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Abstract: In this article, a deep reinforcement learning-based path-following control scheme is
established for an under-actuated autonomous marine vehicle (AMV) in the presence of model
uncertainties and unknown marine environment disturbances is presented. By virtue of light-of-sight
guidance, a surge-heading joint guidance method is developed within the kinematic level, thereby
enabling the AMV to follow the desired path accurately. Within the dynamic level, model uncertainties
and time-varying environment disturbances are taken into account, and the reinforcement learning
control method using the twin-delay deep deterministic policy gradient (TD3) is developed for
the under-actuated vehicle, where path-following actions are generated via the state space and
hybrid rewards. Additionally, actor-critic networks are developed using the long-short time memory
(LSTM) network, and the vehicle can successfully make a decision by the aid of historical states,
thus enhancing the convergence rate of dynamic controllers. Simulation results and comprehensive
comparisons on a prototype AMV demonstrate the remarkable effectiveness and superiority of the
proposed LSTM-TD3-based path-following control scheme.

Keywords: autonomous marine vehicle; path-following control; surge-heading joint guidance;
twin-delay deep deterministic policy gradient; long-short time memory network

1. Introduction

The Autonomous marine vehicle (AMYV) is a marine intelligent platform that performs
tasks autonomously or semi-autonomously [1], which is widely applied in military and
civilian fields due to its small volume, strong concealment, good flexibility and other
advantages [2]. In different missions, path following of the AMYV plays a crucial role for
realized autonomous operation. Considering that, in practice, the AMV inevitably suffers
from marine environment disturbances, the path-following control method with high
precision and efficiency is crucial to the success of an operation, where a parameterized
path is expected to be tracked as accurately as possible [3].

In generally, the path-following control of an AMV consists of two critical parts: kine-
matics guidance and dynamics control. In the part of guidance research, by calculating
the desired heading angle, path-following errors can converge to zero, and in the part of
control research, control inputs including surge force and yaw torque are solved using
the desired guidance signals, thus contributing to the path following performance [4].
For the former, the light-of-sight (LOS) guidance was widely applied because of its high
precision and simplicity [5-8]. For the latter, fruitful methods were proposed and applied to
controller design, such as PID control [9,10], fuzzy control [11-13], adaptive control [14,15],
active disturbances rejection control [16,17], sliding mode control [18,19], and backstepping
control [20-22]. In [23], considering the path-following control under unknown environ-
ment disturbances, the modified integral LOS guidance law and the adaptive sliding
mode control law are developed, realizing the desired path following. In [24], to solve the
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path-following control of an under-actuated autonomous underwater vehicle subject to
environment disturbances, an adaptive robust control method is proposed using fuzzy
logic, backstepping and sliding mode technology, where the fuzzy logic system is utilized to
approximate the unknown uncertainties. In [25], a novel, adaptive, robust path-following
scheme is proposed by combining with the trajectory linearization control and the finite-
time disturbance observer. In [26], a fuzzy unknown observer-based, robust, adaptive
path-following control scheme is proposed, where the fuzzy observer is designed to esti-
mate lumped unknowns and the observer-based, robust, adaptive tracking control laws
are synthesized, thus ensuring that the guided signals are globally asymptotically tracked.
However, the above control method depends on a system model with high accuracy, and
the derivation process is complex.

With increasingly rapid development of machine learning, deep reinforcement learn-
ing (DRL) algorithms are widely applied to the relative studies of unmanned system
control [27]. The DRL is a combination of deep learning and reinforcement learning, which
has strong decision-making ability and anti-disturbance ability of reinforcement learning
and strong representation ability of deep neural network, thus effectively reducing the
complexity and difficulty of the controller design. At present, the popular DRL algorithms
include the soft actor-critic (SAC), the proximal policy optimization (PPO), and the deep
deterministic policy gradient (DDPG) [28-30]. In [31], the advantage of actor-critic (A2C)
is proposed to solve path-following control for a fish-like robot, where the desired path
is a randomly generated curve. In [32], a DRL controller is designed using the DDPG for
path following, and simulation shows that the proposed method is better than the PID in
terms of transient characteristics. In [33], a distributed DRL method is proposed to solve
the path-following control of an under-actuated AMYV, where the DDPG-based controller
is designed and the radial basis neural network is utilized to approximate the unknown
disturbances. In [34], an improved DDPG control method was proposed for path following
based on an optimized sampling pool and average motion evaluation network, and the
simulation results show that the proposed method effectively improves the utilization
rate of samples and avoids falling into a local optimum in the training process. In [35],
a linear active disturbances rejection controller based on the SAC was proposed to solve
path-following control under wind and wave environments. In [36], the path-following
control laws were designed using the twin-delayed deep deterministic policy gradient
algorithm (TD3), where desired velocities were generated by the LOS guidance.

Considering the path following of an under-actuated AMV under unknown model
parameters and environment disturbances, this article establishes the motion model for an
AMYV, and proposes a path-following control method by combining with the long short-term
memory network (LSTM) and the TD3 algorithm. The main contributions are as follows:
(1) within the kinematic level, the surge-heading joint guidance law is developed based
on the LOS, where the desired velocity signals are generated to guide the vehicle along
the desired path; (2) within the dynamic level, the TD3-based surge-heading controller is
developed for the vehicle, where states, actions and reward functions are defined; and (3) to
enhance the convergence rate of controller networks, the LSTM layer, using the historical
states, is added into the TD3.

The remainder of this article is organized as follows: preliminaries and problem
statement are described in Section 2; Section 3 presents the kinematic guidance law and the
DRL-based dynamic controller of an AMYV; simulation results and analysis are presented in
Section 4; and Section 5 contains the conclusion.

2. Preliminaries and Problem Statement
2.1. Reinforcement Learning

Reinforcement learning is based on the Markov decision process. Four basic elements
are defined as {S, A, P, R}, where S is the set of all states, A is the set of all actions, P is the
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state transition probability, and R is the reward function [37]. The decay sum of all rewards
from a certain state to the final state can be calculated by

Ri=riq +yr2 + 7V rgs+...= Y Yrerki 1)
k=0

where 7 is the discount factor, satisfying v € [0,1],and r4; (i =1,- - - ,k + 1) is the reward
at the current time.

Additionally, the value functions under the policy # include action value function
QH(st,a¢) and state value function V¥ (s;), where s; and a; are the state and action at the
current time. The value functions are described as

[ee]
Q" (st,at) = Eu[Ryst,at) = Eu[ ¥ Vot ko lse ail
o [0 )
VH#(st) = Eu[R¢[st] = Ey [}EO Vorerrlst]

where E expresses the expectation, and the optimal policy #* can be achieved by maximiz-
ing the optimal state-action value functions [38].

p* = argmaxV"¥(s;) = argmaxQ¥(s¢, at) 3)

2.2. LSTM Network

The LSTM network has better memory ability, where important data is retained and
irrelevant noise is deleted, thereby relieving the gradient disappearance of the existing
recurrent neural network and the memory burden of networks [39]. The neuronal structure
is shown in Figure 1, where x; is the input; i; is the output; ¢; is the state value of the
memory cell at the current time; /1;_; and c;_; are the input signals at the previous time; f;
is the forgetting gate; i; is the input gate; o; is the output gate; and ¢ is the sigmoid function.

@@ @
g mé h
N @

X v h

Figure 1. Neuronal structure of the LSTM.

As shown in Figure 1, when the information inputs to the neuron, it firstly goes
through the forgetting gate and input gate; then, it goes through the output gate, and the
state value of the memory cell ¢; are calculated based on the f; and i;. Finally, the outputs
are calculated based on o; and c;. The renewal process can be described by

ft = o(Wix; +Wahy 1 + by)

ir = c(Wsxp + Wahy 1 + bp)

oy = o(Wyxt + Wghy_1 + by) 4)
Cr=10Cp1 X ft+ tanh(Wsx; + Weh; 1 + b3) X iy

hy = ot x tanh(c;)

where W; is the weight coefficient withi = 1,2, - - ,8; by, is the bias withh = 1,--- ,4, and
tanh is the activation function [40].
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2.3. Under-Actuated AMV Model

As described in [41], the under-actuated AMV model of three degrees of freedom in
the horizontal plane is written as

{ =R 5)
Mv+Clv)v+Dv)v=1+T1

where 1 = [x,y, l[J]T are the positions and heading angle of AMV in the earth-fixed
frame, and v = [u, 7, r}T are the surge, sway and yaw velocities in the body-fixed frame.
T=[1,0,7] T are the control inputs of path-following, and 13 = [T,4, Tod, Trd] T are the time-
varying marine environment disturbances. R(#) is the rotation matrix from the body-fixed

frame to the earth-fixed frame, which is defined as

[cos Y —siny 0]

R(y) = |siny cosyp O (6)

0 0 1
M is the inertial matrix and satisfies M = MT > 0, which is written as

mqq 0 0
M = 0 mpp M3 (7)

0 mzp ma3

C(v) is the coriolis-centripetal matrix and satisfies C(v) = —C (v)T, which is written as
0 0 c13(v)
Clv) = 0 0 c3(v) ®)
—ci3(v) —cas(v) O

and D(v) is the damping matrix, which is written as

dll (1/) 0 0
D(v) = [ 0 dn(v) d23(V)] ©)
0 dxp(v) ds(v)
with myy = m— X, mp = m—Y,, msz = I; = N, mp3 = mxg —Y,, mzp = mxg — N,
ci3(v) = —mpo —myr, ca(v) = —muu, diy(v) = =Xy — Xulul = Xuwlul,
dn(v) = —=Yo = Y|y[p|0], d33(v) = =Ny — Njg,[0] = N}y, |7], Y¥; = N, where m is AMV mass,
and I, is the moment of inertia in yaw. X, Y; and N, are the hydrodynamic coefficients.
As shown in Figure 2, the desired path (x;(s), y4(s)) is a continuous parameterized
curve with a time-independent variable s. For any moving point on the curve, a path-
tangential angle in the earth-fixed frame is defined as

w = atan2(yy(s), xy(s)) (10)

where y/,(s) = dy4/0s, x/;(s) = 0x,/0s. The errors between (x, y) and (x4, y4) can be

formulated as
Xe | | cosa—sina T x —x4(s) (11)
Ve | | sinacosa v —va(s)

where x, is the along-track error, and y, is the cross-track error.
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Figure 2. Diagram of horizontal path-following control.

In this article, our objective is to design the DRL-based path-following control scheme
for an uncertain under-actuated AMYV, such that the vehicle can follow the desired path with
the desired velocities regardless of model uncertainties and unknown marine environment
disturbances. To be specific, the objective can be formalized as

t—ro0 (12)

{ limx, < 6y
i <
fmye < 0y

where 6, and ¢, are any small positive constants.

3. DRL-Based Path-Following Control Scheme

In this section, a DRL-based path-following control scheme is established for an under-
actuated AMV in the presence of model uncertainties and unknown marine environment
disturbances. The diagram of the proposed control scheme is shown in Figure 3, where
kinematic guidance and dynamic control are designed, respectively.

Kinematic Guidance

i Position Errors —»| Joint Guidance —>{ Surge-heading :
| : |
Vehicle States Y
AMYV Model | Environment

7y ) State Update

Dynamic Control

7y
=
o
<
QO
=
q.
»

Control Inputs «—DRL Controller

Figure 3. Diagram of the proposed path-following control scheme.

Within the kinematic level, according to the position errors and related motion states
obtained by the AMV model, the desired surge velocity and heading angle are generated
by the designed surge-heading joint guidance law based on the light-of-sight guidance.
Within the dynamic level, DRL-based surge-heading controllers are presented for following
the desired guidance signals. The reward function is designed to generate rewards by
comparing the desired signals with the actual vehicle states in the environment. The
controllers generate the control inputs based on the rewards, and the vehicle precisely
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tracks the desired signals based on the control inputs and the novel environment states to
realize path-following control. By combining with the kinematic guidance and dynamic
control, the objective (12) can be successfully completed.

3.1. Kinematic Guidance Design

Firstly, kinematic guidance is designed in this subsection, where desired surge veloci-
ties and heading angles are produced. Differentiating (11) along (5) yields

Xe = ucos(p —a) —vsin(yp — a) + ay, — us (13)
{ Y, = usin(yp — o) +vcos(ip — a) — ax,

where u; is velocity of the virtual point along the desired path, which is defined by
Us =s xff(s) +y{iz(s) (14)
Define the sideslip angle of under-actuated vehicle as
v
B = arctan(a) (15)

In this context, path-following error dynamics (13) is rewritten as

Xe = ucos(¢p —a) —usin(p — a)tanf + aye — us (16)
Y, = usin(¢ — ) +ucos(¢ — a)tanp — ax,
Then, select the Lyapunov function related to path following errors as
1
v=z(2+4) (17)

The time derivative of (17) along the solution (16) is

V = xeXe + Yel,
= x(ucos(yp — a) — usin(¢p — a)tanf+ay, — us) (18)
+e (usin(yp — &) — ax, +u cos(p — a)tanp)

Thus, the surge-heading joint guidance law is designed as follows
a =K1/ + 07 (19)
g = o — By —arctan (%)

where ki > 0; A > 0 is the look-ahead distance; B; = arctan(v/uy;) and virtual velocity us
is determined by

us = Ugcos(Byg + 9 —a) + kox, (20)
with ky > 0and Uy = \/u3 + v2.
Using the fact
sin(tan~! ey Ve
( ( A )) (2 + A2)1/2 o
Ccos (tarfl (— k) ) = — #1/2
A (2 +A2)
and substituting the guidance law (19) into (18) yield
V = xo (& — kaxe) + e | — k1 —ax
e &Ye 2Xe Ye oS ,Bd Ye e -

k
= —kpa2 — —
cos By

vz
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Since 0 < cos By < 1 renders V < —kyx2 — kyy?2, it indicates that path-following
error x. and y. can globally asymptotically converge to the origin using the proposed
guidance method.

3.2. Dynamic Control Design

Because of inaccurate measurements and environment disturbances, AMV model
parameters cannot be obtained completely, thereby resulting in uncertainties of dynamics.
To enhance the engineering practicality and reduce the complexity of controllers, a TD3-
based reinforcement learning control method is presented within the dynamic level, where
control inputs of the AMV are generated successfully.

The main purpose of the DRL algorithm is to make the vehicle take actions in the case
of different path information. The proposed TD3 algorithm is based on the actor-critic
structure, where policy functions are produced using actor networks and critic networks
used to judge the performance of the actor [42]. Additionally, LSTM network layers are
introduced into the TD3 and thereby enhance the utilization rate of historical states.

Firstly, the network structure of TD3 algorithm is shown in Figure 4. By virtue of
initial environment states, actions of the AMV are generated using actor networks, and
rewards are accordingly calculated using reward functions; thus, the states can be updated
with the generated actions. The empirical value is defined as e(t) = {s,a,7,5;+1} and
saved into buffer MemoryD. Through repeated training, the empirical replay sequence
D = {ey,ey,...,e,} can be formed. Considering that the adjacent actions of path-following
have strong relevance, a batch of empirical sequences are selected randomly for training.
The actor network of target generates the action a;;1 according to the state s;,1 in the
empirical replay sequence, and the critic network of target calculates the Qpin value, where
Qmin is the smaller of the two Qtarget values generated by target networks. Two critic
networks are updated based on Q, Qmin and loss functions. Actor networks generate
actions using states. Critic networks generate the Q value using states and actions, and
thus calculate the policy gradient and update actor networks using the Q value.

(s,a,r,s,,)
___________ S _____________________(_S_LQ')___, ___________S_til_______________§l_+_1 [
| v v o v 4 |
E a CriticNet | ||| a,, ||CriticNet ||
1| ActorNet > 11| ActorNet > |
! CriticNet | | ! | CriticNet | |1
! y r bl |
! MainNet vl TargetNet !
g F--}F----- | RN PPV U 1
Update Q Quin
A 4 r .
Update " .
Policy Gradient P Loss Function

Figure 4. Network structure of the TD3.

The specific renewal process is as follows. Considering that TD3 algorithm is a
deterministic policy and has the characteristic of target policy smoothing regularization,
random noise ¢ is added into target actions. Therefore, thereis a; 1 = p'(s;41|w’) + ¢, where
1 is the policy of target actor networks, and w’ is the parameter of target actor networks.
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The target value is calculated as

Y =7+ YQmin(st+1, a1416;) (23)

where i = 1, 2, 0/ represents parameters of target critic networks.
The loss function is defined as

1

L(6) = 3 (v — Q(s,al0)? @)
where N represents the number of mini-batch, and 6; represents parameters of critic

networks. The gradient is updated by

aL(0;)
26;

—ﬂ@—@@ﬂ@ﬂgﬁwm] 25)

00;
Subsequently, the policy gradient of actor networks is updated by

oJ(w) _ .[9Q(s, a[6) Ip(s|w)
ow _E[ da ow ]

. (26)
Vo] =~ N Z(an(S/“wl)‘azy(s)vﬂ)y(s‘w»

After a couple of cycles, target parameters are soft updated by

0/ = &6 + (1 — )6,
{ w =¢w+ (1-¢)w 27)

where ¢ € (0,1) represents the learning rate.

Then, the LSTM network is introduced into actor-critic networks, thus contributing
to the LSTM-TD3-based reinforcement learning controllers. The LSTM-TD3 network still
retains the actor-critic structure, where LSTM inputs is a length of sequences. According to
the real-time navigational information, the continuous states are saved into the sequences.
The LSTM network layer is connected to generate the final hidden state i;, where h; is a
one-dimensional array. Via the multi-layer perceptron (MLP) neural networks, the path-
following control inputs of an AMYV are generated, which include surge forces and yaw
torques. The network structure of the actor is shown in Figure 5. Note that the critic has
the similar network structure to the actor, and generates available actions.

State LSTM  Hidden MLP
Sequence  Layer State  Network

Environment

’
i
1
|
)

a

Figure 5. Network structure of Actor.

Finally, the state space, action space and reward function are designed as follows.
To be specific, the state space represents perceived environment information of the AMYV,
which is the basis of decision-making and reward-evaluating. The action space represents
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control inputs of the AMV, including surge forces and yaw torques. The reward function is
used to evaluate current state of the AMV.
In this context, the state space is defined as

St = [Xe, Yer P Yo, U, U, 1, Ue, Ty(t-1)s Ty(t-1)) (28)

where 7,; 1) and T,(;_1) are control inputs at the previous moment. u, = u — u; and
Pe = ¢ — Py with uy, 1P, are generated by the guidance law (19).

Taking path-following errors, surge velocity and heading angle errors into considera-
tions, the reward function r; is designed as

r = /\(Zexp_k3|”3| 71) + (Zexp_k‘l‘lp"‘ 71) + (Zexp_k5‘\/"gTy‘2" 71) (29)

where k. (x = 3,4,5) > 0and A > 0. Note that the exponential function is used to calculate
rewards, which limits the size of rewards and avoids high rewards.
Furthermore, the reward function ; is designed as

rp = eXp—kdfT‘m‘ +eXp_k6‘0'Tr‘ —1 (30)

where kg > 0; 07, and o7, are the standard deviation of two inputs, which are used to
reduce the chattering of control inputs.
By combining with (29) and (30), the hybrid rewards of path-following control are
established as
r=r1+kyry (31)

where k7 > 0, and satisfies k7 € (0,1).
The framework of the dynamic control algorithm is summarized in Algorithm 1.

Algorithm 1. Dynamic control algorithm of an AMYV.

Inputs: Learning rate ¢, Iy and [, regular factor ¢, gradient threshold parameter g, discount factor
7, sequence length L, the maximum number of steps per training K, updating cycle of target
network parameter d, training cycle F, mini-batch N.

Initialize: Critic network Q(s, 2|6;) and actor network p(s|w) with random parameters 61, 6, and
w, target network 0] <— 61, 6 < 6, and w’ < w, experience replay buffer Memory D,
navigation environment of an AMV.

Procedure:
1: forn; =1,...,Fdo
2: fornp=1,...,Kdo

3: Select actions with exploration noise a ~ (s|w) + ¢ and obtain reward r and next
moment state sy
4: Save transition tuple (s, a,t,s;41) into Memory D
5: Sample N transitions (s, a,7,5;11)
{ api1 4 W (sealw’) +e
YT+ ')/Qmin(si-‘rlr at+1 |91/)
6: Update Critic networks parameters 6; as
6; « argming, 3 (y — Q(s,al6;))°
7: if t mod d then
8: Update actor network parameters w as
Vol % 3 E(VaQ(s,a101) lg—p(e) Vo (5]0))
9: Update target network as

0; =6+ (1-4)6;

w=Cw+(1-8u
end if

end for

Outputs: Actor network parameter w, critic network parameters 6; and 6.
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4. Simulation Studies

In this section, simulation studies are shown to verify the effectiveness and superiority
of the proposed DRL-based path-following control method. Consider an under-actuated
AMV described by (5) with model uncertainties and unknown marine environment distur-
bances. Model parameters of the prototype AMV can be found in [43].

Within the kinematic guidance level, relative parameters are chosen as follows: k; = 0.2,
ko = 2, A = 3. Within the dynamic control level, relative parameters are chosen as follows:
ks =15,ky =6,ks =1,k¢ =1, A = 0.8, ky = 0.3. Training hyper parameters and network
parameters of the LSTM-TD3 are shown in Tables 1 and 2, respectively.

Table 1. Training hyper parameters.

Parameters Value
Discount factor y 0.99
State sequence length L 20
Training cycle F 1000
Maximum number of steps K 1000
Capacity of buffer D 100,000
Learning rate [ 0.001
Optimizer Adam
Gradient threshold parameter g 1
Regular factor & 0.00005
Mini-batch N 128

Table 2. LSTM-TD3 network parameters.

Parameters Value

Input layer of actor network 11
Input layer of critic network 13

Fully connected layer 200
LSTM layer of actor network 100
LSTM layer of critic network 100

Output layer of actor 2

Output layer of critic 1

Episode rewards with different DRL algorithms of path-following control of an AMV
are shown in Figure 6. It can be seen that the initial reward is extremely low since the
vehicle explores the environment randomly during the initial training stage. After collecting
enough data, the rewards converge to a stable value under the DRL control method.
Compared to the asynchronous advantage of actor-critic (A3C) developed in [44], the
TD3 and LSTM-TD3 can effectively increase the accumulated reward. Additionally, the
proposed LSTM-TD3 shows a faster convergence rate and a more stable convergence
process than the other two algorithms.

After training the algorithm for 1000 episodes, the optimal actor network parameters
of the LSTM-TD3 and TD3 are saved and utilized. Simulation time is set as 200s. The
initial positions and attitude are 7 = [—10,0,0]” and the initial velocities are v = [0,0,0]".
Time-varying marine environment disturbances are defined as

5sin(0.1t + 77/5)
Ty = | 2.2cos(0.1¢ + 6) (32)
1.2cos(0.1¢ + 3)

The desired path is defined as

Xg =S
{ yg = 10sin(0.3s) + 2s (33)
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_5000 1 L 1 1
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Figure 6. Episode rewards with different DRL algorithms.

Simulation results are shown in Figures 7-11. Figure 7 shows the path-following
control performance of an under-actuated AMV where the desired path, actual path under
the proposed LSTM-TD3 and the traditional TD3 are plotted. Obviously, the proposed
control method has significant superiority in terms of transient responses and steady-
state performance. Figure 8 shows the path-following errors of an AMYV subject to model
uncertainties and marine environment disturbances. It can be seen that the tangential error
and the normal error can converge to the origin faster under the proposed control method.
Figure 9 shows the surge velocity and heading angle, where desired signals are generated
by guidance law (19). The actual velocities gradually converge to the desired value by
the aid of the DRL controller. Note that the slight chattering of velocities is due to large
path inflection point, and under-actuated AMV have to reduce their speed to follow the
desired path. Figure 10 shows the velocity error and heading angle error of an AMV. It
can be seen that the LSTM network considers historical states and thus enhances control
performance. Figure 11 shows path-following control inputs of an AMYV, including the
surge force and the yaw torque. Because of the hybrid rewards with standard deviation,
where 20 continuous inputs are set as a calculation group and dynamic sliding is introduced,
the control chattering is effectively relieved.
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Figure 7. Path-following control performance of an AMV.
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5. Conclusions

This article studies the path-following control of an under-actuated AMV subject to
unknown model parameters and marine environmental disturbances. Within the kinematic
level, a surge-heading joint guidance law is presented, and makes the vehicle follow the de-
sired path. Within the dynamic level, a LSTM-TD3-based reinforcement learning controller
is presented, where vehicle actions are generated by the state space and hybrid reward.
Additionally, actor-critic networks are developed using the LSTM network, and vehicles
can make a decision by the aid of historical states, thus enhancing the convergence rate of
controller networks. Simulation results and comprehensive comparisons demonstrate the
remarkable effectiveness and superiority of the proposed path-following control method.
By the aid of the proposed controller, the AMV can achieve path following regardless of
marine environment disturbances.
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