and corresponding to h = 0. If we are interested in only positive values of h, the minimum
friction drag can be achieved at the smallest values of depth, e.g., h/D < 0.1 (see the solid
line in Figure 4).
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Figure 4. Shape coefficients fS, fV and the friction drag coefficient f versus dimensionless depth for
the axisymmetric body similar to the shape of sailfish (shown in Figure 3 by the solid black line).

3. Estimations of Vertical Velocities on the Water Surface

The wave drag caused by the hulls with a sharp concave nose (similar to the rostrum
of the fastest fish [2–5] and shown in Figure 3) can be estimated with the use of the vertical
velocities on the water surface. In order to simulate the presence of the water boundary, let
us use sources and sinks with intensities Qi located on the axis of symmetry Ox and sources
and sinks of opposite intensities −Qi located on the line y = 2h, z = 0 (see Figure 3 [24]).
Then, the vertical velocities on the water surface at the plane of symmetry (y = h, z = 0) can
be estimated as follows [6]:

vy(x, h, 0) =
h

2π

n

∑
i=1

Qi[
(x− ξi)

2 + h2
] 3

2
(8)

The discrete values of Qi corresponding to the distribution (7) have been used in
Equation (8) to estimate the deformation of the water surface and corresponding wave
resistance. Solid lines in Figure 5 represent the results of the calculations of the vertical
velocity on the water surface upstream of the concave nose at different values of the dimen-
sionless depth h/D. The solid lines in Figure 3 show the radius R(x) of the corresponding
body with rostrum (black) and the pressure coefficient on its surface at infinite depth (blue).

The slender bodies of revolution with convex noses have a stagnation point and a
pressure peak on the surface. To illustrate this fact, we have used the source distribution:

q2(x) =

{
ax2 + bx, 0 ≤ x ≤ x∗
a1(x− 1)2, x∗ ≤ x ≤ 1

(9)

and a set of constant parameters a, b, a1, and x* are chosen in order to calculate an example
of a body of the same L/D ratio with a convex nose (see the black dashed line in Figure 3),
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whereby the pressure coefficient on its surface in unbounded flow (is shown by the blue
dashed line in Figure 3) and Formula (8) are used for corresponding values of vy(x, h, 0)
(see dashed lines in Figure 5).
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Figure 5. Vertical velocities on the free surface of water upstream to the shapes with concave (solid
lines) and convex (dashed lines) noses shown in Figure 3 at different depths.

Figure 5 illustrates that the vertical velocities on the water surface upstream to the
shapes with the concave nose can be significantly reduced in comparison with the similar
slender shapes with convex noses (compare corresponding solid and dashed lines). This
effect is especially strong at small depths (compare red and black lines) due to the absence
of high pressures on the hull.

Both shapes shown in Figure 3 have no stagnation points (and high pressures) on
the trailing edge (see blue lines at x = 1). Thus, we can expect small magnitudes of the
vertical velocities downstream to the trailing edge. Figure 6 illustrates the results of
calculations for the body with a concave nose corresponding to the black solid line in
Figure 3. The magnitudes of vertical velocities are much lower than the corresponding
values upstream to the concave nose shown in Figure 5 (compare solid lines with the same
color in Figures 5 and 6). This result can be explained by larger values of the pressure on
the body surface near the concave nose in comparison with cp values near the tail (see the
solid blue line in Figure 3). The pressure distributions near the tail of both bodies with the
concave and convex noses are very close (compare blue lines in Figure 3). This fact yielded
very similar values of the vertical velocities on the water surface downstream to the bodies
with concave and convex noses at the same depth (compare solid and dashed curves in
Figure 6).

It is well known that the pressure peaks on the hulls cause deformations of the water
surface and wave resistance [7–9]. To reduce this drag, the elongated wave-piercing hulls
and bulbous bows are used [10,25–27]. The proposed shapes with very sharp concave
noses and tails open the prospects for a further reduction in wave resistance. Since the
wave drag is expected to be low, Formulas (1) and (3) can be used to estimate the total drag
on floating special-shaped hulls with concave noses, since the smallest values of depth h
can be recommended.

Since such hulls have never been tested (similar shapes exist only in nature—the fastest
fish are used as our examples), the improved water bike pontoons provide us with a good
opportunity to verify the theoretical estimations on the real vehicle. After a change of the
prototype pontoons (e.g., [1]) with improved ones (similar to that shown in Figures 2 and 3),
we could estimate the increase in the maximum speed with the use of the same human
muscle power.
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Let us make some estimations for Explorer-1 (U = 2.7 m/s; displacement 0.24 m3 [1]).
For the pontoons of an improved water bike, we can use two almost half-submerged
bodies of revolution similar to that shown in Figure 3 by the black solid line with the
volume of 0.24 m3 each. Then, the total drag can be estimated with the use of Formula (1):
the volumetric Reynolds number is approximately 1.3 million (U = 2.7 m/s; V = 0.24 m3;
ν = 1.3 · 10−6 m2/s at 10 ◦C) and the volumetric drag coefficient CV ≈ 0.0041. This value
is more then twice lower than the drag on the Hansen and Hoyt body [21] tested at the
same volumetric Reynolds number (see Figure 1).

According to Formula (1), the volumetric drag coefficients of improved water bikes
can be much lower at higher subcritical Reynolds numbers. If we use the special-shaped
pontoons of length L = 3 m (the same as for Explorer-1) and volume 0.24 m3 each, then, the
critical Reynolds number will be around 4.4 million (see Equation (2)). This means that
even at a speed of 9 m/s, we could expect the laminar flow pattern and CV ≈ 0.0022. In the
next Section, we will answer the question: Is this speed achievable with the use of human
muscle power only?

4. Estimations of Maximum Velocities

The mechanical power P of a vehicle can be estimated as the product of its speed U by
the thrust (which is equal to the total drag X in steady motion). Then, with the use of the
volumetric drag coefficient CV , we can obtain the following relationship:

P = XU = 0.5CVρU3V2/3 (10)

Taking the characteristics of Explorer-1 [1]: the maximum speed U = 2.7 m/s, the
displacement V = 0.24 m3, and CV = 0.01 (this value was measured on the Hansen and Hoyt
body [21]; see Figure 1), the mechanical power can be estimated as 38 W. The corresponding
human muscle power is higher since only its part is transformed into the mechanical power
of the vehicle motion (in particular, some energy is wasted on the propeller). However,
if we change only the pontoons, the obtained value 38 W can be used to estimate the
maximum speed of the improved water bike.

If we use two equal almost half-submerged pontoons of volume V with the shape
similar to the one shown in Figure 3 by the black solid line, then the wave resistance can be
neglected for small values of depth, e.g., h/D < 0.1, see Figures 4 and 5. The total drag of
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the improved water bike can be estimated as a friction drag on a single underwater hull of
the same volume V.

For subcritical Reynolds numbers, the volumetric drag coefficient of the vehicle can
be estimated with the use of Formula (1). Then, Equation (10) allows us calculating its
maximum speed at a given value of mechanical power, as follows:

U =

[
P

2.35ρ
√

Vν

]0.4

(11)

Formula (11) yields the maximum speed of 3.8 m/s for the improved water bike
with the same mechanical power 38 W and the displacement V = 0.24 m3 (the value
ν = 1.3 · 10−6 m2/s was used for this estimation). Thus, the expected speed is almost 41%
higher than for the prototype. Nevertheless, the maximum speed of 9 m/s estimated in the
previous section for a laminar vehicle cannot be achieved with the use of human power
only. On the other hand, an improved human-muscle-powered water bike of mass 1 t
can achieve the speed of 2.9 m/s. Thus, similar improved vehicles can be also used for
transportation at rather high speeds.

Significant differences in speeds of the prototype and an improved water bike can be
easily registered in tests, providing us with an opportunity to estimate the efficiency of new
pontoons. In the case of success, the new shapes can be recommended for rowing shells,
small boats, and ships with subcritical Reynolds numbers. The new shapes could also be
very useful for larger and faster vehicles since their volumetric drag coefficients are much
lower then for standard hulls even at supercritical Reynolds numbers (compare solid and
dashed lines in Figure 1).

Small drag on unseparated hulls allows increasing the commercial effectiveness
(weight-to-drag ratio [28]). In particular, the dolphin-like underwater shapes can ensure
the attached laminar flow at rather high Reynolds numbers [29] and can be recommended
for SWATH (Small Waterplane Area Twin Hull) yachts and ferries [18]. The small drag of
floating hulls with a sharp nose similar to the shapes of the fastest fish could improve the
commercial efficiency of common ships for both sub- and supercritical Reynolds numbers.

5. Maximum Velocities and Ranges of Electrical Vehicles

To reduce the negative impact of emissions of carbon dioxide and toxic substances
(which are critical in some areas [30,31]), the use of fossil fuels has to be stopped. Electric
ships are already in operation [32,33], but there is some delay in the electrification of the
maritime transport (in comparison with cars and buses) connected with the higher drag in
water. The low drag on the proposed hulls allows increasing the commercial efficiency of
ships and range with the use of one charge.

Let us estimate the maximum speed and range of electrical vehicles with improved
hulls using the power-to-weight ratio PW and the operation time T at a given value of the
power. The power-to-mass ratio for modern electrical accumulators ranges from 1.65 to
9706 W/kg [34]. Then, the corresponding power-to-weight ratios are between 0.17 and
990.4 W/N or m/s. The battery discharge time T can range between 0.5 and 90,000 s [34].

Taking into account that only a part 0 < kP ≤ 1 of the accumulator power Pa is used
for a steady motion (with the required mechanical power XU) and that the weight of
accumulators gma is only a part 0 < km ≤ 1 of a vehicle tonnage, the following formula is
valid:

PW =
Pa

gma
=

XU
kPkmmg

=
XU

kPkmρVg
=

ρCVU2V2/3U
2kPkmρVg

=
CVU3

2kPkmgV1/3
(12)

Equation (12) allows for estimating the speed that can be achieved at given values of
pW, km, and kP, as follows:

U =
3

√
2PWkPkmgV1/3

CV
=

ktV
1/9

C1/3
V

, kt =
3
√

2PWkPkmg (13)



J. Mar. Sci. Eng. 2023, 11, 1754 9 of 11

Taking into account Equations (1) and (3), the following estimations for the maximum
velocity in the cases of the laminar and turbulent flows can be obtained:

Ulam = 0.54
5

√
k6

t V
ν

, Utur = 4.64ktV
1
9 (14)

If the ranges of kP and km are between 0.1 and 1.0, the kt values are located between
0.15 and 12.6 m2/3/s. Figure 7 illustrates the relationships (14) at three different kt values
for laminar (“circles”) and turbulent (“triangles”) hulls versus displacement V. At high
values of kt, rather high speeds of electrical vehicles are possible (especially for large values
of the displacement; see blue markers in Figure 7). Taking in (14) some average value
kt = 1.0 m2/3/s, the maximum speed of the improved electrical water bike (with V = 0.24 m3;
ν = 1.3 · 10−6 m2/s) can be estimated as 6.1 m/s for the laminar case and 4.0 m/s for the
turbulent one.
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To estimate the range of the improved electrical water bike, it is enough to multiply
values (14) by the battery discharge time T. Then, at the highest value of T = 90,000 s, the
range of the laminar vehicle can be 549 km. This estimation looks too optimistic, since the
batteries with a high value of kt (ensuring the highest speeds) have smaller discharging
time [34].

6. Strength and Materials Limitations

Formula (14) and Figure 7 illustrate, that rather high speeds of electrical vehicles
can be achieved at high values of the parameter kt, especially for the laminar case. In
the turbulent flow, the corresponding maximum speed is approximately twice lower. To
achieve the highest speeds, special-shaped, very slender hulls must be used, which ensure
the laminar-attached flow. Unfortunately, the length and volume of such hulls are limited
by critical Reynolds numbers (see Formula (2)). The length-to-diameter ratio L/D must
be as high as possible to increase the critical Reynolds number. In particular, taking into
account the formula:

V
L3 = γ

(
D
L

)2
, (15)
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where dimensionless coefficient γ varies from 0.23 to 0.33 for D/L from 0.02 to 0.28 [22],
Equation (2) can be rewritten as follows:

Re∗V =
59558π

γ2/3

(
L
D

)4/3

(16)

The values of L/D range from 5 to 12 for the fastest fish, allowing them to have
subcritical Reynolds numbers, a laminar flow pattern, and a low drag. Modern materials
and technologies make it possible to manufacture very elongated special-shaped hulls. It is
likely that modern materials can ensure that the values of L/D are higher than 33.3 (typical
for the fish Largehead hairtail [2]) and that the critical values of the volumetric Reynolds
number are higher than 50 million (according to Equation (16)).

7. Conclusions

The special-shaped bodies of revolution with the sharp concave noses (similar to the
trunks of the fastest fish) moving near the water surface can ensure a low total drag and a
high commercial efficiency. In particular, improved pontoon shapes can increase the speed
and tonnage of water bikes using human muscle and electrical power. If the calculated
significant differences in speeds of the prototype and an improved water bike are registered
in tests, the new shapes can be recommended for rowing shells, small boats, and ships and
probably also for larger and faster vehicles.

Modern materials and technologies open wide prospects for these special-shaped
hulls in shipbuilding.
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